The present invention generally relates to power system application and simulation software, and more specifically to power system analysis and simulation software for large-scale wind farms. By considering the impact factor and contribution of each of hundreds of wind turbine-generator units, a device or simulation software can be developed to have similar behavior of the large-scale wind farm as seen by a power grid from the point of common coupling.
Large-scale wind farms may consist of different types of wind turbine-generator (WTG) units including fixed-speed, doubly-fed induction generator, and permanent magnet synchronous generators. By increasing the penetration of large-scale wind farms into power systems, various aggregation methods are proposed to model a large-scale wind farm with an equivalent system for steady-state and dynamic analyses. An aggregation method for modeling of a large-scale wind farm reduces the computational burden of steady-state and dynamic analysis. A suitable model should be computationally efficient and adequately accurate for steady-state and dynamic behavior of the system under different operating conditions. Such a model should be easily used in steady-state and dynamic analyses.
A wind farm aggregated model is a reduced order system or an equivalent WTG unit that describes the electrical behavior of the wind farm seen from the point of common coupling to the grid. Such a model radically reduces the computational burdens and complexity in power system analysis that includes wind farms with hundreds of wind turbine generator (WTG) units. Rapid increase of large-scale wind farm installations necessitates to develop aggregated models for power system analysis. However, there is a trade-off between the accuracy of the aggregated model and its complexity that determines the performance and accuracy of the wind farm equivalent models.
Full, Zone, and Semi Aggregation (Agg.) methods are conventionally proposed to model WTGs in a wind farm by one or a few equivalent WTG units. Full Agg. method per-unitizes a WTG unit using its rated power as a base and then simply changes the base power to the rating of wind farm to develop the Full Agg. model for wind farm. This method assumes that the operating points and parameters of all WTGs are the same and a uniform wind speed distribution throughout the wind farm. This assumption is not valid for a real wind farm and can cause inaccuracy in dynamic and steady state analyses.
Zone Agg. uses the concept of Full Agg. method, however, it partitions the wind farm into several zones (clusters) with respect to various wind speed. Wang et al in develop an advanced time series wind turbines clustering method, based on a geometric template matching, to improve the accuracy of the Zone Agg. method. Also, an aggregated turbine and network impedance model has been presented in, in which a new sequence impedance model is developed for resonance analysis of wind farms. Zone aggregation increases the equivalent model accuracy at the cost of higher complexity that makes the model computationally inefficient for large-scale wind farms. Semi Agg. method replaces the wind farm generators by a single per unitized generator, however, it keeps the mechanical parts of WTGs intact. Semi Agg. method provides a relatively accurate method, however, it is also inefficient for large-scale wind farms since it models mechanical parts of hundreds of WTGs in details. Thus, challenges in developing an aggregated model of wind farms include the different wind speed zones in a large wind farm and different parameters of WTGs in a wind farm. These challenges have not been adequately addressed in existing aggregation methods.
Full aggregation, Zone aggregation, and Semi aggregation methods are conventional methods to aggregate wind farms. The Full aggregation method replaces WTGs in a wind farm by one WTG with averaging the WTGs parameters and assuming similar wind speed inputs. However, different wind speed zones and/or various machine parameters significantly increase the inaccuracy of the Full aggregation method. The Zone aggregation method uses zoning of the wind farm by their wind speed inputs and then aggregates every zone with the Full aggregation method. This significantly increases the accuracy of the aggregated model at the cost of higher complexity of the model which can be inefficient for large-scale wind farms. The Semi aggregation method replaces wind farm generators by one generator with averaging the parameters of generators, however, it keeps the mechanical part of WTGs intact. The Semi aggregation method provides an accurate method; however, it is also inefficient in large-scale wind farms since it needs to model all mechanical parts of WTG in details.
Increasing the penetration of large-scale windfarms into the power systems, necessitates an aggregation method to model a large-scale windfarm with an equivalent system to reduce computational burden for steady-state and dynamic analyses. Large-scale windfarms may consist of different types of WTG including fixed-speed, Doubly-Fed Induction Generator (DFIG), and Permanent Magnet Synchronous Generator (PMSG).
