Agents for preserving technical materials against insects

Abstract
The use of the compounds of the formula (I) as agents for preserving technical materials against insects.
Description

The present invention relates to the use of known nitromethylene or nitroimino compounds as agents for combating technical materials destroying insects in order to preserve these materials.


The present invention also relates to compositions useful for combating these insects, preserving technical materials completely, i.e. not only against insects but also against fungi, bacteriae and algae and for treating soil to protect technical materials against termite infestations.


The invention furthermore relates to processes for treating technical materials and for soil treatment against termite infestations.


The compounds and their insecticidal use in the field of plant protection has already been known. Compare for example with EP-A 163855 and EP-A 192060.


Insecticidal agents and compositions of said compounds and their use to preserve technical materials completely and to treat soil against termite infestations have not been known up to now.


Different insects are known as pests infesting technical materials so that due to serious damages caused thereby undesirable effects on living environment and cultural assets principally made of these materials have posed a social problem, urgently requiring effective controlling of the pests. Termites are known as important examples of these pests.


At present, use for combating technical materials destroying insects has been made of organophosphorus insecticides such as phoxim [0-(α-cyanobenzylideneamino)0,0-diethylphosphorothioate], chloropyriphos [0,0-diethyl-3,5,6-trichloro-2-pyridylphosphorothioate], etc., as well as pyrethroides series insecticides such as permethrin [5-benzyl-3-furylmethyl-3-(2-methoxy-carbonyl-1-propenyl)-2,2-dimethylcyclopropane carboxylate], decamethrin [α-cyano-3-phenoxybenzyl d,l-cis-3-(2,2-dibromovinyl)-2,2-dimethyl cyclopropane carboxylate], cypermethrin [α-cyano-3-phenoxybenzyl (±) cis, trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropanecarboxylate], fenvalerate [(RS)-α-cyano-3-phenoxybenzyl (RS)-2-(4-chlorophenyl)-3-methylbutyrate], cyflutrine [cyano-(4-fluoro-3-phenoxyphenyl) methyl-3-(2,2-dichloroethenyl)-2,2-dimethyl-cyclopropane carboxylate].


However, the above-mentioned insecticides are unsatisfactory as far as effective concentration and the long lasting effect are concerned.


It has been found that the known compounds of the formula (I)
embedded image

wherein


X is NH or S,


Y is CH or N


Z is 2-chloro-5-pyridyl or 2-chloro-5-thiazolyl,


R1 is hydrogen or methyl, and


n is 0 or 1,


exhibit powerful insecticidal properties on material destroying insects and preferably on termites.


The compounds according to the invention of the formula (I) surprisingly exhibit an extremely strong insecticidal action on material destroying insects and the function is substantially superior to that of known insecticidal agents.


The compounds of the formula (I) can be used to preserve technical materials against insects.


In the formula (I), the individual residues have the following preferable meanings:


X is NH or S,


Y is CH or N,


Z is 2-chloro-5-pyridyl,


R1 is hydrogen, and


n is 0 or 1.


As examples of the active substances to be used according to the invention, the following ones are particularly preferred:

  • 1-(6-chloro-3-pyridylmethyl)-2-nitromethylene-imidazolidine,
  • 3-(6-chloro-3-pyridylmethyl)-2-nitromethylene-thiazolidine,
  • 1-(6-chloro-3-pyridylmethyl)-2-nitroimino-imidazolidine,
  • 1-(6-chloro-3-pyridylmethyl)-2-nitromethylene-tetrahydropyrimidine, and
  • 3-(6-chloro-3-pyridylmethyl)-2-nitromethylene-tetrahydro-2H-1,3-thiazine.


The active substances to be used according to the invention exhibit powerful insecticidal effects against material destroying insects.


They can therefore be used in insecticidal agents for combating material destroying insects and preserving technical materials. They can also be used for soil treatment against termite infestation.


