1. Field of the Disclosure
The present invention relates to a pressurized sprayer, a pressurized sprayer actuator, and a method of making the same.
2. Description of Related Art
Pressurized containers of the aerosol type have been traditionally equipped with an actuating button or cap, which button or cap defines a product duct through which the product passes to the discharge orifice situated within the button or cap. To discharge product from the container, the user grasps the container and with one finger of the grasping hand depresses the button or a portion of the cap to release the contents of the container.
While achieving substantial commercial success, finger actuated buttons or caps have the disadvantage of inducing finger fatigue for some users. Moreover, with the prior systems of actuation, the aiming of the discharged product to the desired surface area suffers somewhat due to the relatively awkward gripping and finger placement. A more natural grasping and actuation of the container is achieved through the use of a trigger mechanism. Examples of prior trigger actuated aerosol containers are disclosed in U.S. Pat. Nos. 3,189,232, 3,580,432; 3,987,942; 5,862,960; and 6,494,349. U.S. Pat. App. 2007/0062980 to Bates et al. discloses an aerosol sprayer actuator having a housing fitting on a container with a narrowed waist portion between and upper portion and a lower portion, and the upper portion is configured so that it rests on a portion of a user's thumb and forefinger to at least partially support the weight of the sprayer during use. U.S. Pat. App. 2007/0023457 to O'Toole et al. discloses an aerosol trigger that locks against removal from the aerosol container and has a spring that biases the trigger toward release of the trigger.
In addition, some prior spray containers are only held by a few of the user's fingers. These may result in a less than adequately secure grip, and supporting the weight of the sprayer may place an undue strain on the user's fingers. Therefore, the improved ergonomic pressurized sprayers of the current invention solve problems of carrying the weight of the sprayer, ease of trigger activation and several other problems of prior art sprayers.
The present invention relates to a sprayer, a sprayer actuator, and a method of making the same. There are numerous embodiments of the sprayer, sprayer actuator, and method described herein, all of which are intended to be non-limiting examples, and there are numerous aspects thereof that may constitute inventions in their own right.
In one embodiment, a pressurized aerosol sprayer with an aerosol sprayer actuator is disclosed. The pressurized aerosol sprayer comprises an aerosol sprayer actuator attached to an aerosol container; wherein the sprayer actuator comprises an actuator housing; a trigger piece having a trigger, a pivot, and a trigger actuating portion; the trigger piece operatively associated with the actuator housing so that the trigger actuating portion activates a valve stem on the container for the release of fluid from the container; a nozzle in fluid communication with the valve stem; and a trigger loop encircling the trigger; wherein the trigger piece has a pivot at one end of the trigger piece and the trigger activating portion at the other end of the trigger piece.
In another embodiment, the pressurized aerosol sprayer comprises an aerosol sprayer actuator attached to an aerosol container; wherein the sprayer actuator comprises an actuator housing, a trigger piece having a trigger and operatively associated with the actuator housing to activate the release of fluid from the container, a nozzle in fluid communication with the container, and a trigger loop encircling the trigger.
In another embodiment, the pressurized aerosol sprayer comprises an aerosol sprayer actuator attached to an aerosol container, wherein the sprayer actuator comprises an actuator housing having a housing top portion with an opening for a nozzle and a housing bottom portion with a trigger opening and a contiguous trigger loop; a trigger piece having a trigger and operatively associated with the actuator housing to activate the release of fluid from the container; a nozzle in fluid communication with the container; and a trigger loop encircling the trigger; wherein the nozzle is in fluid communication with the container by means of a conduit having a first end and a second end, wherein the first end of the conduit is configured to be positioned over a valve stem of the container, and the second end of the conduit has the nozzle operatively associated therewith, wherein the conduit is configured to provide fluid communication between the container and the nozzle; and wherein the trigger piece is at least indirectly in mechanical contact with the valve stem.
While the specification concludes with claims particularly pointing out and distinctly claiming the invention, it is believed that the present invention will be better understood from the following description taken in conjunction with the accompanying drawings in which:
The present invention relates to a pressurized aerosol sprayer, a pressurized sprayer actuator, and a method of making the same.
The container 22 can be any suitable type of container for holding a product to be dispensed by the sprayer. In some embodiments, it is desirable for the container 22 to be capable of holding contents that are under pressure and/or a propellant. The design of such containers in the form of metal cans or plastic containers is well known. The container 22 can be of any suitable shape. The container 22 has sides 34, a lower portion 36, an upper portion 38, and a top 40 (shown in
The container 22 can contain any suitable product that is capable of being sprayed by the sprayer 20. The product can be in any suitable form, including liquids, and other compositions. Examples of products include, but are not limited to: air freshening compositions, fabric freshening compositions, ironing aids such as spray starches, insecticides, paints, and other industrial, commercial, household, automotive, and/or garden compositions, for example household cleaning compositions.
The container 22 can also include a propellant for dispensing the product therein. Any suitable propellant can be used. Suitable propellants include, but are not limited to: hydrocarbon propellants such as: isobutene, butane, isopropane, dimethyl ether (DME), or non-hydrocarbon propellants such as compressed gases which include, but are not limited to compressed air, nitrogen, inert gases, carbon dioxide, and mixtures thereof. In certain embodiments, such as in the case of air freshening compositions, it may be desirable for the propellant to be substantially free of hydrocarbon propellants.
