The present invention is concerned with treatment of autoimmune diseases. The invention involves a highly effective agent such as a humanised monoclonal antibody that may be administered to patients in lower dosages than previously known. It is particularly effective for patients having diseases or characteristics requiring lower doses for effective treatment. The invention envisages a pharmaceutical composition comprising the antibody in efficacious concentration, as well as uses and methods of treatment employing the compositions and medicaments comprising the antibody.
Autoimmunity is the failure of an organism to recognise its own constituent parts (down to sub-molecular levels) as “self”, which results in an immune response against its own cells and tissues. Any disease that results from such an aberrant immune response is termed an autoimmune disease. Autoimmune diseases include multiple sclerosis (MS), rheumatoid arthritis (RA), psoriasis, psoriatic arthritis, colitis ulcerosa, Crohn's disease, myasthenia gravis (MG), autoimmune polyglandular syndrome type II (APS-II), Hashimoto's thyroiditis (HT), type-1 diabetes (T1D), systemic lupus erythematosus (SLE) and autoimmune lymphoproliferative syndrome (ALS).
Autoimmune disease occurs when T cells recognise and react to ‘self’ molecules, that is, molecules produced by the cells of the host. Activation of ‘autoreactive’ T cells by presentation of autoantigens processed by antigen presenting cells (APC) leads to their clonal expansion and migration to the specific tissues, where they induce inflammation and tissue destruction.
Normally, T cells are tolerant with regard to autologous tissue and only react on presentation of heterologous structures. Central tolerance and peripheral tolerance comprise the two mechanisms by which the immune system hinders the autoreactive T cells from inducing their deleterious functions. Central tolerance is mediated through negative selection. This process entails the elimination, through clonal deletion of autoreactive T cells, during ontogenic development in the thymus.
Peripheral tolerance is the backup available if central tolerance fails and autoreactive cells escape the thymus. This mechanism of tolerance occurs continuously throughout life, keeping autoreactive cells in check through immune ignorance (anergy), peripheral deletion and active suppression.
T regulatory cells (Tregs, formerly also designated “suppressor cells”) as part of active suppression maintain peripheral tolerance and regulate autoimmunity (Suri-Payer et al., J. Immunol. 157: 1799-1805 (1996); Asano et al., J. Exp. Med. 184:387-396 (1996); Bonomo et al., J. Immunol. 154: 6602-6611 (1995); Willerford et al., Immunity 3: 521-530 (1995); Takahashi et al., Int. Immunol. 10: 1969-1980 (1998); Salomon et al., Immunity 12: 431-440 (2000); Read et al., J. Exp. Med. 192: 295-302 (2000). In general, regulatory T cells inhibit the activation and/or function of T helper type 1 (TH1) and TH2 effector cells. Dysregulation in Treg cell frequency or functioning can lead to debilitating autoimmune diseases (Baecher-Allan et al., Immunol. Review 212: 203-216 (2006); Shevach, Annu. Rev. Immunol. 18: 423-449 (2000); Salomon et al., Immunity 12: 431-440 (2000); Sakaguchi et al., Immunol. Rev. 182: 18-32 (2001)).
Several subsets of regulatory T cells have been characterized. The family of Tregs consists of two key subsets: naturally arising e.g. CD4+CD25+ Tregs and peripherally induced, Tr1 and Th3 Tregs. Furthermore NKTregs and CD8+ Tregs have been described in humans and rodents (Fehérvari et al., J. Clin. Investigation 114: 1209-1217 (2004)).
Thymus-derived Treg cells (naturally occurring CD4+CD25+ Treg) are the main regulatory cells involved, utilizing an array of TCRs targeted towards autoantigen recognition in order to maintain immune homeostasis in the periphery, and regulate autoimmunity and pathogenic immune responses.
The essential features of naturally occurring CD4+CD25+ Tregs are:
i) they are CD4+ T cells and constitute 5-10% of peripheral CD4+ T cells
ii) they maturate in the thymus
iii) they are generally characterized by the combined expression of the IL-2 receptor (CD25), the low molecular isoform of the CD45 molecule, CD152 (CTLA-4) and the transcription factor foxP3.
The role of Tregs is exemplified best by experiments involving reconstitution of immunodeficient nude mice with CD4+ cells that were depleted of CD25+ cells. CD4+CD25− reconstituted nude mice develop various organ-specific autoimmune diseases, such as gastritis, oophoritis, orchitis, and thyroiditis (Suri-Payer et al.; J. Immunol. 160: 1212-1218 (1998)).
Inclusion of the CD4+CD25+ subset in the nude mice prevents the onset of these diseases (Sakaguchi et al., J. Immunol. 155: 1151-1164 (1995)). The protective value of CD4+CD25+ cells against organ-specific autoimmunity has also been shown in several other models of autoimmunity (e.g. autoimmune gastritis, prostatitis, oophoritis, glomerulonephritis, epidimytis and thyroiditis) caused by neonatal thymectomy performed 3 days after birth (d3Tx) or inflammatory bowel disease caused by reconstitution of SCID mice with CD45RBhigh, CD4+CD25− T cells. Administration of anti-CD25 antibody in vivo in mice also induces organ-localised autoimmune disease.
The discovery of the importance of the transcriptional regulator FoxP3 in mouse CD4+CD25+ T regulatory cell function and the previous observations that patients with IPEX syndrome (immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance), a severe inflammatory disease similar to that seen in mice deficient in CD4+CD25+ regulatory cells (scurfy syndrome), have mutations in FoxP3, provided a direct correlation between an autoimmune animal model, mouse regulatory T cells, and a human autoimmune disease (Sakaguchi et al., J. Immunol. 155: 1151-1164 (1995)).
The pharmaceutical mechanism of regulatory T cells is not fully clear. CD4+CD25+ Tregs inhibit polyclonal and antigen-specific T cell activation. The suppression is mediated by a cell contact-dependent mechanism that requires activation of CD4+CD25+ Tregs via the TCR but Tregs do not show a proliferative response upon TCR activation or stimulation with mitogenic antibodies (anergic) (Shevach, Nature Rev. Immunol 2: 389 (2002). Once stimulated, they are competent to suppress in an antigen-independent manner the response of CD4+ T cells and CD8+ T cells as well as inhibit B-cell activation and clonal expansion.
There are additional data indicating that suppressor activity of CD4+CD25+ Tregs partially also relies on anti-inflammatory cytokines like TGF-β (Kingsley et al., J. Immunol. 168: 1080 (2002); Nakamura et al., J. Exp. Med. 194: 629-644 (2001)). The functional significance of TGF-β secretion is furthermore supported by the findings that TGF-β-deficient mice develop autoimmune disease and that administration of neutralizing antibodies to TGF-β abrogates in vivo prevention of autoimmunity or tolerance-inducing activity of CD4+ T cells in some models.
Within the CD4+ T cell subset at least 2 more different types of cells with suppressive function may exist, which are induced after exposure to specific, exogenous antigen (called ‘adaptive or inducible regulatory T cells’): Type 1 T regulatory (Tr1) cells and Th3 cells. These cell types appear to be distinguishable from CD4+CD25+ Tregs based on their cytokine production profiles. However, the relationship between these different types is unclear and the modes of action are overlapping.
Tr1 cells were induced by repetitive stimulation of TCR in the presence of IL-10 and were shown to mainly down-regulate immune responses via the production of high levels of IL-10 and moderate amounts of TGF-β (Chen et al., J. Immunol. 171: 733-744 (2003)).