As individual examples of technical materials preserved by means of the insecticidal agents according to the present invention the following ones can be mentioned: wood or composite wood-materials (such as pressed wood, particle board, chip board, wafer board, plywood, wood laminated material, freshly cut timber/lumber etc.), paper, leather or leather products, natural or synthetic polymers, textiles.


Preferable materials are wood or composite wood-materials.


As individual examples of insects to be combated or controled by the active substances of formula (I) according to the present invention the following ones can be mentioned:


Order Isoptera

MastotermitidaeKalotermitidaesuch asKalotermes spp.Cryptotermes spp. etc.Termopsidaesuch asZootermopsis spp. etc.Rhinotermitidaesuch asReticulitermes spp.Heterotermes spp.Coptotermes spp. etc.Termitidaesuch asAmitermes spp.Nasutitermes spp.Acanthotermes spp.Mikrotermes spp. etc.


Order Coleoptera

Lyctidaesuch asLyctus brunneus etc.Bostrychidaesuch asBostrychus capucinusDinoderus minutus etc.Anobiidaesuch asAnobium punctatumXyletinus peltatusXestobium rufovillosumPtilinus pectinicomis etc.Cerambycidaesuch asHylotrupes bajulusHesperophanus cinereusStromatium fulvumChlorophorus pilosus etc.OedemeridaeSerropulpidaeCurculionidaeSeolytidaPlatypodidae


Order Hymenoptera

Siricidaesuch asSirex spp.Urocerus spp.Formicidaesuch asCamponotus spp.


In the above Isopterous insects, especially, there may be mentioned as examples of termites in Japan:



Deucotermes speratus,



Coptotermes formosanus,



Glyptotermes fucus,



Glyptotermes satsumensis,



Glyptotermes nakajimai,



Glyptotermes Kodamai,



Incisitermes minor,



Neotermes koshunensis,



Cryptotermes domesticus,



Hodotermopsis japonica,



Reticulitermes miyatakei,



Odontotermes formosanus,



Nasutitermes takasagoensis,



Capritermes nitobei and so on.


The active compounds of the general formula (I) in the present invention can be prepared into the customary formulations, such as solutions, emulsions, suspensions, powders, foams, pastes, granules, aerosols, natural and synthetic materials impregnated with active compounds, and micro-capsules.


These formulations may be produced in a known manner, for example, by mixing the active compounds with extenders, that is to say liquid or liquefied gaseous or solid diluents or carriers, optionally with the use of surface-active agents, that is to say emulsifying agents, dispersing agents, and/or foam-forming agents. In the case of using water as an extender, organic solvents can, for example, also be used as auxiliary solvents.


As liquid diluents or carriers can be mentioned, for example, aromatic hydrocarbons, such as xylene, toluene and alkyl naphthalenes, chlorinated aromatic or chlorinated aliphatic hydrocarbons, such as chlorobenzenes, chloroethylenes and methylene chloride, aliphatic or alicyclic hydrocarbons, such as cyclohexane or paraffins, for example, mineral oil fractions, alcohols, such as butanol or glycol as well as their ethers and esters, ketones, such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, or strongly polar solvents, such as dimethylformamide and dimethylsulfoxide, as well as water.


By liquefied gaseous diluents or carriers are meant liquids which are gaseous at normal temperature and under normal pressure, for example, aerosol propellants, such as halogenated hydrocarbons as well as butane, propane, nitrogen and carbon dioxide.


As solid diluents there may be used ground natural minerals, such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceus earth, and ground synthetic minerals, such as highly-dispersed silicic acid, alumina and silicates.


As solid carriers for granules there may be used crushed and fractionated natural rocks such as calcite, marble, pumice, sepiolite and dolomite, as well as synthetic granules of inorganic and organic meals, and granules of organic material such as sawdust, coconut shells, maize cobs and tobacco stalks.


As emulsifying and/or foam-forming agents there may be used nonionic and ionic emulsifiers, such as polyoxyethylene-fatty acid esters, polyoxyethylene-fatty alcohol ethers, for example, alkylaryl polyglycol ethers, alkylsulfonates, alkylsulfates, arylsulfonates as well as albumin hydrolysis products. Dispersing agents include, for example, lignin sulfite waste liquors and methyl cellulose.