Applying an equivalent aggregated model method to calculate a large-scale DFIG windfarm is challenging and time consuming. To model a large-scale DFIG windfarm by one or a few WTGs using the state-space model of WTGs, the parameters of the windfarm model are determined to fit the best in the proposed set of optimization equations. Although the resulted model can be accurate, involving all the state-space equations of a large-scale windfarm in a repetitive optimizing solution leads to a high computational burden. This computational burden increases by increasing the number of WTGs. Moreover, the model accuracy varies in different windfarm operating points. The Full Aggregation (Full Agg) method models the windfarm by one equivalent WTG assuming similar wind speed inputs and WTG parameters in per unit for all WTGs. Parameters of this equivalent WTG is obtained by averaging the WTGs parameters in per unit while the equivalent apparent power is the summation of the windfarm. However, different wind speed zones and/or various machine parameters significantly decrease the accuracy of the Full Agg model. Other methods divide the windfarm to few zones considering their wind speed inputs and aggregate every zone by the Full Agg method. It significantly improves the accuracy of the aggregated model by the cost of higher model complexity which can be inefficient for the large-scale wind farms. The Semi Agg method keeps the mechanical part of WTGs intact, but the windfarm electrical side (generators and converters) is replaced by a single generator and converter by averaging the parameters similar to the Full Agg method. Semi Agg method provides an accurate model, however, it is also inefficient in the large scale windfarms since it needs to model all mechanical parts of the WTGs in detail.
Accordingly, there is a need for an aggregated model of wind farms that is highly accurate while being efficient and low-cost for large-scale wind farms. More specifically, there is a need for an aggregation model that is capable of quantifying the contribution of each WTG in a large-scale wind farm.
The present invention provides a method of modeling an equivalent wind turbine generator (WTG) system for a wind farm having a plurality of WTG units. The method includes determining an impact factor of each WTG unit of the plurality of WTG units, determining an equivalent single WTG unit model parameters of the wind farm based on the impact factor of each WTG unit, and determining an effective wind speed of the wind farm to use as the equivalent WTG input wind speed. The method produces a model of static and/or dynamic wind farm behavior. Additionally, a software system is provided that is configured to execute an inventive method of modeling an equivalent wind turbine generator (WTG) system for a wind farm having a plurality of WTG units.
The present invention is further detailed with respect to the following drawings that are intended to show certain aspects of the present of invention, but should not be construed as limit on the practice of the invention, wherein:
The present invention has utility as a method for aggregately modeling a wind farm capable of quantifying the contribution of each WTG in a large-scale wind farm and as a power system simulation software for large-scale wind farms for considering the impact factor and contribution of each of hundreds of wind turbine-generator units making up the large-scale wind farm as seen by a power grid from the point of common coupling. The method of the present invention is highly accurate while being efficient and low-cost for large-scale wind farms.
The present invention provides an Impact Factor aggregation (I.F. Agg.) method that includes the contribution of each WTG unit, based on its parameters and operating point, within the equivalent model of wind farm. The method provides a computationally efficient model for a wind farm that significantly improves the accuracy compared with Full Agg. method. The reason is that I.F. Agg. method includes the effects of WTGs with different parameters and/or operating points. The inventive I.F. Agg. method analytically calculates the contribution of each WTG unit as a weight function in frequency domain. This technique allows one to determine the best set of equivalent model parameters to improve the model accuracy over the frequency range of interest. Most of existing methods develop and test the performance of their aggregated models mainly for fixed-speed wind farms to explain the main concept of the methods for the simplest wind farm configuration. Furthermore, the inventive method includes the effect of wind farm collector system in the equivalent model that is less considered and discussed in the other existing methods.
The present invention additionally provides a Weighted Dynamic (WD) model for a windfarm which has several advantages over the existing methods. In this method, the contribution of each WTG in the aggregated model is quantified which significantly increases the model accuracy compared to the Full Agg model. The derived set of aggregated dynamic equations results in a simpler modeling approach compared to equivalent admittance methods. Also, the windfarm equivalent WTG is obtained through a one-time calculation leading to a much lower computation burden compared to the optimization algorithms. Furthermore, the whole windfarm is modeled with a single WTG resulting in a simpler model compared to the Zone Agg and Semi Agg models. It is worth mentioning that the proposed equivalent turbine for the whole windfarm has not been clearly addressed in the existing literature which provides a simpler model and better insight regarding the system behavior.
The performance of the inventive method is evaluated based on the comparisons of a 4-WTGs DFIG windfarm and the obtained equivalent model. Moreover, a time-domain simulation of 20-WTGs DFIG windfarm with a variable wind speed curve is studied to verify the applicability of the proposed model in a more realistic scenario. Finally, a 4-WTGs fixed speed windfarm are studied to demonstrate the generality of the inventive method. Simulations results conducted under identical and unequal WTGs operating conditions demonstrate a superior or at least similar performance of the proposed method compared to the existing approaches. The inventive model results are compared with the Full Agg and Zone Agg models because the computational burden of these methods are the superior of the existing ones and comparable to the inventive method.
It is to be understood that in instances where a range of values are provided that the range is intended to encompass not only the end point values of the range but also intermediate values of the range as explicitly being included within the range and varying by the last significant figure of the range. By way of example, a recited range of from 1 to 4 is intended to include 1-2, 1-3, 2-4, 3-4, and 1-4.