Th3 cells (identified in a model of EAE after oral delivery of antigen) produce high amounts of TGF-β and variable amounts of IL-4 and IL-10, and IL-4 was shown to be a key factor for the differentiation of Th3 cells, in contrast to Tr1 cells (Chen et al., Science 265:1237-1240 (1994)).
Suppression of T cell function by using immunosuppressive drugs is a principal therapeutic strategy that has been used successfully to treat autoimmune diseases. However these drugs induce a general immunosuppression due to their poor selectivity, resulting in inhibition of not only the harmful functions of the immune system, but also useful ones. As a consequence, several risks like infection, cancer and drug toxicity may occur.
Agents interfering with T cell function are therapeutic mainstays for various autoimmune diseases.
The approach of using agents aiming at the activation of regulatory T cells for the therapy of autoimmune diseases have been up to now proven to be extremely difficult. Activation of Tregs via the TCR using the agonistic anti-CD3 antibody OKT-3 (Abramowicz et al, N Engl. J. Med. 1992 Sep. 3; 327(10):736) or via the co-stimulatory molecule CD28 using the superagonistic anti-CD28 antibody TGN 1412 lead to complete depletion of regulatory T cell population as well as other conventional T cells and the systemic induction and release of excessive amounts of pro-inflammatory cytokines including IFN-γ, TNF- IL-1 and IL-2, resulting in a clinically apparent cytokine release syndrome (CRS) in humans (Suntharalingam et al, N Engl. J. Med. 2006 Sep. 7; 355(10):1018-28).
After first two to three injections of 5 mg of the monoclonal antibody OKT3 most patients develop a cytokine release syndrome with high levels of tumour necrosis factor-alpha, interleukin-2, and gamma-interferon appearing within 1-2 hrs in the circulation of kidney transplant recipients. (Abramowicz et al, Transplantation. 1989 April; 47(4):606-8). This results in a narrow therapeutic window which limits the usefulness of this antibody in the treatment of autoimmune diseases.
Treatment with a total dose of 5-10 mg of TGN 1412 (0.1 mg anti-CD28 per kilogram of body weight) lead to a systemic inflammatory response with multiorgan failure within 90 minutes after receiving a single intravenous dose of the TGN 1412 (Suntharalingam et al, N Engl. J Med. 2006 Sep. 7; 355(10):1018-28).
It is generally agreed that CD4+ T cells play a major part in initiating and maintaining autoimmunity. Accordingly, it has been proposed to use mAbs against CD4+ T cells surface molecules, and in particular anti-CD4 mAbs, as immunosuppressive agents. Although numerous clinical studies confirmed the potential interest of this approach, they also raised several issues to be addressed in order to make anti-CD4 mAbs more suitable for use in routine clinical practice.
Several different mechanisms of action for CD4 mAbs have been proposed including: (1) antagonism of CD4-MHC II interactions resulting in inhibition of T cell activation, (2) CD4 receptor modulation as determined by a decrease in cell surface expression of CD4, (3) partial signaling through the CD4 receptor in the absence of T cell receptor cross-linking which can suppress subsequent T cell activation and trigger CD4 T cell apoptotic death, (4) Fc-mediated complement-dependent cytotoxicity (CDC) or antibody-dependent cellular cytotoxicity (ADCC) leading to CD4 T cell depletion, and (5) stimulation of regulatory T cells.
Several anti-CD4 antibodies targeting T cells have been in clinical development (Schulze-Koops et al., J Rheumatol. 25(11): 2065-76 (1998); Mason et al., J Rheumatol. 29(2): 220-9 (2002); Choy et al., Rheumatology 39(10): 1139-46 (2000); Herzyk et al., Infect Immun. 69(2): 1032-43 (2001); Kon et al., Eur Respir J. 18(1): 45-52 (2001); Mourad et al., Transplantation 65(5): 632-41 (1998); Skov et al., Arch Dermatol. 139(11): 1433-9 (2003); Jabado et al., J. Immunol. 158(1): 94-103 (1997)) mainly aiming at CD4 cell depletion with only a few CD4 antibodies having been attributed to the other mechanisms like TRX-1, TNX-355, IDEC-151, OKTcdr4A.
Clinical response in autoimmune diseases correlates with CD4 blockade of conventional CD4+ T cells directly at the site of inflammation rather than action with CD4+ T cells in peripheral blood. Therefore dosages with high antibody concentrations up to 1000 mg in single or multiple cycles, preferably in the range of 10-450 mg in single or multiple cycles have to be used to achieve clinical benefit (Schulze-Koops et al., J Rheumatol. 25(11): 2065-76 (1998); Mason et al., J Rheumatol. 29(2): 220-9 (2002); Choy et al., Rheumatology 39(10): 1139-46 (2000); Choy et al., Rheumatology 41:1142-1148 (2002); Kon et al., Eur Respir J. 18(1): 45-52 (2001); Skov et al., Arch Dermatol. 139(11): 1433-9 (2003); Kuritzkes et al., J Infect Dis 2004, 189:286-91 (2004); Hepburn et al., Rheumatology 42(1):54-61 (2003)).
The B-F5 antibody (murine IgG1 anti-human CD4) was tested in different autoimmune diseases.
A small number of patients with severe psoriasis have been treated with the murine B-F5 antibody and some positive effects were described (Robinet et al. Eur J Dermatol 1996; 6: 141-6, and Robinet et al., J Am Acad Dermatol 1997; 36: 582-8).
In rheumatoid arthritis patients, the results observed in a placebo controlled trial with a daily dose of B-F5 did not indicate a significant improvement (Wendling et al. J Rheumato 1; 25(8):1457-61, 1998).
In multiple sclerosis (MS) patients, some positive effects were observed after a 10 days treatment in patients with relapsing-remitting forms, some of who were relapse-free at the 6th month post-therapy (Racadot et al., J Autoimmun, 6(6):771-86, 1993). Similar effects were observed by Rumbach et al. (Mult. Scler; 1(4):207-12, 1996).
In severe Crohn's disease, no significant improvement was observed in patients receiving B-F5 for 7 consecutive days or (Canva-Delcambre et al., Aliment Pharmacol Ther 10(5):721-7, 1996).
In prevention of allograft rejection, it was reported that B-F5 bioavailability was not sufficient to allow its use for prophylaxis of allograft rejection (Dantal et al. Transplantation, 27; 62(10):1502-6, 1996).
Another drawback of therapy with monoclonal antibodies in humans is that these antibodies are generally obtained from mouse cells, and provoke antimouse responses in the human recipients. This not only results in a lesser efficiency of the treatment and even more of any future treatment with mouse monoclonal antibodies, but also in an increased risk of anaphylaxis.
This drawback can, in principle, be avoided by the use of humanized antibodies, obtained by grafting the complementarity-determining regions (CDRs) of a mouse monoclonal antibody, which determine the antigen-binding specificity, onto the framework regions (FRs) of a human immunoglobulin molecule. The aim of humanization is to obtain a recombinant antibody having the same antigen-binding properties as the mouse monoclonal antibody from which the CDR sequences were derived, and far less immunogenic in humans.
In some cases, substituting CDRs from the mouse antibody for the human CDRs in human frameworks is sufficient to transfer the antigen-binding properties (including not only the specificity, but also the affinity for antigen). However, in many antibodies, some FR residues are important for antigen binding, because they directly contact the antigen in the antibody-antigen complex, or because they influence the conformation of CDRs and thus their antigen binding performance.