Adhesives such as carboxymethyl cellulose and natural and synthetic polymers, (such as gum arabic, polyvinyl alcohol and polyvinyl acetate) can be used in the formulations in the form of powders, granules or emulsifiable concentrations.


It is possible to use colorants such as inorganic pigments, for example, iron oxide, titanium oxide and Prussian Blue, and organic dyestuffs, such as alizarin dyestuffs, azo dyestuffs or metal phthalo-cyanine dyestuffs, and trace elements, such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.


The formulations, in general, contain from 0.001 to 95 percent by weight of active compound, preferably from 0.5 to 90 percent by weight.


Furthermore, the active compound of the present invention having the formula (I) can be present as a mixture with a synergist in a formulation or a use form, of the type that is commercially useful. The term “synergist” denotes a compound which is not active in itself, but promotes the action of an active compound. The content of the active compounds having the general formula (I) of the present invention in commercially useful formulations can vary within a wide range. The active compound concentration of the formulation for use is, for example, from 0.0000001 to 100 percent by weight, preferably from 0.0001 to 1 percent by weight.


In order to protect the above-mentioned materials completely, i.e. not only against material destroying insects but also against fungi, bacteria and algae, they can be treated with compositions containing at least one insecticidally active compound of the formula (I) and at least one biological active fungicide, bactericide or algizide.


Wood or composite wood-materials can preferably be treated with a composition containing

  • a) an insecticidally effective amount of a compound of the formula (I) or mixtures thereof and
  • b) a fungicidally effective amount of at least one compound selected from the group of


Trihalosulfenyl-Compounds such as

  • N-Dichlorofluoromethylthio-N′,N′-dimethyl-N-phenyl-sulfuric acid diamide (Dichlofluanide)
  • N-Dichlorofluoromethylthio-N′,N′-dimethyl-N-p-toluylsulphamide (Tolylfluanide)
  • N-Trichloromethylthiophthalimide (Folpet)
  • N-Dichlorofluoromethylthiophthalimide (Fluorfolpet) etc.


Iodine-Compounds such as

  • 3-Iodo-2-propynyl-butylcarbamate (IPBC)
  • 3-Iodo-2-propynyl-hexylcarbamate
  • 3-Iodo-2-propynyl-cyclohexylcarbamate
  • 3-Iodo-2-propynyl-phenylcarbamate
  • Diiodmethyl-p-tolylsulphone (Amical 48) etc.


Phenols such as

  • ortho-Phenylphenol
  • Tribromophenol
  • Tetrachlorophenol
  • Pentachlorophenol etc.


Azole-Compounds such as

  • 1-(4-Chlorophenoxy)-3,3-dimethyl-1-(1H-1,2,4 triazol-1-yl)-2-butanone (Triadimefon)
  • β-(4-Chlorophenoxy)-α-(1,1 dimethyl-ethyl)-1H-1,2,4 triazole-1-ethanol (Triadimenol)
  • ±α[2-(4-chlorophenyl) ethyl]-α-(1,1-dimethylethyl)-1H-1,2,4-triazole-1-ethanol (Tebuconazole)
  • 1-[2(2,4-dichlorophenyl) 4-propyl-1,3-dioxolan-2-ylmethyl]-1H-1,2,4-triazole (Propiconazol)
  • 1-[2(2,4-dichlorophenyl)-1,3-dioxolan-2-ylmethyl]-1H-1,2,4-triazole (Azaconazol)
  • (RS)-2(2,4-dichlorophenyl)-1-(1H-1,2,4 triazol-2-yl)-2-ol (Hexaconazol)
  • 1-N-propyl-N-[2-(2,4,6-trichlorophenoxy) ethyl] carbamoylimidazol (Prochloraz) etc.


