The World Wide Web has expanded to provide web services faster to consumers. Web services may be provided by a web application which uses one or more services to handle a transaction. The applications may be distributed over several machines, making the topology of the machines that provides the service more difficult to track and monitor.
Agents are often utilized by application monitoring systems to monitor an application, collect data, and report the data. These agents are usually software that are static in nature. Once created, the agents are installed and are usually not changed. In the rare situation where an agent does need to be changed, it usually requires restarting the java virtual machine on which the agent resides.
What is needed is an improved system for updating an agent while minimizing the effect on the underlying code being monitored.
The present technology includes a dynamic service module embedded in an agent which is able to add functionality to the agent. The service module may manage .jar files for execution by the agent. The service module may receive the .jar files, provide them to an agent for execution, and may perform other functions. The agent may perform obfuscation in order to translate the .jar files into a modified version which may be more compatible with a particular agent. Once execution of the .jar file is complete, the agent may remove the .jar file as well as all trace of the .jar file. For example, the agent may remove byte code instrumentation that was installed as a result of the .jar file.
An embodiment may include a method for monitoring an application. A first .jar file is received by an agent within an application on a server. A new .jar file is created from the received .jar file to modify references to agent elements. The new .jar file is then run. The new .jar file and code created by the new .jar file by the service module.
An embodiment may include a system for monitoring a business transaction. The system may include a processor, a memory and one or more modules stored in memory and executable by the processor. When executed, the one or more modules may receive a first .jar file by an agent within an application on a server, create a new .jar file from the received .jar file to modify references to agent elements, run the new .jar file, and remove the .jar file and code created by the .jar file by the service module.
The present technology includes a dynamic service module embedded in an agent which is able to add functionality to the agent. The service module may manage .jar files for execution by the agent. The service module may receive the .jar files, provide them to an agent for execution, and may perform other functions. The agent may perform obfuscation in order to translate the .jar files into a modified version which may be more compatible with a particular agent. Once execution of the .jar file is complete, the agent may remove the .jar file as well as all trace of the .jar file. For example, the agent may remove byte code instrumentation that was installed as a result of the .jar file.
Client device 105 may include network browser 110 and be implemented as a computing device, such as for example a laptop, desktop, workstation, or some other computing device. Network browser 110 may be a client application for viewing content provided by an application server, such as application server 130 via network server 125 over network 120. Mobile device 115 is connected to network 120 and may be implemented as a portable device suitable for receiving content over a network, such as for example a mobile phone, smart phone, or other portable device. Both client device 105 and mobile device 115 may include hardware and/or software configured to access a web service provided by network server 125.
Network 120 may facilitate communication of data between different servers, devices and machines. The network may be implemented as a private network, public network, intranet, the Internet, a Wi-Fi network, cellular network, or a combination of these networks.
Network server 125 is connected to network 120 and may receive and process requests received over network 120. Network server 125 may be implemented as one or more servers implementing a network service. When network 120 is the Internet, network server 125 may be implemented as a web server. Network server 125 and application server 130 may be implemented on separate or the same server or machine.
Application server 130 communicates with network server 125, application servers 140 and 150, controller 190. Application server 130 may also communicate with other machines and devices (not illustrated in
Application servers may or may not include virtual machines. For example, a .NET application server may not include a virtual machine and may be used in place of any application server 130-160 in the system of
Virtual machine 132 may be implemented by code running on one or more application servers. The code may implement computer programs, modules and data structures to implement, for example, a virtual machine mode for executing programs and applications. In some embodiments, more than one virtual machine 132 may execute on an application server 130. A virtual machine may be implemented as a Java Virtual Machine (JVM). Virtual machine 132 may perform all or a portion of a business transaction performed by application servers comprising system 100. A virtual machine may be considered one of several services that implement a web service.
Virtual machine 132 may be instrumented using byte code insertion, or byte code instrumentation, to modify the object code of the virtual machine. The instrumented object code may include code used to detect calls received by virtual machine 132, calls sent by virtual machine 132, and communicate with agent 134 during execution of an application on virtual machine 132. Alternatively, other code may be byte code instrumented, such as code comprising an application which executes within virtual machine 132 or an application which may be executed on application server 130 and outside virtual machine 132.