Thus, in most cases it is also necessary to substitute one or several framework residues from the mouse antibody for the human corresponding FR residues. Since the number of substituted residues must be as small as possible in order to prevent anti-mouse reactions, the issue is to determine which amino acid residue(s) are critical for retaining the antigen-binding properties. Various methods have been proposed for predicting the more appropriate sites for substitution. Although they provide general principles that may be of some help in the first steps of humanization, the final result varies from an antibody to another. Thus, for a given antibody, it is very difficult to foretell which substitutions will provide the desired result.
Previously the humanization of mouse B-F5 has been attempted, and success has been achieved in producing humanized B-F5 (hereinafter referred to as hB-F5) having similar CD4 binding properties to the parent mouse B-F5.
Thus, in WO 2004/083247, the humanised antibody BT061 (humanised B-F5, or simply hB-F5) has been found to be useful in treating rheumatoid arthritis. This patent application discloses compositions for parenteral administration, of from 0.1-10 mg, preferably from 1-5 mg. Dosage regimes envisaged are an intravenous 1 mg per day dose and a 5 mg every second day dose for rheumatoid arthritis patients over a period of 10 days.
The study was also described by Wijdenes et al., in an abstract and poster presented at the EULAR conference, June 2005. They described the treatment of 11 patients suffering from rheumatoid arthritis with 5 intravenous infusions of 5 mg BT061 every other day with concomitant treatment with 150 mg Diclophenac (Wijdenes et al., Abstract and poster, EULAR conference, June 2005).
The antibody described in this study is not disclosed to be suitable for use in lower doses, and it is still desirable to find treatments at lower doses so as to treat a greater number of patients.
Having regard to the above prior art, it is an aim of the present invention to treat patients having autoimmune disease who do not yet respond satisfactorily to existing treatments. In particular, it is an aim of the present invention to find autoimmune treatments that may be applied in lower doses to patients, in order to improve treatment response for patients who are not able to tolerate current doses.
Accordingly, the present invention provides a pharmaceutical composition for treating an autoimmune disease comprising a pharmaceutically acceptable carrier and an agent capable of activating CD4+CD25+ regulatory T cells, wherein the composition is to be administered to a subject in a dose of the agent from 0.2 mg to 30 mg.
The invention further provides a pharmaceutical composition for treating an autoimmune disease comprising a pharmaceutically acceptable carrier and an agent capable of activating CD4+CD25+ regulatory T cells, wherein the composition is to be administered to a subject in a dose of the agent from 0.10 to 20 mg/m2.
Still further the invention provides a pharmaceutical composition for treating an autoimmune disease comprising a pharmaceutically acceptable carrier and an agent capable of activating CD4+CD25+ regulatory T cells, wherein the composition is to be administered to a subject in a dose of the agent from 1 to 500 μg/kg.
In addition, the present invention provides a pharmaceutical composition comprising a pharmaceutically acceptable carrier and an agent capable of activating CD4+CD25+ regulatory T cells, wherein the agent is present in a concentration of from 10 μg/ml to 150 mg/ml.
In a preferred aspect of the invention the agent is a humanized anti-CD4 antibody or fragment or derivative thereof.
In particular, the invention provides use of the agent defined above for the manufacture of a medicament for treating autoimmune disease wherein the agent is to be administered to a subject in a dose as defined above. The invention also provides an agent as defined above for use in the treatment of autoimmune disease wherein the agent is to be administered to a subject in a dose as defined above.
It will be appreciated from the above dosages that the inventors have surprisingly found that low dosages of the antibody BT061 provided effective and specific activation of naturally occurring regulatory T cells (CD4+CD25+ Tregs) providing an in vivo clinical effect at far lower doses than those previously used, such as those disclosed in WO 2004/083247. Further the inventors have surprisingly found that the humanized antibody BT061 did not substantially modulate levels nor induce release of pro-inflammatory cytokines, as compared to other T cell interacting antibodies, for example anti-CD3 antibodies. Further the antibody does not cause a substantial long term depletion of CD4+ lymphocytes.
The concentration of the agent is not especially limited, provided that it is present in a concentration that is low compared to known concentrations. However, preferably, the concentration of the agent is from 0.1 μg/ml to 30 mg/ml or, 0.1 to 1000 and more preferably from 1-500 μg/ml and 2-250 μg/ml. Most preferably, the concentration of the agent is (approximately) any one of 15 μg/ml, 25 μg/ml, 125 μg/ml, 250 μg/ml, 500 μg/ml 1 mg/ml, 12.5 mg/ml or 25 mg/ml.
The dosage volume applied to a subject using the composition is not especially limited, provided that it delivers a low overall dosage compared to dosages already known, and is therefore suitable for all patients because of a lower level of side effects and especially in the treatment of individuals who do not tolerate doses as disclosed in WO 2004/083247. In particular, the concentration of the agent within the dosage volumes can be varied in order to provide the required dosages which are described in this application.
The dosage volume will vary depending on the method of administration. Parenteral administration is preferred. Examples of parenteral administration are intramuscular administration, intravenous administration or subcutaneous administration. Where the composition is to be administered by intravenous infusion the dosage volume may be from 0.1 or 0.5 ml up to 500 ml, preferably between 15 and 25 ml, and typically about 20 ml. Where the composition is to be administered by subcutaneous or intramuscular injection, the dosage volume may be between 0.1 to 3 ml, preferably between 0.5 and 1.5 ml, and typically about 1 ml.
However, in some embodiments the composition may be provided in concentrated form and diluted to the strength required for the individuals concerned. Preferably, in these situations the composition is provided in relatively small volumes of about 1, 2, 3, 4 or 5 ml. In alternative embodiments, the composition is provided at the required strength and dosage volume described above (i.e. ready for administration). In one specific embodiment the pharmaceutical compositions for subcutaneous administration are provided in a ready for administration form which does not require dilution so that they can be easily administered by non-medical personnel.
As has already been mentioned, previously it was not known that agents capable of treating autoimmune disease could be administered in the low dosages that are envisaged by the present invention. Whilst known doses of agents capable of treating autoimmune disease are effective in some individuals or disease types, the realisation that it may be effective already in much lower doses has opened up the way for more effective treatment of some autoimmune diseases and classes of patients.
The invention will be illustrated by way of example only, with reference to the following Figures, in which:
The invention will now be described in more detail.
The agents that are suitable for use in the present invention are those which are capable of activating CD4+CD25+ regulatory T cells. The agent may be a polypeptide, a protein or an antibody. Where the agent is an antibody it may be a monoclonal antibody. Preferably the antibody is a monoclonal anti-CD4 antibody. The antibody may also preferably be an IgG1 antibody and may be an unmodified IgG1 antibody.
In a preferred aspect of the invention the agent does not cause a substantial increase in the level of pro-inflammatory cytokines in the subject's blood plasma after administration as compared to the levels seen after administration of anti-CD3 antibodies. In particular, the levels of IFN-γ, TNF-α, IL-6 and/or IL-2 after administration of the agent are not substantially raised compared to plasma levels measured in healthy subjects (see Table A1). Specifically, if the ULN for a specific cytokine given in Table A1 is taken as X then within 96 hours after administration of the agent of the invention there may be less than a 20 fold increase in X. Preferably there may be less than a 10 fold increase in X. More preferably these levels are during the period of 10 minutes after the start of administration to 96 hours after completion of administration.