Tin Compounds such as

  • Tributyl tin octoate
  • Tributyl tin oleate
  • Bistributyl tin oxide
  • Tributyl tin naphthenate
  • Tributyl tin phosphate
  • Tributyl tin benzoate etc.


Thiocyanate Compounds such as

  • Methylenebisthiocyanate (MBT)
  • 2-Thiocyanomethylthiobenzothiazole (TCMTB) etc.


Quarternary Ammonium Compounds such as

  • Benzyl-dimethyl-tetradecylammoniumchloride
  • Benzyl-dimethyl-dodecylammoniumchloride etc.


Benzimidazole Compounds such as

  • 2-(2′-Furyl)-1H-benzimidazole (Fuberidazole)
  • Methylbenzimidazol-2-ylcarbamate (BCM)
  • 2-(41-thiazolyl) benzimidazole (Thiabendazole)
  • Methyl (1-butylcarbamoyl)-2-benzimidazole carbamate (Benomyl)


Isothiazolinone Compounds such as

  • N-Methylisothiazolin-3-one
  • 5-Chloro-N-methylisothiazolin-3-one
  • 4,5-Dichloro-N-octylisothiazolin-3-one
  • N-Octylisothiazolin-3-one


Morpholine Compounds such as

  • C14-C11-4-Alkyl-2,6-dimethylmorpholine (Tridemorph)


Pyridine Compounds such as

  • 1-Hydroxy-2-pyridine-thione and Sodium Iron, Manganese or Zinc-Salt thereof
  • Tetrachloro-4-methyl sulphonyl pyridine


N-Cyclohexyldiaziniumdioxy Compounds such as

  • Tris-(N-cyclohexyldiaziniumdioxy) aluminium
  • Bis-(N-cyclohexyldiaziniumdioxy) copper


Naphthenate Compounds such as

  • Zincnaphthenate


Quinoline Compounds such as the copper salt of

  • 8-hydroxy-quinoline


Nitriles such as

  • 1,2,3,5-Tetrachloro-4,6-cyanobenzene.
    • Boric compounds such as boric acid, borax, borates
    • Ureas such as N′(3,4-dichlorophenyl)-N,N-dimethylurea
    • Furane derivatives such as Furmecyclox


These fungicidally effective compounds are added to the composition in order to prevent wood or wood materials not only against wood destroying insects but also against


Wood-discoloring fungi such as

    • Ascomycetes (Caratocystis minor)
    • Deuteromycetes (Aspergillus niger, Aureobasidium pullulans, Dactyleum fusarioides, Penicillium Variabile, Sclerophoma pithyophila, Scopularia phycomyces, Trichoderma viride, Trichoderma liguorum)
    • Zygomycetes (Mucor spinosus)


      and/or


Wood-destroying fungi such as

    • Ascomycets (Chetomium alba-arenulum, Chaetonium globosum, Humicola grisea, Petriella setifera, Trichurus spiralis)
    • Basidiomycetes
      • (Coniophera puteana
      • Coriolus versicolor
      • Donbiopora expansa
      • Glenospora graphii
      • Gloeophyllum abietinum
      • Gloeophyllum adoratum
      • Gloeophyllum protactum
      • Gloeophyllum trabeum
      • Gloeophyllum sepiarium
      • Lentinus cyathioformes
      • Lentinus edodes
      • Lentinus lepideus
      • Lentinus squavrolosus
      • Paxillus panuoides
      • Pleurofus ostreatus
      • Poria placenta
      • Poria monticola
      • Poria vaillantii
      • Poria vaporia
      • Serpula himantoides
      • Serpula lacrymans
      • Tyromyces palustris)
    • Deuteromycetes (Cladosporium herbarum).


Generally the compositions also will include at least one additional diluent, emulsifier, melting agent, organic binding agent, auxiliary solvents, processing additives, fixatives, plasticizers, UV-stabilizers or stability enhancers, dyes (water soluble, water insoluble), color pigments, siccatives, corrosion inhibitors, antisettlement agents, additional insecticides (such as insecticidal carbamates, organophosphorus compounds, halogenated hydrocarbons, pyrethroides etc.), anti skinning aqents and the like.