The actuator housing 26 in the embodiment shown, has a lower portion 42, an upper portion 44, a waist portion 46, and a top 48. The lower portion 42 fits on or over the container 22. The intersection of the actuator housing 26 and the container 22 may be covered by a shrink sleeve that provides a continuous visual flow to the sprayer 20. As shown in
In the embodiment shown in the drawings, the top 48 of the actuator housing 26 is tilted upward because the sprayer nozzle 30 is oriented so that liquid sprayed from the nozzle 30 will be directed at an angle of greater than 0° (horizontal) and less than 90° (vertical). That is, the liquid is not sprayed out parallel to the base 56 (that is, horizontally when the base is placed on a horizontal surface), nor is it sprayed out vertically (straight upward in the direction of the axis of the container). In other embodiments, the liquid sprayed from the nozzle 30 is directed at an angle of greater than or equal to about 30° and less than or equal to about 60°. In other embodiments, the liquid sprayed from the nozzle 30 is directed at an angle of about 45°. In other embodiments, the liquid sprayed from the nozzle 30 is directed at an angle of between about 20°-25°.
In other embodiments, however, it may be desirable for the liquid sprayed from the nozzle 30 to be sprayed horizontally (0°) or vertically (90°). In still other embodiments, such as in the case of an ironing aid, it may be desirable for the liquid sprayed from the nozzle 30 to be directed downward toward a surface (at an angle of between 0° and-90°). It is appreciated, however, that spray patterns are typically in the form of dispersions, and the spray emitted from a nozzle will form a dispersed spray pattern angle when viewed from the side. The angles of spray referred to herein are the central axis that bisects such a spray pattern. It is understood that portions of the spray pattern will typically be distributed on either side of this central axis.
The nozzle 30 may be configured to spray droplets of any suitable size. In one non-limiting embodiment, the nozzle 30 is configured to spray a plurality of droplets wherein at least some of the spray droplets have a diameter in a range of from about 0.01 μm to about 500 μm, or from about 5 μm to about 400 μm or from about 10 μm to about 200 μM. The mean particle size of the spray droplets may be in the range of from about 10 μm to about 100 μm, or from about 20 μm to about 60 μm. These size droplets may be useful in the case of air freshening compositions in which it is desired to suspend the droplets in the air for prolonged periods.
The sprayer actuator 24 comprises a trigger 28 operatively associated with the actuator housing 26 at the front of said sprayer. In the embodiment shown, the trigger 28 is also ergonomically designed. The trigger 28 is ergonomic in that it is encircled by the trigger loop 32. In one embodiment, the trigger 28 is convex as in
The container 22, as shown in
The sprayer actuator 24 works in the following manner. When the user pulls the trigger 28 inward toward the actuator housing 26, this causes the trigger activating portion 60 of the trigger piece 56 to pivot at bar 58 and to press down on the cap portion 72 on the conduit 68. This causes the conduit portion 70 of the conduit 68 to move downward and activates the valve stem 66 of the container. Since the nozzle 30 is in a fixed position, the flexible nature of the conduit portion 70 of the conduit 68 bends and permits this downward movement to take place. The valve stem 66 permits the contents of the container 22 to be released. The contents of the container flow through the conduit 68 and out the nozzle 30. In still other embodiments, the trigger piece 56 and the conduit 68 can be formed as a single integral component.
The disclosure of all patents, patent applications (and any patents which issue thereon, as well as any corresponding published foreign patent applications), and publications mentioned throughout this description are hereby incorporated by reference herein. It is expressly not admitted, however, that any of the documents incorporated by reference herein teach or disclose the present invention.
It should be understood that every maximum numerical limitation given throughout this specification will include every lower numerical limitation, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this specification will include every higher numerical limitation, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.
While particular embodiments of the subject invention have been described, it will be obvious to those skilled in the art that various changes and modifications of the subject invention can be made without departing from the spirit and scope of the invention. In addition, while the present invention has been described in connection with certain specific embodiments thereof, it is to be understood that this is by way of illustration and not by way of limitation and the scope of the invention is defined by the appended claims which should be construed as broadly as the prior art will permit.
Number | Name | Date | Kind |
---|---|---|---|
3189232 | Joffe | Jun 1965 | A |
3580432 | Brooks | May 1971 | A |
3712515 | Corll | Jan 1973 | A |
3987942 | Morane et al. | Oct 1976 | A |
4053090 | Kelly et al. | Oct 1977 | A |
4088246 | Klingaman | May 1978 | A |
4417673 | Hancock | Nov 1983 | A |
D320430 | Renfrew | Oct 1991 | S |
5366121 | Foster et al. | Nov 1994 | A |
5570840 | Gettinger et al. | Nov 1996 | A |
5862960 | Miller et al. | Jan 1999 | A |
5975377 | McGowens | Nov 1999 | A |
6332562 | Sweeton | Dec 2001 | B1 |
6494349 | Thompson et al. | Dec 2002 | B1 |
7140515 | Cardwell et al. | Nov 2006 | B2 |
7204393 | Strand | Apr 2007 | B2 |
7644839 | McNulty, Jr. | Jan 2010 | B2 |
7784650 | Bates et al. | Aug 2010 | B2 |
20070023457 | O'Toole et al. | Feb 2007 | A1 |
20070051754 | Strand et al. | Mar 2007 | A1 |
20070062980 | Bates et al. | Mar 2007 | A1 |
20090084870 | Smith et al. | Apr 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20100059551 A1 | Mar 2010 | US |