It is possible that in autoimmune patients, cytokine levels prior to administration of the agent are already higher than those observed in healthy subjects (ULN given in Table A1) e.g. due to a modified activation status of immune cells compared to the activation status of the cells in healthy subjects. In those cases, the concentration for a specific cytokine directly prior to administration of the agent is taken as X and within 96 hours after administration of the agent of the invention there may be less than a 20 fold increase in X. Preferably there may be less than a 10 fold increase in X. More preferably these levels are during the period of 10 minutes after the start of administration to 96 hours after the completion of administration.
In a further preferred aspect of the invention the agent does not cause a substantial long-lasting decrease in the cell count of CD4+ lymphocytes in the subject's blood plasma. Specifically, within the period of 72 to 96 hours after administration the cell count of CD4+ lymphocytes in the subject's blood plasma may be above 250 cells/μl (or at least 250 cells/μl).
Preferably the cytokine and CD4+ lymphocyte effects described above are seen in at least 80% of patients treated.
To prevent negative impact on the immune system, e.g. a decrease in the lymphocyte cell count or induction of cytokine release, it is known in the art to utilise antibodies (especially T cell interacting antibodies) of subclass IgG2, IgG3 or IgG4 because antibodies of the IgG1 subclass display higher Fc receptor interactions. It is also known in the art to modify antibodies (especially T cell interacting antibodies) by Fc mutation, deglycosylation, glycomodification or glycoengineering to reduce Fc receptor interactions.
In the experiments described herein the present inventors have found that the avoidance of antibodies of the IgG1 subclass and modifications are not necessary for the agent of the present invention. In particular, data presented in this patent application indicate that the agent of the present invention does not cause substantial and long lasting CD4+ cell depletion or induce substantial cytokine release in comparison to anti-CD3 antibodies.
Accordingly, in a preferred aspect of the invention the agent is an unmodified IgG1 antibody, i.e. an antibody which does not include an Fc mutation, and has not been subject to deglycosylation, glycomodification or glycoengineering to reduce Fc receptor interactions, or a fragment or a derivative thereof.
The antibodies which are most suitable for use in the present invention are humanized anti-CD4 antibodies, or fragments or derivatives thereof, which are capable of activating CD4+ CD25+ regulatory T cells. Examples of antibodies which are capable of activating CD4+CD25+ regulatory T cells are discussed in Becker et al., (European Journal of Immunology (2007), Vol. 37: pages 1217-1223).
Generally the antibody used in the invention comprises one or more variable domains which are capable binding to CD4. The antibody may comprise a human constant region (Fc). This constant region can be selected among constant domains from any class of immunoglobulins, including IgM, IgG, IgD, IgA and IgE, and any isotype, including IgG1, IgG2, IgG3 and IgG4. Preferred constant regions are selected among constant domains of IgG, in particular IgG1.
The present invention also includes any fragment of the antibody comprising the V regions thereof. This comprises in particular Fab, Fab′, F(ab)′2, Fv and scFv fragments.
In a particularly preferred aspect of the present invention the antibody is a humanized anti-CD4 antibody or fragment or derivative thereof derived from the mouse monoclonal anti-CD4 antibody B-F5. An example of such an antibody is the BT061 antibody.
BT061, fragments and derivatives thereof.
The humanized antibody BT061 (hB-F5) is derived from mouse B-F5 mAb, and has V domains defined by the following polypeptide sequences:
Derivatives of this antibody are also suitable for use in the present invention. Derivatives include those with V domains defined by polypeptide sequences having at least 80%, preferably at least 90%, most preferably at least 95% sequence identity with SEQ ID NO: 1 or SEQ ID NO: 2.
Particularly preferred antibodies are those which comprise the complementarity-determining regions (CDRs) of the mouse B-F5 mAb, and retain the ability of hB-F5 to activate CD4+ CD25+ regulatory T cells. The location of the CDRs within the VH and VK domains is shown in
Generally, the hB-F5 antibody used in the invention further comprises a human constant region (Fc). As indicated above, this constant region can be selected among constant domains from any class of immunoglobulins, including IgM, IgG, IgD, IgA and IgE, and any isotype, including IgG1, IgG2, IgG3 and IgG4. Preferred constant regions are selected among constant domains of IgG, in particular IgG1.
The present invention also includes any fragment of the hB-F5 antibody or derivative thereof comprising the V regions thereof. This comprises in particular Fab, Fab′, F(ab)′2, Fv and scFv fragments.
A polynucleotide encoding the V domain of the H chain or of the L chain of a BT061 antibody may be fused with a polynucleotide coding for the constant region of a human H or L chain, for the purpose of expressing the complete H and L chains obtained in this way; a sequence coding a signal peptide allowing the secretion of the protein can also be added.
The invention also makes use of expression cassettes wherein a polynucleotide as described above is linked to appropriate control sequences allowing the regulation of its transcription and translation in a chosen host cell, and recombinant vectors comprising a polynucleotide or an expression cassette of the invention.
These recombinant DNA constructs can be obtained and introduced in host cells by the well-known techniques of recombinant DNA and genetic engineering.
The invention also makes use of a host cell, transformed by a polynucleotide of the invention. Useful host-cells within the framework of the present invention can be prokaryotic or eukaryotic cells. Among suitable eukaryotic cells, one will mention, by way of example, plant cells, cells of yeasts such as Saccharomyces, cells of insects such as Drosophila, or Spodoptera, and mammal cells such as HeLa, CHO, 3T3, C127, BHK, COS, etc.
The construction of expression vectors used in the invention, and the transformation of host-cells can be made by the standard techniques of molecular biology.
The BT061 (hB-F5) antibody used in the invention can be obtained by culturing a host cell containing an expression vector comprising a nucleic acid sequence encoding said antibody, under conditions suitable for the expression thereof, and recovering said antibody from the host cell culture.
Construction of Humanized B-F5
Design of Humanized B-F5 VH and VK Regions
DNA sequences encoding mouse B-F5 VH and VK regions are respectively shown in
Two types of VK differing between them in that the 4th residue was Leucine or Methionine were constructed and designated as L4L and L4M. Two types of VH differing between them in that the 37th amino acid residue was Leucine or Valine, were constructed and designated as H37L and H37V. The alignment of the polypeptide sequences of B-F5, FK-001, L4L, and L4M is shown in
By combining these VH and VK, 4 versions of V regions were designed.
Expression of Humanized B-F5
The subsequent steps for production of humanized B-F5 were the same as those disclosed in U.S. Pat. No. 5,886,152 for humanized B-B10.
Briefly, expression plasmids for the H chain (VH humanized region fused to the constant region of a human y-1 chain (TAKAHASHI et al., Cell, 29 (1982), 671-679)) and the L chain (VK humanized region fused to the constant region of FK-001 K chain) of humanized B-F5 were constructed separately. In these plasmids, the expression of humanized B-F5 is driven by the promoter/enhancer of the gene of human monoclonal IgM, FK-001.
Characterisation of the Different Versions of Humanized B-F5
Estimation of CD4 Binding Activity
Culture supernatants of transfectomas producing the four versions of hB-F5 were collected, and concentrated. The different antibodies were purified from culture supernatants by affinity chromatography using protein A Sepharose and assessed for their CD4 binding activity by measuring, by means of competitive ELISA, their inhibitory activities against the binding of biotinylated mB-F5 to soluble CD4 coated on microtiter plates. Incubation, time is 2 hours for 37° C. and overnight for 4° C.