The above-mentioned additional ingredients and their use are described in prior art. (EP-A 0370665, DE-A 3531257, DE-A 3414244).


The compositions according to the present invention generally comprise from about 10−6 to 30 parts by weight, preferably from about 0.0005 to 15 parts by weight and more preferably from 0.005 to 2 parts by weight of the insecticide of formula (I) and from 0.01 to 90 parts by weight, preferably from about 0.05 to 50 parts by weight and more preferably from 0.1 to 30 parts by weight of at least one of the above-mentioned fungicides.


The compositions can be provided as ready for use products or as concentrates, which have to be diluted prior to use.


The compositions can be applied by means of brushing, spraying, dipping, double vacuum and the like as known in the art. The compositions can be prepared by any technique known in the art.


The content of the present invention will be concretely exolained by way of the following examples but the present invention should not be limited only thereto.







EXAMPLES FOR COMPOSITIONS

*Remark: the percentages are given in percent by weight


Example 1

















0.005%
1-(6-chloro-3-pyridylmethyl)-2-nitroimino-



imidazolidine (imidacloprid)


   5%
Butylglycol


94.995% 
Mineral spirits









Example 2
Impregnating Agent/Primer

















0.01% 
Imidacloprid


0.5%
Dichlofluanide


  1%
Tebuconazole


9.7%
Alkyd resin (solid)


88.79% 
Mineral spirits









Example 3
Wood Stain/Low Build

















0.01% 
imidacloprid


0.5%
Dichlofluanide


1.2%
Tebuconazole


 21%
Alkyd resin (solid)


  2%
Pigment


  4%
Antisettlement additive, dryes etc.


71.29% 
Mineral spirits









Example 4
Wood Stain/High Build

















0.015% 
imidacloprid


0.6%
Dichlofluanide


1.5%
Tebuconazole


 40%
Alkyd resin


  2%
Pigment


  4%
Antisettlement additive, dryer etc.


48.115%  
Mineral spirits









Example 5
Soil Treatment

















20% 
imidacloprid


8%
ethylene glycol


3%
emulsifiers


0.25%  
thickeners


68.75%   
distilled water









Example 6
Wood Brushing

















0.1%
imidacloprid


  1%
3-bromo-2,3-diiodo-2-propenyl



ethylcarbonate


98.9% 
organic solvents









Example 7
Wood Brushing

















0.1%
imidacloprid


1.5%
4-chlorophenyl-3-



iodopropargylformal


98.4%
organic solvents









Example 8
Formicidal Test

Compounds Under Test


Examples of the Active Compounds According to the Present Invention

  • I.1: 1-(6-chloro-3-pyridylmethyl)-2-nitromethylene-imidazolidine
  • I.2: 3-(6-chloro-3-pyridylmethyl)-2-nitromethylene-thiazolidine
  • I.3: imidacloprid


Comparative Compounds


A: phoxim


B: chlorpyriphos


Preparation of Test Formulation:


Solvent: 3 parts by weight of xylene


Emulsifier: 1 part by weight of polyoxyethylene-alkylphenyl-ether


To prepare a suitable formulation of the active compound, 1 part by weight of each of the active compounds was mixed with the above-mentioned amount of the solvent containing the above-mentioned amount of the emulsifier, and the mixture was diluted with water to a predetermined concentration.


Test Method:


1 ml of the aqueous solution prepared in the above-mentioned procedure was uniformly applied using a pipette onto a filter paper that was placed in petri dish of 9 cm diameter. Ten head of worker termites (Coptotermes formosanus) were replaced into the petri dish and it was kept in a constant temperature chamber at 25° C.


After four days, the mortality of the termites was investigated. This test procedure was carried out in duplicate per each concentration of the active compounds under test.


The test results are shown in Table 1.