In embodiments, application server 130 may include software other than virtual machines, such as for example one or more programs and/or modules that processes AJAX requests.
Agent 134 on application server 130 may be installed on application server 130 by instrumentation of object code, downloading the application to the server, or in some other manner. Agent 134 may be executed to monitor application server 130, monitor virtual machine 132, and communicate with byte instrumented code on application server 130, virtual machine 132 or another application or program on application server 130. Agent 134 may detect operations such as receiving calls and sending requests by application server 130 and virtual machine 132. Agent 134 may receive data from instrumented code of the virtual machine 132, process the data and transmit the data to controller 190. Agent 134 may perform other operations related to monitoring virtual machine 132 and application server 130 as discussed herein. For example, agent 134 may identify other applications, share business transaction data, aggregate detected runtime data, and other operations.
Each of application servers 140, 150 and 160 may include an application and an agent. Each application may run on the corresponding application server or a virtual machine. Each of virtual machines 142, 152 and 162 on application servers 140-160 may operate similarly to virtual machine 132 and host one or more applications which perform at least a portion of a distributed business transaction. Agents 144, 154 and 164 may monitor the virtual machines 142-162 or other software processing requests, collect and process data at runtime of the virtual machines, and communicate with controller 190. The virtual machines 132, 142, 152 and 162 may communicate with each other as part of performing a distributed transaction. In particular each virtual machine may call any application or method of another virtual machine.
Asynchronous network machine 170 may engage in asynchronous communications with one or more application servers, such as application server 150 and 160. For example, application server 150 may transmit several calls or messages to an asynchronous network machine. Rather than communicate back to application server 150, the asynchronous network machine may process the messages and eventually provide a response, such as a processed message, to application server 160. Because there is no return message from the asynchronous network machine to application server 150, the communications between them are asynchronous.
Data stores 180 and 185 may each be accessed by application servers such as application server 150. Data store 185 may also be accessed by application server 150. Each of data stores 180 and 185 may store data, process data, and return queries received from an application server. Each of data stores 180 and 185 may or may not include an agent.
Controller 190 may control and manage monitoring of business transactions distributed over application servers 130-160. Controller 190 may receive runtime data from each of agents 134-164, associate portions of business transaction data, communicate with agents to configure collection of runtime data, and provide performance data and reporting through an interface. The interface may be viewed as a web-based interface viewable by mobile device 115, client device 105, or some other device. In some embodiments, a client device 192 may directly communicate with controller 190 to view an interface for monitoring data.
Controller 190 may install an agent into one or more virtual machines and/or application servers 130. Controller 190 may receive correlation configuration data, such as an object, a method, or class identifier, from a user through client device 192.
Data collection server 195 may communicate with client 105, 115 (not shown in
The .jar file is provided to a service module at step 330. The .jar file may be provided to a service module manually or by a remote server, such as for example a controller. The service module runs a .jar file through the obfuscation adopter to create a new .jar file at step 340. The new .jar file may be generated based on a key that maps classes, methods, and fields in the received .jar file to what is actually used in the agent. In some instances, this may be required if the agent classes, methods or fields are obfuscated.
The agent then executes the new .jar file at step 350. Executing the new .jar file may include placing the .jar file in a directory, loading the .jar file from the directory and executing the .jar file by the agent. More details for executing a .jar file are discussed with respect to the method of
The agent may check the .jar file directory to detect recently executed .jar files at step 360. Recently executed .jar files may be identified based on time stamps of execution or time stamps of loading into the .jar file directory. In some embodiments, the agent may keep track of recently executed .jar files and remove .jar files after subsequently looking for them in the directory. If an agent detects a .jar file that was previously executed, the agent removes that executed .jar file as well as any trace of the .jar file at step 370. Traces of the .jar file may include instrumented byte code and other content.
The computing system 500 of
The components shown in
Mass storage device 530, which may be implemented with a magnetic disk drive or an optical disk drive, is a non-volatile storage device for storing data and instructions for use by processor unit 510. Mass storage device 530 can store the system software for implementing embodiments of the present invention for purposes of loading that software into main memory 510.