The relative binding activities of hB-F5s (binding activity of mB-F5 was taken as 100%) are shown in Table A below:
From the results shown in Table A, it appears that the 37th residue of Leucine, is critical to maintain CD4 binding activity of hB-F5 because the CD4 binding activity is several-fold reduced by conversion of 37Leu to 37Val. On the contrary, the 4th residue of VK is found to be not so important for the CD4 binding activity. As the structural difference between 37Leu and 37Val of VH is not clearly demonstrated by molecular modeling, the superiority of H37L to H37V in CD4 binding activity was unexpected.
H37L/L4L and H37L/L4M were chosen for evaluation.
Investigation of the In Vitro Biological Activities of Humanized B-F5
The in vitro biological activities of mouse B-F5 and humanized B-F5s (H37L/L4M IgG1 and H37L/L4L IgG 1) were evaluated. Humanized B-F5s of IgG2 type (H37L/L4M IgG2 and H37L/L4L IgG2) were also tested.
The in vitro biological activities of mB-F5 and the four types of hB-F5s were evaluated using peripheral blood mononuclear cells (PBMCs) from healthy donors. PBMCs were activated by ConA (2.5 pg/ml, 3 days) or PPD (10 pg/ml, 4 days) in the presence of murine or hB-F5s, and were monitored for their proliferative responses by 3H-thymidine incorporation.
Murine and hB-F5s could moderately inhibit ConA-induced proliferation, but the activities varied from antibody to antibody and/or from donor to donor. Also, murine and hB-F5s were able to inhibit Ag-specific PBMC proliferation induced by PPD.
IgG1 type of hB-F5 inhibited PPD-induced proliferation more effectively (as high as 70% inhibition) than mB-F5. IgG1 type seemed to be more effective than IgG2 type of which inhibitory activity was almost the same as mB-F5. For IgG1 type, H37L/L4M was more effective than H37L/L4L. IgG2 type of H37L/L4M and H37L/L4L had almost the same inhibitory activities. In short, the inhibitory activities of B-F5s against PPD-induced PBMC proliferation were as follows: H37L/L4M IgG1>H37L/L4L IgG1>H37L/L4M IgG2=H37L/L4L IgG2=mB-F5.
Considering the efficacy of the in vitro biological activity and the smaller number of mouse amino acids, H37L/L4M IgG1 was chosen for further evaluation, and it is this antibody which is named BT061 and is employed to demonstrate the present invention in the Examples provided in this application.
Compositions and Uses
As has been mentioned, the pharmaceutical composition and medicaments used in the present invention are preferably capable of treating an autoimmune disease in patients benefiting from lower doses. Such patients include all patients because of a lower level of side effects but especially individuals who do not tolerate doses as disclosed in WO 2004/08324.
In one aspect the present invention also provides use of a humanized anti-CD4 antibody or fragment or derivative thereof in the manufacture of a medicament effective against an autoimmune disease, wherein the humanised antibody capable of activating CD4+CD25+ regulatory T cells, and wherein the medicament comprises the antibody in a concentration of from 10 μg/ml to 150 mg/ml, preferably from 0.5 mg/ml to 75 mg/ml.
The invention further provides use of a humanized anti-CD4 antibody or fragment or derivative thereof in the manufacture of a medicament effective against an autoimmune disease, wherein the humanised antibody is capable of activating CD4+CD25+ regulatory T cells, and wherein the medicament is administered to a subject in a single dose or a plurality of doses in an amount of the antibody of from 0.2 to 30 mg per dose.
The present invention also provides a pharmaceutical composition for treating an autoimmune disease comprising a pharmaceutically acceptable carrier and an agent capable of activating CD4+CD25+ regulatory T cells, wherein the composition is to be administered to a subject in a dose of the agent from 0.2 mg to 30 mg, 0.2 to 20 mg per dose, 0.3 mg to 7.5 mg, 0.3 to 5 mg per dose or preferably 0.3 to 1 mg per dose. Most preferably the range of milligrams per dose extends between 0.3 mg to 0.9 mg, or 0.3 to 0.99 mg.
In one aspect of the invention the subject is to receive a plurality of doses. In these situations it is suitable that dosage over a period of 10 days is between 0.2 to less than 25 mg, more preferably between 0.2 and 20 mg and most preferably between 0.2 to less than 10 mg. Further, the dosage over a period of 5 days should be between 0.2 to less than 15 mg, preferably between 0.2 and 12 mg, and more preferably between 0.2 to less than 5 mg.
In this aspect of the invention it is preferred that, when the dose is to be administered intravenously, the dosages over a period of 10 days are between 0.2 to less than 10 mg, most preferably between 0.2 and 7.5 mg. Alternatively, where the doses are to be administered subcutaneously or intramuscularly, it is preferred that the dosages over a period of 10 days are between 1 mg to 30 mg, more preferably between 5 mg and 30 mg.
The dose can also be calculated on the basis of the body surface area (BSA) of the subject. Body surface area (BSA) can be calculated according to any known method. Examples of BSA calculation methods are as follows:
(BSA (m2)=([Height (cm)×Weight (kg)]/3600)1/2 Mosteller formula
BSA (m2)=0.20247×Height (m)0.725×Weight (kg)0.425 DuBois and DuBois formula
BSA (m2)=0.024265×Height (cm)0.3964×Weight (kg)0.5378 Haycock formula
BSA (m2)=0.0235×Height (cm)0.42246×Weight (kg)0.51456 Gehan and George formula
BSA (m2)=0.0003207×Height (cm)0.3×Weight (grams)(0.7285−(0.0188×LOG(grams)) Boyd formula
According to the invention the dose of the agent to the subject is from 0.10 to 20 mg/m2 body surface area of the patient, preferably from 0.12 to 15 mg/m2, more preferably 0.20 to 10 mg/m2 and most preferably 0.30 to 0.50 mg/m2.
Further the dose can be calculated based on the body weight of the subject. According to the invention the dose of the agent to the subject is from 1 to 500 μg/kg, preferably 2 to 400 μg/kg, more preferably 2 to 250 μg/kg and most preferably 2.5 to 20 μg/kg.
In these aspect of the invention where the dose is based on the body surface area or the body weight of the subject it is preferred that, when the dose is to be administered intravenously, the dosages over a period of 10 days are between 0.20 to 10 mg/m2, more preferably between 0.20 to 4 mg/m2, or between 2 to 250 μg/kg, more preferably between 2 to 100 μg/kg. Alternatively, where the doses are to be administered subcutaneously or intramuscularly, it is preferred that the dosages over a period of 10 days are between 0.30 to 20 mg/m2, more preferably between 0.5 to 20 mg/m2, or between 2.5 to 500 μg/kg more preferably between 20 to 500 μg/kg.
The frequency of administration is not especially limited, provided that it does not interfere with the effectiveness of the treatment. In the invention, it is preferred that the plurality of doses are administered on at least the following bases: daily, every other day, weekly, every 4 weeks, every 6 weeks, every 12 weeks, every 24 weeks, every calendar month, every 6 calendar months or yearly. Thus, the doses may be separated by at least one day, or alternatively by at least one week, or by at least one month or by at least 3 months or by at least 6 months or by at least one year (meaning that the doses are taken every day or every week, or every month or every 6 months or every year). In a further alternative the plurality of doses are taken from every 1 to 31 days, or every 1-12 months.