TABLE 1Concentration ofMortality of termitesactive compoundafter four daysCompound(ppm)(%)I.14010081001.61000.32100I.24010081001.61000.32100I.34010081001.61000.32100A4010081001.61000.3290B4010081001.61000.32100UnTreated0


Example 9
Test on Residual Effect

Small blocks of Japanese redpine tree ( 2 cm×2 cm×2 cm) were soaked for one minute into the aqueous solution prepared by the similar procedure to Example 8.


After air-dried, they were kept in a constant temperature chamber at 40° C. for four weeks. Then each of the thus treated blocks was placed in a polymeric cup (10 cm diameter) containing 150 ml of sandy loam of 20% moisture content. Into each of the polymeric cups, 100 head of working termites and 10 head of soldier termites (Coptotermes formosanus) were released. After three weeks, the degree of xylophagous damage in the block and the mortality of the termites were investigated.


Three tests were carried out in duplicate 25° C., and the results are shown in Table 2.


The index of xylophagous damage observed on the test blocks:

0No damage0.5One to two traces of damage each having a depth ofabout 1 mm from the block surface1One to two evident damages each having a depth from1 to 2 mm from the block surface2More than three evident damages or more than onedeep trace of damage having a depth of more than2 mm from the block surface3More than three deep damages4Evidently damaged zone covering up to about onethird of the whole surface area of the block5Evidently damaged zone covering more than one thirdof the whole surface area of the block














TABLE 2














Degree of




Concentration
Mortality
xylophagous




of active
termites
damage in the




compound
after three
pine tree



Compound
(ppm)
weeks (%)
block (0-5)





















I.1
40
100
0




8
100
0




1.6
100
0




0.32
98
0.5



I.2
40
100
0




8
100
0




1.6
100
0




0.32
100
0



I.3
40
100
0




8
100
0




1.6
100
0




0.32
100
0



A
40
25
3




8
0
5




1.6
0
5




0.32
0
5



B
40
100
0




8
78
1




1.6
0
3




0.32
0
5



Untreated

0
5










Example 10
Toxic Value Against Larvae of Hylotrupes Bajulus

The toxicity against larvae of Hylotorupes bajulus, using wood samples treated with the active compound I.3 provided in Example 8 in chloroform having concentrations of 1.44×10−5%, 1.44×10−4%, 7.2×10−3%, and 1.44×10−2% was determined according to the detailed description of DIN EN 47 (edition 1990, Beuth Verlag GMBH) which is concerned with the European standard method prescribed by the European Committee for standardization concerning wood preservatives, determination of the toxic value against larvae of Hylotrupes bajulus.


An outline of the method is as follows: (see DIN EN 47 for detail)


Five wood-samples (50 mm×25 mm×15 mm) which are treated by the active compound beforehand (impregnation treatment in vacuum) are provided and in each specimen, a regular pattern of six holes are bored, and then one head of the larvae is inserted per a hole.


After four weeks, the specimens are cut up in turn and the number of live/dead of larvae is determined.


In determination, where a live larvae is identified in a specimen, then the remaining specimens without cutting up are stored for a further eight weeks, and afterword, the of live/dead larvae is determined.


From this test, the Toxic threshold value was between 1.08 g/m3 and 10.8 g/m3 of the active compound I.3.


The results are shown in Table 3.

TABLE 3Concen-State of the larvae at the end ofDurationtrationQuantity of active compoundthe testof theof theconcentrate absorbed indeadtest inimpregnatingg/m3 woodno woodwoodnotweekssolution (%)min.max.M-valuedigesteddigestedlivingfound40.014482.08116.64103.97273000.007245.3656.6352.85291000.0014410.0811.2310.804611(*1)120.001449.9411.6610.8061101(*2)0.0001440.951.211.084121130.00001440.090.120.111423212controlimpregnated with22242semoleschloroformnot treated11271
Note:

(*1) One live larvae was found in the second specimen.

(*2) The remaining three specimens were tested for further eight weeks (12 weeks in total).