According to embodiments, the software element can be used for both steady-state and dynamic analyses of power systems including large-scale wind farms. The system significantly reduces the computational burden of a computer and its memory usage for power system simulation by replacing a large-scale wind farm including hundreds of wind turbine-generator units with an equivalent functional model. Compared to the existing aggregated models, the inventive functional model according to embodiments of the present invention supports a wind farm with different wind speed zones. It also supports modeling of a wind farm with different ratings of wind turbine generator units
Embodiments of present invention utilize Impact Factors (I.F.) of a WTG in a wind farm to quantify the contribution of each WTG in an aggregation model. According to embodiments, the I.F. aggregation method uses the frequency response technique to find the best match between the aggregated model parameters and wind farm based on d-q reference frame model of the wind farm generators. Using the I.F. concept results in the model having least amount of error and simulation time overall compared to Full aggregation, Zone aggregation and Semi aggregation methods for both steady-state and transient analyses. According to embodiments, the performance of the method is evaluated based on time-domain simulation of fixed-speed wind farm including 80 WTGs. The time-domain investigation compares the simulation results for the aggregation of the wind farm by Full aggregation, Zone aggregation, Semi aggregation and I.F. aggregation methods under four different scenarios. These test scenarios cover the combinations of various wind speed inputs and different WTGs parameters in the wind farm test system.
Furthermore, the inventive method includes the effect of wind farm collector system in the equivalent model that is less considered and discussed in the other existing methods. According to embodiments of the I.F. Agg. method, a wind farm including 80 WTGs is fully modeled using MATLAB/SIMULINK software tool. The time domain dynamic and steady state behavior of this wind farm is obtained and used as a reference to evaluate and compare different aggregation methods. Various test scenarios are defined including a combination WTGs with similar/different parameters and a wind farm with uniform/nonuniform wind speed distributions. The present invention also defines a normalized index to quantify computational burden, and accuracy to present superior features of the inventive I.F. Agg. method compared with the other methods.
P
m
=C
p(λ,β)PW=Tmωr, Equation 1:
where PW=0.5ρπr2VW3 the wind power. The parameters ρ, r, and VW denote the air density, turbine radius, and the wind speed, respectively. Cp(λ,β) is the turbine coefficient that is a function of the pitch angle of the turbine blades, β, and the tip speed ratio, λ≙rωl/VW, where wl is the turbine shaft speed. Pm, Tm, and wr are the generator mechanical power, torque, and speed, respectively. For a given pitch angle, Cp can be estimated with a quadratic function as Equation 2.
where Cpm is the maximum of Cp that occurs at λ=λopt. The turbine coefficient in Equation 2 can be referred to generator shaft in Equation 3.
where the referred parameters are λ′=rwr/VW=Gλ and λ′opt=Gλopt, and G_=wr/wl is gear box turns ratio in a WTG. Using this notation, the steady-state model of WTG at the generator side is shown in Equation 4.
T
m
+T
e
=Dω
r/ωb, Equation 4:
where Te=(Xm2Rrs0Ve)/ΔTe is the generator electric torque, wb is the based frequency, D is mechanical damping coefficient, and ΔTe=[RsRr+s0(Xm2−XssXrr)]2+[RrXss+s0RsXrr]2.
Vs is the effective voltage at PCC, Rs and Rr are the stator and rotor resistances, and Xm is the magnetizing reactance, respectively. The slip of induction generator at the operating point is s0=(wb−wr)/wb and the machine reactances are Xss=Xm+Xls and Xrr=Xm+Xlr, where Xls and Xlr are leakage reactances of stator and rotor, respectively.
The schematics of equivalent system corresponding to Full Agg. method is depicted on
Two limitations of the Full Agg. model are ambiguities in the definition of mechanical parameters and modeling of real wind farms including machines with different ratings and various wind speeds within the zones. It has previously been proposed that the total mechanical power of the wind farm is calculated and applied to the equivalent generator without considering a model for wind turbine. The variable wind speed at different zones causes steady-state and dynamic errors when aggregated model for a large-scale wind farm is used. To mitigate the error of wind speed mismatch at different zone, the concept of equivalent effective wind speed of wind farm with unison WTGs is defined as Equation 5.
where VW is the wind speed that provides a power equals to the total power of wind farm.
Zone Agg. method partitions the wind farm into a few zones with respect to wind speed variations, and other operating point parameters of WTG units. Then, a Full Agg. model is associated to each zone to represent WTGs within the zone with an equivalent system as shown in
To further improve the aggregated model accuracy, Semi Agg. method is proposed, in which the wind farm generators are represented with a single per unitized generator similar to the one in Full Agg. method. However, the wind turbines are individually modeled to calculate mechanical torque separately, as depicted on
The inventive I.F. Agg. method quantifies the impact of each WTG within a wind farm to develop a more accurate equivalent system for the wind farm. This method introduces an equivalent WTG unit for the wind farm and determines its parameters based on weighted average of the WTGs within the farm. The weighting function is defined as the incremental ratio of WTG current to the wind farm current at PCC.
