This disclosure relates generally to the field of use of mobile devices for situational awareness applications, such as ultra-violet (UV) radiation sensing. Specifically, the disclosure relates to aggregating UV sensing data from multiple mobile devices to produce accurate UV exposure measurement and/or other related contextual information.
With global warming, dwindling ozone levels, and increasing radiation from the Sun reaching the earth, the dangers of UV exposure are on the rise. It is well known that while moderate amount of UV exposure is beneficial (as UV radiation helps in production of vitamin D, melanin etc.), overexposure to UV radiation can potentially cause health problems, starting from erythema, i.e., redness of skin, indicating skin damage, to severe health hazards, such as skin cancer, genetic mutations etc. Medical data shows that skin cancer caused by UV from sunlight is one of the prevalent forms of cancer in the United States and worldwide. In addition to posing health hazard to human beings and other living things (e.g. animals, plants), overexposure to UV may cause damages to equipment/gadgets as well, or at least cause them to malfunction when used or kept outdoors. Therefore, there is a clear need for UV exposure meters which gather UV exposure data from UV sensors coupled to the exposure meters.
Various commercial UV sensors are available currently. A popular form of UV exposure meter comprises sensors mounted on wearable accessories, such as wrist/arm bands, watches, belts, jewelry, clothing etc. Smartphone/mobile device accessories, such as, add-on device jackets with UV sensors, have also been introduced recently. These accessories communicate UV measurement data to mobile devices like smartphones, tablets, notebooks, laptops etc. for further processing of data and/or displaying the results to the user.
As mobile devices like smartphones, tablets, notebooks etc. become the device of choice not just for communications, entertainment, data consumption, electronic commerce etc., but also for health and fitness monitoring, it makes sense to integrate local sensors for detection of UV radiation into the mobile devices functionally and/or structurally. An objective of the present disclosure is to provide ways to quantify UV radiation exposure level and/or provide appropriate notifications. Some existing references, such as U.S. Pat. No. 7,526,280, entitled “Service implementing method and apparatus based on an ultraviolet index in a mobile terminal,” focus on using smartphones for UV detection service, but do not provide any detail of how measurement accuracy can be enhanced by utilizing and aggregating distributed data from multiple mobile terminals, each having their own respective UV sensing components.
The present application discloses devices, systems and methods for establishing and utilizing a UV sensing network to harness the efficacy of distributed UV sensing to produce improved accuracy of UV exposure measurement using mobile devices. Individual mobile devices with UV sensors may be constrained by device orientation and or other factors, such as whether the device is indoors/outdoors/partially occluded from the UV radiation source that can affect the sensitivity and accuracy of UV data measurement. This problem can be largely obviated by aggregating data from multiple UV sensors coupled to multiple mobile devices connected through a UV sensing network. This collaborative UV measurement scheme may be accomplished by “crowd-sourcing.” The collaboration can be implemented in many potential ways, such as, using a server based architecture where devices connect to a specific UV measurements server to provide measurements and receive aggregate estimated exposure levels, and/or by using a peer-to-peer architecture, where devices in a specific region creates a local ad-hoc UV sensing network.
These and other aspects of the present disclosure will now be described by way of example with reference to the detailed disclosure and the accompanying figures.
In the description that follows, like components have been given the same reference numerals, regardless of whether they are shown in different embodiments. To illustrate an embodiment(s) of the present disclosure in a clear and concise manner, the drawings may not necessarily be to scale and certain features may be shown in somewhat schematic form. Features that are described and/or illustrated with respect to one embodiment may be used in the same way or in a similar way in one or more other embodiments and/or in combination with or instead of the features of the other embodiments.
Since mobile devices are carried by users for communication, entertainment, computing, information gathering, electronic transaction or other purposes anyway, additional functional integration, such as UV sensing to the existing mobile electronic devices makes sense as an alternative to having to carry a separate gadget only for UV-sensing.