The length of treatment is not especially limited, and typically in treatment of autoimmune diseases, the treatment proceeds indefinitely, or until symptoms are reduced to a manageable level for the patient. Generally the dose is administered to the subject for at least 1 month.
The invention also provides a kit for a use as defined above, wherein the kit comprises a plurality of medicament dosages for simultaneous, sequential or separate administration to a subject.
It also provides a method of treatment of an autoimmune disease, which method comprises administering a pharmaceutical composition as defined above to a subject.
Also provided is a method of treatment of an autoimmune disease, which method comprises administering a medicament to a subject, wherein the medicament comprises an agent capable of activating CD4+CD25+ regulatory T cells, and wherein the medicament is administered to the subject in an amount as described above.
It is preferred that the agent is a humanized anti-CD4 antibody or fragment or derivative thereof derived from the mouse monoclonal anti-CD4 antibody B-F5.
Generally the pharmaceutical composition and medicaments used according to the present invention are for treating an autoimmune disease. Preferably the autoimmune disease is selected from psoriasis, rheumatoid arthritis, multiple sclerosis, type-1 diabetes, inflammatory bowel diseases, Crohn's disease, autoimmune thyreoditis, autoimmune myasthenia gravis, systemic lupus erythematosus, ulcerative colitis, atopic dermatitis, myocarditis and transplantation-related diseases such as graft-versus-host or host-versus-graft reactions, or general organ tolerance issues.
In a preferred aspect of the invention the autoimmune disease is psoriasis.
Psoriasis is a disorder which causes psoriatic lesions or plaques on the sufferer's skin.
The Psoriasis Area and Severity Index (PASI) score is commonly used to evaluate and record the level of psoriasis exhibited by sufferers. PASI scoring involves the assessment of erythema (E), infiltration (I), and desquamation (D), and body surface area involvement (A) over 4 body regions (head (h), trunk (t), upper (u) and lower (l) extremities). Table B below shows how the scoring system works.
<10%
Because the head, upper extremities, trunk, and lower extremities correspond to approximately 10, 20, 30, and 40% of body surface area, respectively, the PASI score is calculated by the formula:
PASI=0.1(Eh+Ih+Dh)Ah+0.2(Eu+Iu+Du)Au+0.3(Et+It+Dt)At+0.4(El+Il+Dl)Al
PASI score ranges from 0-72. A score of 0 means no psoriasis, while a score of 72 represents the most severe psoriasis.
In a preferred embodiment of this aspect the pharmaceutical composition of the present invention is capable of treating psoriasis by providing at least a 40%, and preferably at least a 50% improvement in the PASI score of the patient. Preferably the subject has a PASI score of at least 10 prior to treatment. These effects may be seen at least 56 days after administration, more preferably at least 75 days after administration. In particular, these effects can be seen in at least 80% of patients treated.
In a further embodiment of this aspect of the invention the pharmaceutical composition is to be administered intravenously, subcutaneously or intramuscularly in the dosages specified herein. In particular, where the dose is to be administered intravenously it is preferred that the dose is between 0.2 mg to 7.5 mg, more preferably between 0.3 to 5 mg. Where the patient is to receive a plurality of doses the dosage over a period of 10 days is preferably between 0.2 to less than 10 mg. Alternatively, where the dose is to be administered subcutaneously or intramuscularly it is preferred that the dose is between 0.2 mg to 30 mg, more preferably between 5 mg to 30 mg. Where the patient is to receive a plurality of doses the dosage over a period of 10 days is preferably between 0.2 to less than 25 mg.
In a further aspect of the present invention the pharmaceutical compositions are for treating rheumatoid arthritis.
Rheumatoid arthritis is an autoimmune disease which causes chronic inflammation of joints and surrounding tissues, and can also affect other tissues and body organs.
Improvement in rheumatoid arthritis exhibited by a treated patient is commonly assessed using the American College of Rheumatology (ACR) core set of parameters (Felson et al., Arthritis & Rheumatism, 1995, 38(6), 727-735). This system defines a value of ACR 20 as a 20% improvement in tender and swollen joint counts and 20% improvement in 3 of the 5 remaining ACR core set measures: patient and physician global assessments, pain, disability, and an acute phase reactant, such as C-reactive protein (CRP).
In particular, the pharmaceutical compositions for treating rheumatoid arthritis are preferably to be administered intravenously, subcutaneously or intramuscularly in the dosages specified herein.
Present treatment of arthritis includes first line drugs for controlling pain and inflammation classified as non-steroidal anti-inflammatory drugs (NSAIDs), e.g., aspirin, ibuprofen, naproxen, etc. Secondary treatment of arthritis includes corticosteroids (e.g. prednisone and dexamethasone), slow acting antirheumatic drugs (SAARDs) or disease-modifying anti-rheumatic drugs (DMARDs), e.g., methotrexate, pencillinamine, cyclophosphamide, gold salts, azothipoprine, leflunomide, etc.
Corticosteroids, the synthetic versions of the body's cortisone hormone, are used to inhibit RA progression (e.g. prednisone and dexamethasone).
Another group of drugs called biological-response modifiers (BRMs) has also been developed for treatment of RA including antagonists to TNF-alpha (adalimumab, infliximab, etanercept) which work through binding to its receptor or directly binding to the TNF-alpha protein.
In one embodiment of this aspect of the invention the compositions are to be administered in combination with drugs currently used to treat rheumatoid arthritis. In particular, the compositions are to be administered with one of the drugs mentioned above, preferably methotrexate.
Known drugs, such as methotrexate, and the pharmaceutical composition of the present invention can be administered simultaneously, sequentially or separately.
The invention will now be described further in relation to the following non-limiting specific embodiments.
Method
Human PBMCs were isolated by density gradient centrifugation and stained with FITC-labelled anti-CD3 antibody (345763; Becton/Dickinson) and serial dilutions of BT061. BT061 binding was detected with an phycoerythrin labelled human IgG antibody (109-116-098; Jackson, Immunoresearch). By flow cytometric analysis the mean fluorescence intensity of CD3+ BT061 binding lymphocytes was determined.
The results are set out in
Results
BT061 binds to human lymphocytes at low concentrations. Below 10 ng/ml the half maximal saturation of binding is observed. Saturation is found at 100 ng/ml. The concentrations are as expected for patients which receive doses of 30 and 300 μg.
Method
Isolation of Human T Cell Populations
CD25high Tregs were separated from buffy coats and/or leukapheresis of healthy volunteers by magnetic bead cell separation according to the following protocol.