The weighted averaging technique can be analytically realized in frequency domain that needs the full model of WTG to be linearized about its operating point. Then, the technique will be used for WTG models in frequency domain to obtain the equivalent model parameters. An advantage of using I.F. Agg. method is that it can also define an equivalent RC model for the collector system of the wind farm. It will be shown that the weighted averaging technique significantly improves the accuracy of aggregation model while it remains computationally efficient and addresses the limitation of existing methods.
The first step of I.F. method needs to determine the operating point of WTG units. Based on Equation 1, the input mechanical power corresponding to the k-th WTG unit is
where the subscript “0” signifies quantities at the operating point. For the sake of brevity, subscript k is removed within the rest this section till it is needed for merging the equations. The rated slip of high power induction generators is small (e.g. −0.005 for MW-scale generators), therefore, the mechanical speed of generator shaft can be approximated as rr0=wb/p where p is the number of pole pair of generator in a WTG. As the dynamic of pitch control system is slow compared with the power system dynamics, the pitch angle β0 can be assumed constant corresponding to a fixed wind speed. Thus, Pm0 is given as Pm0=Cp(λ′0)PW0 where λ′0≅rwb/(p·VW). Hence, to obtain the slop at WTG operating point, the per unitized Pm0 and wr0=1−s0 can be substituted in Equation 4 and solved it for so.
The next step in I.F. Agg. method is to obtain the impact factors of WTGs that are used for weighted averaging of machine parameters to obtain an equivalent WTG for the wind farm. This averaging can be appropriately performed in frequency domain to cover the frequency range of interest for power system studies. The linearized mechanical model of an squirrel cage induction generator is shown in Equation 6.
For a WTG and based on Equations 1-3, one obtains Equation 7.
where Δλ′=rΔWr/VW0. Solving Equation 7 for ΔTm yields Equation 8.
The linearized voltage equations of the machine in frequency domain are shown in Equations 9-12.
Solving Equations 11 and 12 for Δiqr and Δidr and substituting the solutions in Equations 9 and 10 yield Equations 13 and 14.
Δvqs=αq(jω)Δiqs+βq(jω)Δids, Equation 13:
Δvds=αd(jω)Δiqs+βd(jω)Δids, Equation 14:
Finally, by solving Equation 14 for Δids and substituting the solution in Equation 13, Δvqsk for the k-th unit can be expressed in terms of two transfer functions Kk(jw) and Gk(jw) as given by Equation 15.
Δvqs
where
K
k(jω)=αq
G
k(jω)=βq
The WTG units are connected in parallel through a collector system that is often design for negligible power losses (e.g. less than 2%) at rated power of wind farm. Thus, to develop equivalent system of a wind farm including n WTGs, it can be assumed that vqsk≅vqs and vdsk≅vds for k=1, 2, . . . , n where vqs and vds are dq-components of the wind farm at the point of common coupling. Thus, by applying summation over k=1, 2, . . . , n in Equation 15, the wind farm model in frequency domain can be expressed as Equation 16.
The impact factor is defined as uk≙Δiqsk/Δiqs at w=0, i.e. the dc gain of incremental current ratios since w=0 in dq frame corresponding to the fundamental frequency of the generator in time domain. Then, Equation 16 can be expressed as Equation 17.
Finally, by updating the base apparent power to the rating of wind farm, i.e. SWF=nSWTG, Equation 17 can be rearranged in wind farm per unit system as Equation 18.
Δvqs=K′(jω)Δiqs+G′(jω)Δvds, Equation 18:
Based on Equation 18, the frequency domain model of wind farm is formulated similar to a single unit WTG as given in Equation 15. The schematic diagram of the equivalent circuit for this model is shown in
An equivalent collector system and shunt capacitors can be defined with equivalent RC and CC as shown in
Using
where Vsk is the effective voltage at the terminal of the k-th WTG unit. The equivalent capacitor CC is obtained based on reactive power balance, as given by Equation 20.
Considering a low loss collector system, Vsk≅Vs for k=1, 2, . . . , n. Thus, Equation 20 yields Equation 21.
To determine the parameters of equivalent wind turbine for a wind farm, assuming PW=Σk=1nPW
where A=Σk=1nAk is the equivalent surface of all WTGs. Thus, the equivalent radius, r, and wind speed, VW, can be expressed as Equation 23.
The equivalent mechanical power, Pm=Σk=1nPm
Therefore, equivalent Cpm and λ′opt in Equation 3 can be obtained from the simultaneous solutions of Equation 24 and Equation 25. Finally, λopt and gear-box ratio, G, for the equivalent wind turbine generator can be defined based on weighted average of λoptk with respect to radii rk for k=1, 2, . . . , n as Equation 26.