Comparative values of W. Metzner et al in “Holz als Rohund Werkstoff, 35 (1977) 233-237”, table 6 on page 236.

TABLE 4Insecticidetoxic value (g/m3)DDT 5-10Diazinon12-18-22Phoxim 7-12Chlorophoxim12-20-32Bassa (Baycarb)17-30-44Propoxur18-30Carbaryl12-18


Example 11
Effectiveness Against the Termite Species Reticulitermes Santonensis

The toxicity against Reticulitermes santonensis of solutions containing the active compound I.3 in chloroform having the concentrations mentioned in Example 10 was determined according to the detailed description of DIN EN 117 Edition 1981 which is concerned with the European standard method prescribed by the European Committee for standardization concerning wood preservatives, determination of the toxic value against Reticulitermes santonesis.


An outline of the method is as follows: (see DIN EN 117 for detail)


The same three wood-samples with impregnation treatment in vacuum as in Example 10 are provided.


They are exposed to 250 workers, 1 soldier and 1 nymph per batch for eight weeks, and afterword, the number of live/dead larvae is determined.


From this test, the toxic threshold value was between 0.135 g/m3 and 1.344 g/m3 of the active compound I.3.


The evaluation was made by the following standard:


*rating values:

    • 0=no attack
    • 1=attempted attack
    • 2=slight attack
    • 3=average attack
    • 4=strong attack


The results are shown in Table 5.

TABLE 5Quantity ofQuantity ofprotective agentConcentrationsolutionabsorbedResults of evaluationof protectabsorbedaveragesur-agent testedNo. ofper woodper woodquantityvivingSoldiers(S)in %woodsamplesampleabsorbedworkersor(m/m)samplein g/m3in g/m3in g/m3%nymphs (N)* rating1.44 × 10−5%117.750.1360.13555S/N4217.470.13451S/N4317.690.13658S/N41.44 × 10−4%417.751.3631.34401517.391.33601617.371.334011.44 × 10−3%717.5413.47113.46301817.5613.48601917.4913.432017.20 × 10−3%1017.2966.393668.211001118.0369.2352001217.9769.0048001.44 × 10−2%1317.79136.627136.627001417.72136.090001517.86137.16500control samples1617.720050—/N4diluent1718.15057S/N4(chloroform)1817.77048S/N4control samples)1900055S/N4untreated200062S/N4210064—/N4


Comparative values of W. Metzner et al in “Holz als Rohund Werkstoff,” 35 (1977) 233-237, table 10 on page 236.

TABLE 6toxic valueInsecticideg/m3DDT>1 500Dieldrin50Lindan75Ethylparathion200Phoxim400Chlorophoxim500Bassa500Propoxur140Carbaryl1 100