CD4+CD25+ regulatory T cells were isolated from buffy coats of healthy volunteers by 2 steps. In the first step CD4+ T cells using 2-40 CD4-MACS-Multisort-Beads (Miltenyi Biotec) per 107 PBMCs were positively selected. After 15 minutes of incubation, magnetic selection was performed. In the next step positively isolated cells were depleted of CD25− expressing non-CD4 cells with CD8-, CD19- and CD14-Dynabeads (Dynal, Oslo, Norway). The resulting CD4+CD25+ T cells were 95-98% pure. Untouched CD4+CD25− T cells were isolated by negative selection from PBMC by depleting CD8, CD19, CD56, CD14, CD235a, CD25 and CD45RO expressing cells with Dynabeads. The purification scheme is shown in
Co-Culture Assay
To evaluate the influence of anti-CD4 mAb on the function of human CD25+ Tregs, freshly isolated human CD25+ Tregs were co-cultured with syngeneic T cell (CD3)-depleted PBMC (CD3 Dynabeads, Dynal) and allogeneic CD8+ T cells in presence of different anti-CD4 mAb. Briefly, 1×105 freshly isolated CD25+ Tregs were incubated with 3×105 irradiated (50 Gy) syngeneic PBMC in the presence of varying amounts of anti-CD4 mAb. Either immediately or 24 h later, 1×105 allogeneic CD8+ T cells were added to the cultures and proliferation was determined 72 h later. Different anti-CD4 mAbs at concentrations from 0.01 μg/ml to 50 μg/ml were tested in this assay. CD8+ T cells were isolated using CD8-Microbeads
The results are set out in
Results
BT061 reproducibly induces suppressive activity in Tregs in a dose-dependent manner, resulting in inhibition of the proliferation of alloreactive CD8+ T cells. BT061 stimulates CD4+CD25+ Tregs which directly inhibit CD8+ T cells.
In particular, the results confirm that there is inhibition of the proliferation of CD8+ T cells at concentrations as low as 10 ng/ml corresponding to low dose application in patients of 30 μg.
The ability of hB-F5 BT061 to treat an autoimmune disease is being tested on 56 patients suffering from moderate to severe chronic psoriasis. The trial comprises a single dose escalation study to assess the safety and efficacy of hB-F5.
The conditions of the trial are as follows:
The 56 patients are divided into seven dose groups, each group comprising eight individuals. Five dose groups (dose groups I to V) are to receive the antibody or placebo by intravenous administration and two dose groups (dose groups VI and VII) are to receive the antibody or placebo via subcutaneous administration. Two patients in each dose group receive a placebo, while the remaining six patients in each dose group receive a dose of BT061. In dose group I the six patients receive 0.5 mg of intravenous BT061. In dose groups II to V the six patients receive 2.5 mg, 5 mg, 10 mg, or 20 mg of BT061, respectively. In dose groups VI and VII where the administration is subcutaneous, the six patients receive 12.5 mg or 25 mg of BT061, respectively.
For intravenous administration the antibody/placebo is to be infused in the forearm vein according to medically accepted procedures. In the present case the total volume is administered as a single continuous intravenous infusion over a period of 2 hours via a perfusor (Fresenius Pilot C, Fresenius A G, Germany). Each dose of the antibody is diluted with a 0.9% sodium chloride injection (B. Braun Melsungen A G, Germany) up to a total volume of 20 ml.
For subcutaneous administration the antibody is to be administered as a single subcutaneous injection. The same procedure applies for the placebo.
The level of psoriasis exhibited by each patient is recorded using the Psoriasis Area and Severity Index (PASI) score. As described above higher PASI scores corresponds to a higher level of psoriasis. Patients enrolled onto the trial have a moderate to severe chronic psoriasis, i.e. a PASI score of 10 or above.
The patient's PASI score is assessed before the trial to provide a “baseline” value at day 0, and repeatedly during the trial at days 5, 7, 14, 21, 28, 42, 56 and 75.
Dose Group I
Six patients from dose group I received a single intravenous application of 0.5 mg of BT061, while two patients from dose group I received the placebo. The dose per weight and the dose per body surface area (BSA) for each patient are shown in Table C. Body surface area was calculated according to the Mosteller formula described herein.
The PASI scores for the patients in dose group I are shown in Table C together with the percentage improvement in the PASI score from the baseline.
Dose Group II
Six patients from dose group II received a single intravenous injection of 2.5 mg of BT061 while two patients from dose group II received the placebo. The dose per weight and the dose per body surface area (BSA) for each patient is shown in Table D1.
The PASI scores for the patients in dose group II are shown in Table D1 together with the percentage improvement in the PASI score from the baseline.
Dose Group III
Six patients from dose group III received a single intravenous injection of 5.0 mg of BT061 while two patients from dose group III received the placebo. The dose per weight and the dose per body surface area (BSA) for each patient are shown in Table D2.
The PASI scores for the patients in dose group III are shown in Table D2 together with the percentage improvement in the PASI score from the baseline.
Dose Group IV
Six patients from dose group IV are receiving a single intravenous injection of 10.0 mg of BT061 while two patients from dose group IV received the placebo. The dose per weight and the dose per body surface area (BSA) for the patients is shown in Table D3.
The PASI scores for the patients in dose group IV are shown in Table D3 together with the percentage improvement in the PASI score from the baseline.
Further, the PASI scores against time for individual patients are shown in graph form in
As can be seen from the results shown in Tables C and D, 75% of all the patients from dose group I and dose group II show a clear improvement in their PASI scores, i.e. at least a 40% improvement over the baseline value, after a single dose. It should be noted that 25% of the patients in dose group I and dose group II received a placebo.
In fact, in both dose groups 50% of the patients showed at least 50% improvement in their PASI scores, with one patient in dose group II showing an 88% improvement in the PASI score at day 56, (i.e. patient 3 in Table D). Furthermore, the therapeutic effect is long-lasting even at these low doses, with the improvements still being seen in many patients at the end of the trial, 75 days after administration.
Patients in dose group III also show an improvement in their PASI score, with six out of eight patients showing a greater than 20% improvement and two of those six showing a greater than 30% improvement after treatment. However, the improvement was not as significant as that seen in patients from dose group I and dose group II which received a lower dose of the antibody. Some efficacy is also seen in the patients of dose group IV. In particular patients 1, 4, 5 and 8 in this dose group (as shown in Table D3) show a clear improvement in their PASI scores, although this is limited in comparison to patients of dose groups I to III.
The number of patients showing at least 40%, 50%, 60% and 75% improvement in PASI score is shown in Table E.
From these results it can clearly be seen that BT061 provides effective treatment of moderate and severe chronic psoriasis even with a dose as low as 0.5 mg. Further, the single dose provides a therapeutic effect which can still be seen six to eight weeks afterwards.
A study was conducted to monitor the safety and tolerability of BT061 using escalating doses of the antibody in healthy male and female volunteers between the ages of >18 to <75 years.
Thirty volunteers received BT061 by intravenous administration in 10 dosage groups, with 3 volunteers per group. Further, 15 volunteers received BT061 by subcutaneous administration in 5 dosage groups also with 3 volunteers per group. The administration of BT061 intravenously is illustrated Table F below:
Each dose is diluted with 0.9% sodium chloride injection up to a total volume of 20 ml. The dose is administered as a single continuous intravenous infusion over 2 hours.
The administration of BT061 subcutaneously is illustrated in Table G below:
Each dose is injected as a single bolus injection.
The volunteers were assessed over a period of 3 months after the injection.
For subcutaneous application plasma samples were taken before administration and at 3, 6, 12, 24, 36, 48, 56, 72, 88, 96, 120, 144 and 168 hours after administration and on day 75.
For intravenous application, plasma samples were taken before administration and at 30 minutes, 1, 2, 3, 6, 12, 24, 36, 48, 72, 96, 120, 144 and 168 hours after administration.
The plasma samples were analyzed using standard ELISA methodology to establish cytokine levels. The relevant cytokines analyzed included: IFN-γ, TNF-α, IL-6 and IL-2.
The plasma samples were also analyzed using standard methods of flow cytometry to measure the number of CD4+ lymphocytes.
Results
It was found that intravenous and subcutaneous doses up to 60 mg were generally well tolerated.