Next, the performance and accuracy of the inventive I.F. Agg. method in comparison with Full, Zone, and Semi Agg. methods are compared using a fixed speed wind farm study system. According to embodiments, the system includes 80 WTG units as shown in
Furthermore, the simulation time of the 80-WTG wind farm is considered as the reference to compare the computational efficiency of different methods. Two types of generators with different parameters and ratings (Types I and II) are used in four different test scenarios A, B, C, and D, in which WTGs can have various wind speeds. The parameters of wind turbine generators Type I and II are listed in Table I and the details of test scenarios are as follows:
These four scenarios cover all events that can occur for a wind farm including different machine types and various wind speeds. The tests start at t0=3 s by applying a small signal disturbance, that is a limited 3-phase connection to ground via resistances Rf=0.09 pu at PCC for 3 cycles. After removing this small signal disturbance, the wind farm operating point will be back to its prior operating point at t=3−.
To investigate the performance and accuracy of the aggregation methods the Total Normalized Simulation Time and Error (TNSTE) criterion is defined and used to evaluate the proposed and existing methods. TNSTE consists of three main components as:
TNSTE is defined as the summation of these three normalized components as Equation 29.
TNSTE=STE+ess+eTrans. Equation 29:
The study system is simulated in MATLAB/SIMULINK software tool and the test results for active power following the small disturbance are depicted in
The last conclusion is expected since in scenarios (b) and (d) the wind speed is different in four zones, thus, the Zone Agg. method that uses four equivalent WTGs corresponding to each zone provides better matching with reference in terms of active power. However, it will be shown in the next analysis (
To further evaluating the performance and accuracy of the methods, simulation results are also studied for reactive power, current, and voltage of the wind farm and the results are compared based on TNSTE index as elaborated in Equations 27 to 29.
The overall test results in
Based on a newly defined impact factor of WTG units within a wind farm, this paper presents a systematic analytical method to develop an aggregated system for large-scale fixed-speed wind farms. The aggregated model is established based on linearized dq dynamic model of WTG in frequency domain. It also encompasses an equivalent circuit for the collector system of the wind farm that significantly improves the accuracy of the model specially in terms of reactive power balance. Conventional aggregation methods become highly inaccurate when the wind speed at different zones of a large-scale wind farm are unequal. The advantage of the proposed impact factor method is to improve the accuracy of the aggregated model by considering the contribution of each WTG in the equivalent system based on its operating point current. A study system including 80 WTG units is used for performance evaluation and verification of the method. The test results of the different test scenarios show the superior performance and accuracy of the proposed impact factor aggregation method specially for large-scale wind farms with different wind speed zones.
Furthermore, Xq and Xd in Equations 9-12 are:
αq,d and βq,d in Equations 13 and 14 are:
The incremental speed is Δwr=C(jw)Δiqs, and C(jw) is:
Virtual Synchronous Machine (VSM) is an inverter connected to the grid which is controlled by a new control method. This new control method helps the inverter acts similar to a synchronous generator in aspect of delivering active and reactive power to the grid. Therefore, VSM contributes to the frequency stability of the grid by an virtual inertia provided in the control loop. Conventional VSM control approach use a fixed value for virtual inertia. But more advanced control techniques change the virtual inertia value accordingly to achieve desired behavior. But changing just one parameter of synchronous machine will result in moving the operation point from the nominal point. Moreover, it may move the system eigenvalues away from the realistic values. To prevent the following issues extra control loops and protection should be added to the system.
Impact Factor Aggregation method obtains the equivalent d-q model of the wind farm by considering the contribution of each wind turbine generator (WTG) in the model, and use these equation to control an inverter to act like a wind farm. By changing of the operation point, the virtual wind farm will be modeled by connecting or disconnecting of some WTGs while the remaining connected WTGs working near to their operation point. This method resolve the issues mentioned above automatically and let the system work without extra protection.
To calculate virtual wind farm parameters, every parameter obtained by electrical impact factors in per unit. For example, the calculated Xrr can be obtained by Xrr[pu]=Σm=1nurmXrrm[pu], and the base apparent power is obtained as Sb=Σj=1nSbj.
The electrical torque of induction machine can be found by Equation 35.
Steady-state stator d-q currents are shown by Equations 36 and 37.
where Aq0, Bq0, Ad0 and Bd0 are shown by Equation 38.
Second-order equation of s0 is
where α2, α1 and α0 are shown by Equation 39.
α2=DRr+vs2, α1=2DRr+vs2, α0=DRr−PmRr Equation 39:
Mechanical linearized equation of induction machine is shown by Equation 40.