Claims
  • 1-6. (canceled)
  • 7. A method of protecting a technical material exposed to soil comprising applying to the soil, either before or after the technical material contacts the soil, a composition comprising an insecticidally effective amount of an insecticide having the formula (I)
  • 8. A method according to claim 7 wherein the insecticide having the formula (I) is 1-(6-chloro-3-pyridylmethyl)-2-nitroiminoimidazolidine.
  • 9. A method according to claim 7 additionally comprising a fungicidally effective amount of a fungicide.
  • 10. A method according to claim 9 wherein the fungicide is N-dichlorofluoromethylthio-N′,N′-dimethyl-N-phenyl sulfuric acid diamide, N-dichlorofluoromethylthio-N′,N′-dimethyl-N-p-toluylsulphamide, N-trichloromethylthiophthalimide, N-dichlorofluoromethylthiophthalimide, 3-iodo-2-propynyl-butylcarbamate, 3-iodo-tribromophenol, tetrachlorophenol, pentachlorophenol, 1-(4-chlorophenoxy)-3,3-dimethyl-1-(1H-1,2,4-triazol-1-yl)-2-butanone, β-1(4-chlorophenoxy)-α-(1,1 dimethylethyl)-1H-1,2,4-triazole-1-ethanol, ±α[2-(4-chlorophenyl ethyl]-α-(1,1-dimethylethyl)-1H-1,2,4-triazole-1-ethanol, 1-[2(2,4-dichlorophenyl) 4-propyl-1,3-dioxolan-1-yl-methyl]-1H-1,2,4-triazole, 1-[2(2,4-dichlorophenyl)-1,3-dioxolan-2-ylmethyl]-1H-1,2,4-triazole, (RS)-2(2,4-dichlorophenyl)-1-)1H-1,2,4-triazole-2-yl)-2-ol, 1-N-propyl-N-[2,4,6-trichlorophenoxy)ethyl]carbamoylimidazole, 2(2′-furyl)-1H-benzimidazole, methylbenzimidazol-2-ylcarbamate, 2(4′-thiazolyl) benzimidazole, methyl (1-butyl-carbamoyl)-2-benzimidazole carbamate, N-methylisothiazolin-3-one, 5-chloro-N-methylisothiazolin-3-one, 4,5-dichloro-N-octylisothiazolin-3-one, N-octylisothiazolin-3-one, C14-C11-4-alkyl-2,6-dimethymorpholine, 1-hydroxy-2-pyridinethione or a sodium, iron, manganese, or zinc salt thereof, tetrachloro-4-methylsulphonylpyridine, tris(N-cyclohexyldiaziniumdioxy) aluminum, bis(N-cyclohexyldiaziniumdioxy) copper, zinc naphthenate, copper salt of 8-hydroxyquinoline, 1,2,3,5-tetrachloro-4,6-cyanobenzene, N′-(3,4-dichlorophenyl)-N,N,-dimethylurea, boric acid, borax, a borate, methylenebisthiocyanate, 2-thiocycanomethylthiobenzothiazole, tributyl tin octoate, tributyl tin oleate, bistributyl tin oxide, tributyl tin naphthenate, tributyl tin phosphate, tributyl tin benzoate, or a combination thereof.
  • 11. A method according to claim 9 comprising applying to the soil a composition comprising (a) from about 10−6 to 30 parts by weight of the insecticide having the formula (I); and (b) from about 0.01 to about 90 parts by weight of the fungicide.
  • 12. A method according to claim 9 comprising applying to the soil a composition comprising (a) from about 0.0005 to 15 parts by weight of the insecticide having the formula (I); and (b) from about 0.05 to about 50 parts by weight of the fungicide.
  • 13. A method according to claim 9 comprising applying to the soil a composition comprising (a) from about 10−6 to 30 parts by weight of 1-(6-chloro-3-pyridylmethyl)-2-nitroiminoimidazolidine; and (b) from about 0.01 to about 90 parts by weight of ±α-[2-(4-chlorophenyl ethyl]-α-(1,1-dimethylethyl)-1H-1,2,4-triazole-1-ethanol.
  • 14. A method according to claim 9 comprising applying to the soil a composition comprising (a) from about 0.0005 to 15 parts by weight of 1-(6-chloro-3-pyridylmethyl)-2-nitroiminoimidazolidine; and (b) from about 0.05 to about 50 parts by weight of ±α-[2-(4-chlorophenyl ethyl]-α-(1,1-dimethylethyl)-1H-1,2,4-triazole-1-ethanol.
  • 15. A method according to claim 7 wherein the technical material is wood, a composite wood material, paper, leather, a leather product, a synthetic polymer, a natural polymer, a textile, or a combination thereof.
  • 16. A method according to claim 7 wherein the technical material is wood or a composite wood material.
Priority Claims (2)
Number Date Country Kind
HEI 3-125172 Apr 1991 JP national
HEI 3-350751 Dec 1991 JP national
Divisions (2)
Number Date Country
Parent 09886197 Jun 2001 US
Child 11146800 Jun 2005 US
Parent 08543351 Oct 1995 US
Child 09886197 Jun 2001 US
Continuations (1)
Number Date Country
Parent 07872279 Apr 1992 US
Child 08543351 Oct 1995 US