Portable storage device 540 operates in conjunction with a portable non-volatile storage medium, such as a floppy disk, compact disk or Digital video disc, to input and output data and code to and from the computer system 500 of
Input devices 560 provide a portion of a user interface. Input devices 560 may include an alpha-numeric keypad, such as a keyboard, for inputting alpha-numeric and other information, or a pointing device, such as a mouse, a trackball, stylus, or cursor direction keys. Additionally, the system 500 as shown in
Display system 570 may include an LED, liquid crystal display (LCD) or other suitable display device. Display system 570 receives textual and graphical information, and processes the information for output to the display device.
Peripherals 580 may include any type of computer support device to add additional functionality to the computer system. For example, peripheral device(s) 580 may include a modem or a router.
The components contained in the computer system 500 of
When implementing a mobile device such as smart phone or tablet computer, the computer system 500 of
The foregoing detailed description of the technology herein has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the technology to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. The described embodiments were chosen in order to best explain the principles of the technology and its practical application to thereby enable others skilled in the art to best utilize the technology in various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the scope of the technology be defined by the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
5958010 | Agarwal | Sep 1999 | A |
6026237 | Berry et al. | Feb 2000 | A |
6125382 | Brobst et al. | Sep 2000 | A |
6336148 | Doong et al. | Jan 2002 | B1 |
6336213 | Beadle et al. | Jan 2002 | B1 |
6470494 | Chan | Oct 2002 | B1 |
6477666 | Sanchez et al. | Nov 2002 | B1 |
6493816 | Munroe | Dec 2002 | B1 |
6651108 | Popp | Nov 2003 | B2 |
6662359 | Berry et al. | Dec 2003 | B1 |
7054361 | Otte et al. | May 2006 | B1 |
7367025 | Nikolov et al. | Apr 2008 | B1 |
7587487 | Gunturu | Sep 2009 | B1 |
7957934 | Greifeneder | Jun 2011 | B2 |
8151277 | Greifeneder et al. | Apr 2012 | B2 |
8248958 | Tulasi et al. | Aug 2012 | B1 |
8312249 | Trumbell | Nov 2012 | B1 |
8676901 | Nicolaou | Mar 2014 | B1 |
8863093 | Chou et al. | Oct 2014 | B1 |
8914626 | Adogla et al. | Dec 2014 | B1 |
8965952 | Shatalin et al. | Feb 2015 | B1 |
20010034016 | Ziv-el et al. | Oct 2001 | A1 |
20020018481 | Mor et al. | Feb 2002 | A1 |
20020173997 | Menard et al. | Nov 2002 | A1 |
20020174174 | Ramraj | Nov 2002 | A1 |
20030014549 | Seidman | Jan 2003 | A1 |
20030093551 | Taylor et al. | May 2003 | A1 |
20040006620 | Howard et al. | Jan 2004 | A1 |
20040031020 | Berry et al. | Feb 2004 | A1 |
20040039728 | Fenlon | Feb 2004 | A1 |
20040081183 | Monza | Apr 2004 | A1 |
20040153825 | Morimoto et al. | Aug 2004 | A1 |
20050033767 | Kamentz | Feb 2005 | A1 |
20050039190 | Rees et al. | Feb 2005 | A1 |
20050091376 | Helfman | Apr 2005 | A1 |
20050155024 | Wannamaker | Jul 2005 | A1 |
20050165584 | Boody et al. | Jul 2005 | A1 |
20050243837 | Boyd et al. | Nov 2005 | A1 |
20050264581 | Patrick et al. | Dec 2005 | A1 |
20050273709 | Lough et al. | Dec 2005 | A1 |
20050281259 | Mitchell | Dec 2005 | A1 |
20060041539 | Matchett et al. | Feb 2006 | A1 |
20060059092 | Burshan et al. | Mar 2006 | A1 |