Cytokine Levels
Induction of cytokine release is a common immediate complication occurring with the use of T cell interacting therapeutic antibodies, such as ATG, OKT3, CAMPATH-1H and humanized anti-CD3 mAbs (TRX4, Visilizumab and Teplizumab). The symptoms mainly include moderate fever, headaches and self-limiting gastrointestinal manifestations. Side effects correlated with cytokine induction after antibody administration require the application of additional drugs such as the antihistamine diphenhydramine hydrochloride and/or the anti-inflammatory agent ibuprofen.
With the use of OKT3 (muromonab-CD3), a murine CD3 specific therapeutic monoclonal antibody, there have even been deaths reported, and severe side effects limit the clinical use of this antibody mainly to immunosuppressed patients.
Although humanized FcR-non-binding CD3-specific monoclonal antibodies that are presently used in the clinic for the treatment of autoimmune disease (Teplizumab and TRX4) exhibit reduced side effects induced by T-cell activation and/or by activation of Fc receptor expressing cells after the first dose, as compared with FcR-binding CD3-specific antibodies such as OKT3, some degree of T-cell activation and activation of Fc receptor expressing cells is still observed that leads to cytokine release generally connected to cytokine dependent side effects.
In the present study it was surprisingly found that cytokine induction observed in healthy volunteers after intravenous or subcutaneous application of BT061 was comparably low and transient as compared to anti-CD3 antibodies. Cytokine induction generally increased with increasing dosage. However, even at the highest doses of 40 to 60 mg cytokine induction is much lower than that seen with other T cell interacting monoclonal antibodies.
The median peak concentrations for the cytokines observed at any time point within 96 h after administration using the highest doses (40 mg to 60 mg of BT061) are shown in
The median peak concentration for each cytokine is calculated as follows: The median of the highest cytokine concentrations observed after administration of the antibody.
In comparison to Teplizumab and TRX4 (results taken from Herold et al., 2002, New Engl. J. Med, and Keymeulen et al., 2005 New Engl. J. Med, respectively) BT061 induced only marginal and transient cytokine release. TNF-α and IL-6 levels were slightly increased.
Further, in contrast to the anti-CD3 mAbs, BT061 did not lead to substantially increased levels of IFN-γ and IL-2 (
CD4+ Lymphocytes
In addition, the trial also included a study of the numbers of CD4-positive lymphocytes in plasma samples collected.
The results of the intravenous administration are shown below in Tables H, J and K. Table L shows the results of the trial with subcutaneous administration. The results are shown graphically in
In particular,
Many CD4 specific monoclonal antibodies known in the art (such as those reviewed in Strand et al., 2007) achieve immuno-suppression via CD4-positive lymphocyte depletion. The drawback of these antibodies is that treated individuals become immuno-compromised, and are susceptible to other infections.
In contrast this study showed that BT061 induced no massive long lasting depletion of CD4-positive cells. However, a transient decline of CD4-positive lymphocytes was observed with a recovery to norm values in the peripheral blood within 72 h after administration of the antibody.
At the 72 h time point after application of BT061, CD4 cell counts in four volunteers of the intravenous dose groups showed CD4 levels that were below these norm values as follows: 1 volunteer of the 100 μg intravenous dose: 400 CD4 cells per μl; 1 volunteer of the 5 mg group: 419 CD4 cells per μl; 1 volunteer of the 10 mg group: 440 CD4 cells per μl; and 1 volunteer of the 20 mg group: 392 CD4 cells per μl.
However, these values were only slightly below norm values. CD4 cell counts in the remaining 26 volunteers of the intravenous dose groups were within the norm values 72 hours after administration of BT061.
In the subcutaneous dose groups, after 72 h, only one out of 15 volunteer showed CD4 cell counts below norm values.
In conclusion, in contrast to depleting CD4 specific mAbs, BT061 only induced a transient decline of CD4-positive cells followed by a general recovery. From the transient decline and rapid general recovery to norm values it is concluded that a transient redistribution of the CD4-positive cells has taken place, rather than depletion of these cells.
The ability of hB-F5 BT061 to treat rheumatoid arthritis is being tested on patients suffering from this disease. The trial comprises a multiple dose study involving 96 patients, divided into 12 groups. In each group two patients receive a placebo while 6 patients receive BT061. Patients are dosed once a week over a period of 6 weeks.
Patients are divided into those receiving the antibody subcutanetously and those receiving the antibody intravenously. The subcutaneous dose groups are: 1.25 mg, 6.25 mg. 12.5 mg, 25 mg, 50 mg, 75 mg and 100 mg. The intravenous dose groups are: 0.5 mg, 2 mg, 6.25 mg, 12.5 mg and 25 mg.
In the 1.25 mg subcutaneous dose group the patients are numbered 101, 102, 103, 104, 105, 106, 107 and 108. In the 6.25 mg subcutaneous dose group the patients are numbered 201-208. In the 12.5 mg subcutaneous dose group the patients are numbered 301-308. In the 25 mg subcutaneous dose group the patients are numbered 401-408. In the 50 mg subcutaneous dose group the patients are numbered 501-508. In the 6.25 mg intravenous dose group the patients are numbered 601-608.
The intravenous and subcutaneous administration procedure was the same as that described in Example 3 for the psoriasis trial.
The level of rheumatoid arthritis is recorded weekly by assessing the ACR parameters and in particular studying the number of tender and swollen joints and following the levels of C-reactive protein (CRP) and the erythrocyte sedimentation rate (ESR). These parameters are assessed before the trial to provide a “baseline” value at day 0, and repeatedly during the trial period and thereafter at 8, 22 and 43 days after the administration period is finished (i.e. follow up (FU) day 8, FU day 22 and FU day 43).
The Tables below provide the data obtained from the trial. Specifically Tables M to S provide the number of tender and swollen joints over the course of the trial.
In particular, it can be seen that 50% of patients in the 25 mg subcutaneous dose group (i.e. 4 out of the 8 patients where 2 of the patients are receiving a placebo) achieved at least a 20% improvement of relevant ACR parameters at week 6. This figures increased to 5 out of the 8 patients at week 7, i.e. 5 out of the 8 patients achieved at least ACR20. One patient in this dose group achieved a more than 50% improvement of relevant ACR
Parameters at weeks 5 and 6 (full set of data not shown).
Positive results were also obtained by patients in other dose groups. One patients in the 6.25 mg subcutaneous dose group achieved at least a 50% improvement of relevant ACR parameters at week 4 while another achieved at least a 70% improvement of relevant ACR parameters at week 3 (full set of data not shown).
A reduction in the numbers of tender and swollen joints is also seen in patients from the other dose groups.
Number | Date | Country | Kind |
---|---|---|---|
0804686.4 | Mar 2008 | GB | national |
0817811.3 | Sep 2008 | GB | national |
This application is a continuation under 35 U.S.C. §120 of PCT Patent Application No. PCT/EP2009/052809, filed on Mar. 10, 2009, which claims priority under 35 U.S.C. §119 to Great Britain Patent Application Nos. 0804686.4, filed on Mar. 13, 2008, and 0817811.3, filed on Sep. 29, 2008, which are incorporated in their entireties by reference. The Sequence Listing in electronic format filed herewith is also hereby incorporated by reference in its entirety (File Name: 2010-09-13T—060-009_Seq_List; File Size: 12 KB; Date Created: Sep. 13, 2010).
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2009/052809 | Mar 2009 | US |
Child | 12880837 | US |