It is to be noted that UV detection with mobile devices would be most effective when the sensors are exposed to the environment in which the UV radiation is being measured. If a user is indoors, UV detection may not be very essential except for reflected UV. Even when the user himself/herself is outdoors, if the mobile device is inside a pocket, purse or other enclosure, then local measurement by an individual mobile device may not be able to provide accurate data. When an enclosure is detected (for example, by comparing actual readings to what is expected based on the time of day and/or historical data at or near the detected location, or by estimating visible light received) a mobile device may be enabled to find alternative data sources.
The alternative data source may be a server that can be accessed via internet or other networks. The alternative data source may also comprise UV sensors detected nearby, such as other UV accessories worn by the user (watch, wrist/arm/neck/head sensors, etc.) or another person nearby, or other mobile devices carried by other persons within a finite distance. In other words, multiple devices communicating with each other may constitute a UV sensing network so that more accurate UV measurement can be performed by aggregating data from other devices within the network and processing collective UV data. Data transmission between devices may occur over wireless or wired connectors such as Bluetooth, Zigbee, WiFi, cables etc.
For communicating with other in-network mobile devices with UV sensors, a communication module in each mobile device may include an UV interface which comprises transceiver, transponder, modulation/demodulation, and memory circuitry, configured to wirelessly communicate and transmit/receive information, via signal at the appropriate wavelength, upon establishing an UV network communication link. Moreover, though not discussed in detail here, persons skilled in the art will appreciate, in view of the present disclosure, that upon establishing the communication link, UV interface may initiate launching of UV data processing management logic/application which facilitates the ultimate goal of delivering accurate UV measurement data and other contextual information/alerts to users.
By “crowd sourcing” UV measurements from multiple users and devices in a collaborative manner, the sensitivity to specific device constraints, such as, orientation of the UV sensor with respect to the UV source, and, exposure of the UV sensor (i.e., whether the device is indoors/outdoors/partially occluded etc.) to the UV source, can be reduced to a perceptible extent. Moreover, distributed UV sensing makes it possible to harvest UV energy from multiple mobile devices using specialized photovoltaic cells/sensors that can provide corollary benefits, such as, charging the device battery pack. The corollary functionalities can be performed while indicating UV specific exposure levels, or even when the UV sensing functionality is not being used.
These and other features and characteristics, as well as the methods of operation and functions of the related elements of structure and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following description and the appended claims with reference to the accompanying drawings, all of which form a part of this specification, wherein like reference numerals designate corresponding parts in the various figures. It is to be expressly understood, however, that the drawings are for the purpose of illustration and description only and are not intended as a definition of the limits of claims. As used in the specification and in the claims, the singular form of “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise.
In the embodiment depicted in
Device 104 may be coupled to a server 108 via a network 106. For example, device 104 and one of the servers 108 may be communicatively coupled through bi-directional communication channels A and B shown in
Persons skilled in the art will appreciate in view of the present disclosure that an important aspect regarding UV exposure may not just be the exposure to current/instantaneous UV radiation levels, but an overall (integrative) radiation level over a specific temporal window, and the device 104 and/or server 108 may have integration modules (though not specifically shown in
Taking into account the overall solution architecture chosen, the aggregate UV exposure information relevant to each region can be reported back to the devices in multiple ways. For examples, each device may advertise its self-measurement and/or an aggregate measurement it has computed locally based on advertisements of other devices in a P2P configuration. The aggregate UV exposure information may also be reported back as a response form the server providing best estimated current UV exposure levels relevant to the device as calculated based on its reported location and/or other information, in a client/server configuration.
The ‘broadcast’ message from a server/device may comprise some sort of alert message when overexposure is detected, or can just be informational, i.e. indicating the level of exposure. Broadcast message can also take several forms. For example, cellular network broadcast messages might be tower specific, tower group specific, network location area specific, etc. Broadcast on a side-band channel of an existing public broadcast service, such as TV, Radio (e.g. similar to traffic alert) is another possibility. Depending on the specific need/configuration, the broadcast message may be with or without extra location-relevant information. Broadcast message can also is delivered as a web feed, e.g. part of the services provided by a weather channel.