20060072568 | Vaananen | Apr 2006 | A1 |
20060155803 | Muramatsu | Jul 2006 | A1 |
20060168526 | Stirbu | Jul 2006 | A1 |
20060271395 | Harris | Nov 2006 | A1 |
20060280181 | Brailas et al. | Dec 2006 | A1 |
20070027742 | Emuchay et al. | Feb 2007 | A1 |
20070067364 | Barbian et al. | Mar 2007 | A1 |
20070088668 | Larab et al. | Apr 2007 | A1 |
20070180227 | Akimoto | Aug 2007 | A1 |
20080062993 | Levy et al. | Mar 2008 | A1 |
20080098378 | Kilbane et al. | Apr 2008 | A1 |
20080225748 | Khemani et al. | Sep 2008 | A1 |
20080304518 | Cheng et al. | Dec 2008 | A1 |
20090320030 | Ogasawara | Dec 2009 | A1 |
20100088404 | Mani et al. | Apr 2010 | A1 |
20100100890 | Dar | Apr 2010 | A1 |
20100138703 | Bansal et al. | Jun 2010 | A1 |
20100162204 | Baumann et al. | Jun 2010 | A1 |
20100199259 | Quinn et al. | Aug 2010 | A1 |
20100287541 | Saunders et al. | Nov 2010 | A1 |
20110222412 | Kompella | Sep 2011 | A1 |
20110252395 | Charisius et al. | Oct 2011 | A1 |
20110276683 | Goldschlag et al. | Nov 2011 | A1 |
20110305160 | Green et al. | Dec 2011 | A1 |
20120005166 | Pace et al. | Jan 2012 | A1 |
20120047276 | Lindquist et al. | Feb 2012 | A1 |
20120047494 | Unrein et al. | Feb 2012 | A1 |
20120167057 | Schmich et al. | Jun 2012 | A1 |
20120230225 | Matthews et al. | Sep 2012 | A1 |
20120297371 | Greifeneder et al. | Nov 2012 | A1 |
20120304172 | Greifeneder et al. | Nov 2012 | A1 |
20130067074 | Allen et al. | Mar 2013 | A1 |
20130117132 | Padwal et al. | May 2013 | A1 |
20140059527 | Gagliardi | Feb 2014 | A1 |
20140059528 | Gagliardi | Feb 2014 | A1 |
20140283040 | Wilkerson et al. | Sep 2014 | A1 |
20150067146 | Raker | Mar 2015 | A1 |
20150113122 | Sunkara | Apr 2015 | A1 |
20150124840 | Bergeron | May 2015 | A1 |
20160124832 | Kumar et al. | May 2016 | A1 |
Number | Date | Country |
---|---|---|
2 518 739 | Apr 2015 | GB |
WO 2015058204 | Apr 2015 | WO |
2016069040 | May 2016 | WO |
Entry |
---|
Manfred Dalmeijer, A Reliable Mobile Agents Architecture, 1998. |
U.S. Appl. No. 14/530,663, filed Oct. 31, 2014, Pankaj Kumar, Monitoring and Correlating a Binary Process in a Distributed Business Transaction. |
U.S. Appl. No. 14/609,298, filed Jan. 29, 2015, Vinay Srinavasaiah, Dynamic Agent Delivery. |
PCT Application No. PCT/US2014/061402 International Search Report and Written Opinion dated Jan. 21, 2015. |
United Kingdom Application No. GB1413464.7, Search Report dated Jan. 27, 2015. |
U.S. Appl. No. 14/530,633 Office Action mailed Mar. 12, 2015. |
Czajkowski et al., “Jres: A Resource Accounting Interface for Java”, 1998. |
Dmitriev, “Profiling Java Application Using Code Hotswapping and Dynamic Call Graph Revelation”, 2004. |
U.S. Appl. No. 14/018,349 Office Action mailed Jan. 22, 2016. |
U.S. Appl. No. 14/018,349 Office Action mailed Sep. 11, 2015. |
U.S. Appl. No. 14/058,200 Office Action mailed Feb. 1, 2016. |
U.S. Appl. No. 14/058,200 Third-Party Submission mailed May 20, 2015. |
U.S. Appl. No. 14/530,633 Office Action mailed Jun. 12, 2015. |
U.S. Appl. No. 14/530,633 Office Action mailed Oct. 6, 2015. |
U.S. Appl. No. 14/609,298 Office Action mailed Jul. 17, 2015. |
Gregersen et al., “Javeleon: An Integrated Platform for Dynamic Software Updating and its Application in Self-Systems”, 2012. |
PCT Application No. PCT/US2015/013873 International Search Report and Written Opinion dated Jun. 9, 2015. |
Number | Date | Country | |
---|---|---|---|
20160124829 A1 | May 2016 | US |