ΔTm=Xmidr0Δiqs−Xmiqr0Δids−Xmids0Δiqr+Xmiqs0Δidr−2HpΔωr Equation 40:
The resulted four electrical linearized equations by reducing Δwr from d-q equations of Equations 41-44.
Δvqs=Aqs(jω)Δiqs+Bqs(jω)Δids+Cqs(jω)Δiqr+Dqs(jω)Δidr Equation 41:
Δvds=Ads(jω)Δiqs+Bds(jω)Δids+Cds(jω)Δiqr+Dds(jω)Δidr Equation 42:
Δvqr=Aqr(jω)Δiqs+Bqr(jω)Δids+Cqr(jω)Δiqr+Dqr(jω)Δidr Equation 43:
Δvdr=Adr(jω)Δiqs+Bdr(jω)Δids+Cdr(jω)Δiqr+Ddr(jω)Δidr Equation 44:
Where Aqs(jw), Bqs(jw), Cqs(jw), . . . are shown by Equation 45.
The resulted two d-q linearized equation by reducing rotor and mechanical linearized equations is shown by Equation 46.
Δvqs=αq(jω)Δiqs+βq(jω)Δids, Δvds=αd(jω)Δiqs+βd(jω)Δids Equation 46:
where αq(jw), βq(jw), αd(jw) and βd(jw) are shown by Equation 47.
Therefore the electrical impact factors can be found using Equation 48.
Relation between Δwr and Δiqs is Δwr=C(jw) Δiqs, where C(jw) is shown by Equation 50.
Therefore, the mechanical impact factors can be found as Equation 52.
Equivalent system mechanical relations are shown using Equations 53 and 54.
λ′opt
Other required equations are:
A large number of WTGs use induction generators with the stator directly connected to the grid. Due to the wide wind speed range, such induction machines operate at high slip away from their nominal speed. The high slip results in high rotor loss, low efficiency and heated rotor in WTGs with a squirrel cage rotor limiting the operating speed range and output power. Hence, the WTGs with a squirrel cage rotor that can efficiently operate close to the nominal speed are called fixed-speed WTGs. To expand the speed range of such induction machines, the rotor can be connect to the grid through an AC/DC/AC variable frequency converter forming a DFIG shown in
P
m
=T
mωm=½Cp(λ,β)ρAVW3, Equation 62:
where wm is the mechanical speed of generator. The mechanical power is related to wind power by turbine coefficient Cp(λ, β). This factor depends on the structure of the wind turbine. β is the blade angle, λ=rwl=VW, Cp(λ, β) expressed by Equation 63, VW is wind speed, ρ is air density, A is area covered by the blades, r is blades radius and wl is blades rotational speed.
While another control system can be applied, the present invention uses DFIG control approach, as shown in
K
opt=½ρπr5Cpmax/λopt3, Equation 64:
and G is the gear-box ratio. The T*e signal is also used to form the rotor q-axis reference current i*qr for the RSC current controllers by Equation 65.
where p is the number of machine poles, Lm is the magnetizing inductance, Ls is the stator self inductance and |ψs| is stator linkage flux and estimated with
where Vs is the rms value of the stator voltage and ws is the synchronous speed. Also, the rotor d-axis reference current i*dr is set to zero to use all of the RSC capacity for active power delivery from the rotor windings as the required reactive power for the induction machine is provided by the GSC. It is worth mentioning that, the generality of the inventive method is not limited by the i*dr set value.
To find the dynamic model of the wind farm, a small-signal model of the WTG and windfarm should be derived. Small signal model of a WTG requires the steady-state calculations at the operating condition. The steady-state electro-mechanical relationship between the mechanical side and electrical side of a WTG are expressed as Equation 66.
T
m
+T
e
=Dω
m. Equation 66:
Te is the electrical torque and D is the mechanical damping of the induction machine. The steady state speed, wm0, can be found with the assumption that the control system is stable so that T*e=Te under the steady-state and by substituting Equation 62 and T*e=Koptw2m into Equation 66 and solving it for wm. Therefore, all other DFIG steady-state parameters can be expressed using Equation 67.
A squirrel cage induction machine Te
Next, the windfarm equivalent electrical side (generator and control system) and mechanical part (the equivalent turbine) separately.
Each WTG has a set of small-signal equations which form d and q axis circuits shown in
Therefore, to find the interaction of the windfarm with the grid and its equivalent model, the differential equation relating {tilde over (ι)}dqs and vdqs should be derived. Therefore, first the WTG mechanical small-signal equation for {tilde over (w)}m is derived as a function of {tilde over (ι)}dqr and {tilde over (ι)}dqs. Then, the WTG small-signal equations is used to derive {tilde over (ι)}dqr as a function of {tilde over (ι)}dqs and {tilde over (v)}dqs. Finally, applying the resulted equations to the stator small signal equations, {tilde over (ι)}qs can be found as a function of {tilde over (v)}dqs.
As PW=½Cp(λ,β)ρZVW3 is constant, Equation 62 is linearized as Equation 69.
{tilde over (P)}
m
={tilde over (T)}
mωm
where β is constant by Equation 70.
Considering Equation 70 and solving Equation 69 for {tilde over (T)}m yields Equation 71.
The mechanical linearized equation of the induction machine can be expressed as Equation 72.
Now by substituting Equation 71 into Equation 72 {tilde over (w)}m can be found in terms of {tilde over (ι)}dqs and {tilde over (ι)}dqr. Assuming a very fast controller results in T*e=Te and {tilde over (ι)}*dqr={tilde over (ι)}dqr, and substituting Equation 71 in the linearized controller equation of Equation 65 yields Equation 73.
{tilde over (ι)}qr can be found as a function of only {tilde over (ι)}dqs because {tilde over (w)}m is as function of {tilde over (ι)}dqs and {tilde over (ι)}dqr, while {tilde over (ι)}dr=0 as i*dr=0. Therefore, the stator linearized equations can be derived as Equation 74.
which yields Equation 75.
{tilde over (v)}
ds=αddĩds+αdqĩqs
{tilde over (v)}
qs=αqdĩds+αqqĩqs, Equation 75:
where αdd, αdq, αqd and αqq are a function of both WTG and calculated steady-state parameters. Replacing
with jw, the frequency response of αdd, αdq, αqd and αqq can be found for an arbitrary w. The final frequency response occurs at w=0. Thus, using αdd, αdq, αqd and αqq at w=0, the desired {tilde over (v)}dqs, {tilde over (ι)}dqs can be found. To find the same set of equations for a fixed-speed WTG the same steps can be followed by considering {tilde over (v)}dqr=0 due to its squirrel cage rotor structure. Finally, rewriting Equation 75 for {tilde over (ι)}dqs yields Equation 76.
ĩ
ds
=y
dd
{tilde over (v)}
ds
+y
dq
{tilde over (v)}
qs
ĩ
qs
=y
qd
{tilde over (v)}
ds
+y
qq
{tilde over (v)}
qs, Equation 76:
where details of yddqq is given in Equation 89 below.
Considering Equation 76 for individual WTGs, the contribution of each WTG to the windfarm current injection to the grid can be found. The inventive method determines the equivalent WTG parameters by the weighted average of WTGs parameters, where these weights are determined by the contribution of each WTG injected current to the grid. As
ĩ′
ds=(ydd cos2(δ0)+ydd sin2(δ0)−(ydq+yqd)sin(δ0)cos(δ0)){tilde over (v)}′ds
ĩ′
qs=(yqd cos2(δ0)−ydq sin2(δ0)+(ydd−yqq)sin(δ0)cos(δ0)){tilde over (v)}′ds, Equation 77:
where δ0 is the phase difference between the two d-q reference frames as shown in the
The equivalent machine and control parameters can be found by the weighted average of the windfarm parameters in per unit while the equivalent apparent power of the equivalent WTG is the summation of the windfarm WTGs apparent powers. For example, the equivalent Lmeq can be achieved as Equation 79.
Note that the control parameters can also be per unitized by their equations. For example, Kp unit is [V/A] and is similar to an impedance.
To find an equivalent turbine and the equivalent wind speed, a few facts should be considered. First, the area which is covered by the equivalent turbine should be equal to the summation of the area that is covered by the al the WTGs in the windfarm combined, as shown by Equation 80.
Second, the amount of wind power in the area is independent of windfarm structure, yielding Equation 81.
Third, the equivalent mechanical power Pm generated by the equivalent turbine should also be equal to the summation of windfarm generated mechanical power per Equation 82.
To have more realistic situation one can assume Te
It should be noted that any speed ratio Geqpeq between the mechanical and electrical side can be used as long as Equation 82 is satisfied and it will not limit the generality of the method. To find
Equation 66 can be used similar to the steady state derivation by considering Equation 84.
Finally, considering and Kopt
It is worth nothing that Equation 88 below can also be found for a fixed-speed windfarm by following the same steps that led to Equation 85 equivalent turbine equations for a DFIG windfarm. Solving Equation 85 and Equation 88 yields equivalent turbine λopt
A 4-WTGs DFIG windfarm shown in
In 4-WTGs DFIG simulations, a 0.2 pu voltage sag is applied at t=3 s and is cleared at t=5 s. To study the transients responses, two scenarios (A,B) are considered where the WTGs have similar and unequal parameters. Similarly, for fixed-speed windfarm simulations, the voltage sag is considered to start at t=ls and end at t=2 s. To compare and verify the proposed method, all windfarms are aggregated with the Full Agg, Zone Agg and the proposed WD Agg methods. A simple small windfarm is chosen for the first two scenarios to simplify the comparison between the inventive equivalent WTG and other existing methods. Moreover, 20-WTGs large scale windfarm is chosen as the third scenario to verify the generality and applicability of the inventive method in real life cases. All scenarios are simulated by MATLABnSimulink 2019b.
Scenario A: 4-WTGs DFIG Windfarm with Equal Parameters. When all WTGs parameters are equal, all voltage nodes have similar dynamic equations. Hence, the nodes can be connected to each other which put similar components of the WTGs in parallel. For example, the Lmeq for an accurate equivalent model will be Lml//Lml// : : : //Lmn. The same rule applies to Ls, Rs and CDC. Table II shows the calculated equivalent parameters for the mentioned components in all methods. Table II results verify the accuracy of WD method in existing methods assumption because the equivalent impedances are following the rule as mentioned. Also, controller parameters like Kp and Ki which have impedance unit type have ¼ value of the detailed system. It seems they are behaving similar to the real impedance components in parallel. The same justification is true for the control parameter Kopt and turbine shaft parameter D which have admittance unit type in WD Agg. Therefore, Table II results also verify the accuracy of aggregating controller and turbine parameters in per unit with WD method.
Scenario B: 4-WTGs DFIG Windfarm with Unequal Parameters. Turbine shadow effect and different rated powers for WTGs are considered in this scenario. It should be noted that by different apparent power for WTGs, other parameters are also different in per unit as shown in Table V.
err=∫
t=t
t=t
(|Fdetailed−Fmodel|)dt, Equation 86:
where F can be any voltage, current or other response curves. This error index is calculated for phase A current, active and reactive power curves in all methods between t0=2 to t1=10 and normalized by the minimum error which was WD in all cases. The results are illustrated in the Table III. It can be observed that WD model is at least 3 times more accurate in all scenarios while it has half of the complexity compared to the Zone Agg model.
Scenario C: Large-Scale 20-WTGs DFIG Windfarm. A large-scale windfarm including 20 DFIG WTGs with variable wind speed curve is also studied for all aggregation methods. The system specification is shown in the Table VI.
Scenario D: 4-WTGs Fixed-Speed Windfarm. Fixed-speed windfarms are getting obsolete due to their limited operating range, high power loss and the need for a static reactive power compensation. However, they are still functional in the existing energy system and play a considerable role in the power system dynamic behavior. Therefore, the inventive model for the fixed-speed induction machine based windfarms is studied. The parameters of the simulation for fixed-speed windfarm with a similar configuration in
Using machine d-q equations, the present invention provides a systematic and simple method to model large-scale induction machine based windfarms by one WTG. This equivalent WTG d-q model is obtained by quantifying the contribution of each WTG to the windfarm using Weighted Dynamics (WD). Performance of the inventive model is evaluated through simulating and studying a 4-WTGs and a large-scale 20WTGs windfarms in four different scenarios of various wind speeds and WTGs parameters. It is shown that the error of the inventive WD Agg method is at least 2 times less than Full Agg and Zone Agg models. Also, presenting a single equivalent WTG through a one-time simple calculations, results in significantly less computational burden and model complexity compared to equivalent admittance, optimization methods and Semi. Agg models. It is shown that the inventive WD Agg method is adequately accurate in both transients and steady-state responses and it can be readily used for modeling large-scale windfarms to reduce the overall computational burden of the system.
The DFIG controller parameters are designed by Equation 87.
The set of equations to find the equivalent turbine parameters for a fixed-speed windfarm are shown in Equation 88.
Equation 76 coefficients ydd, ydq, yqd and yqq can be found by Equation 89.
y
dd=αqq/Δy, ydq=−αdq/Δyyqd=−αqd/Δy
y
qq=αdd/Δy, where: Δy=αddαqq−αdqαqd. Equation 89:
The grid voltage vs=690 [v], grid frequency f=50 [Hz], DC-Link voltage VDC=1500 [v] and switching frequency fsw=4 [kHz] for the A, B and C scenarios. The rest of Scenario A, B and C parameters can be found in Tables IV, V and VI respectively. The grid voltage vs=575 [v] and grid frequency f=60 [Hz] for the Scenario D. The rest of Scenario D parameters can be found in Table VII.
While at least one exemplary embodiment has been presented in the foregoing description and attached appendix, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the described embodiments in any way. Rather, the foregoing description and incorporated references will provide those skilled in the art with a convenient roadmap for implementing the exemplary embodiment or exemplary embodiments. It should be understood that various changes may be made in the function and arrangement of elements without departing from the scope as set forth in the appended claims and the legal equivalents thereof.
This application claims priority benefit of U.S. Provisional Application Ser. No. 62/862,816 filed on Jun. 18, 2019, the contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
62862816 | Jun 2019 | US |