An application or platform middleware may be an effective way for combining the UV exposure measurements with relevant contextual information to generate “alerts” or present information in a user-friendly manner. The application or middleware should be integrated at the individual device level.
In certain example configurations, UV sensing components, such as photodiodes may be integrated with a core SoC included in the internal circuitry of a mobile device. Placing photodiodes only on the SoC may be an economic solution, because standard semiconductor manufacturing techniques may be used to integrate the photodiodes with the SoC, though it may pose constraints on design of the housing, because the SoC needs to be aligned to a transparent window, or internal optical components may be necessary to direct light onto the photodiode integrated with the SoC. Also footprint of the SoC itself becomes larger.
In some embodiments, the SoC may be part of a core processing or computing unit of UV-sensing-enabled electronic device 104, and is configured to receive and process input data and instructions, provide output and/or control other components of device 104 in accordance with embodiments of the present disclosure. Such a SoC is referred to as core SoC. The SoC may include a microprocessor, a memory controller, a memory and other components. The microprocessor may further include a cache memory (e.g., SRAM), which along with the memory of the SoC may be part of a memory hierarchy to store instructions and data. The microprocessor may also include one or more logic modules such as a field programmable gate array (FPGA) or other logic array. Communication between the SoC microprocessor and memory may be facilitated by the memory controller (or chipset), which may also facilitate communication with other peripheral components. The advantage of putting photodiode in the core SoC itself is that UV data processing can be accomplished locally at the core SoC at a very fast speed. Alternatively, the photodiode may be part of a separate chip, which communicates with core SoC.
As understood by persons skilled in the art, the UV data processing functionality can be easily integrated with the computational and storage (memory) elements already existing in a smart mobile device. The memory of UV-sensing-enabled electronic device 104 may be a dynamic storage device coupled to the bus infrastructure and configured to store information, instructions, and programs, to be executed by processors of the SoC and/or other processors (or controllers) associated with device 104. Some of all of memory may be implemented as Dual In-line Memory Modules (DIMMs), and may be one or more of the following types of memory: Static random access memory (SRAM), Burst SRAM or SynchBurst SRAM (BSRAM), Dynamic random access memory (DRAM), Fast Page Mode DRAM (FPM DRAM), Enhanced DRAM (EDRAM), Extended Data Output RAM (EDO RAM), Extended Data Output DRAM (EDO DRAM), Burst Extended Data Output DRAM (BEDO DRAM), Enhanced DRAM (EDRAM), synchronous DRAM (SDRAM), JEDECSRAM, PCIOO SDRAM, Double Data Rate SDRAM (DDR SDRAM), Enhanced SDRAM (ESDRAM), SyncLink DRAM (SLDRAM), Direct Rambus DRAM (DRDRAM), Ferroelectric RAM (FRAM), or any other type of memory device. Device 104 may also include read only memory (ROM) and/or other static storage devices coupled to the bus infrastructure and configured to store static information and instructions for processors of SoC and/or other processors (or controllers) associated with device 104.
Communication module 316 includes wireless interface 317 which may comprise transceiver, transponder, modulation/demodulation, and memory circuitry, configured to wirelessly communicate and transmit/receive information, via the generated RF signal, upon establishing a wireless communication link with sensor 102. Moreover, upon establishing the communication link, interface 317 may initiate the launching of UV measurement management logic/application 325 which facilitates processing of UV data and/or presenting the measurement results (and other contextual information) to the user.
Quantified results are presented to the user on the display screen 304. A warning message may also be displayed if unsafe exposure levels are determined. Persons skilled in the art will appreciate that the quantified results may be presented in graphical form (e.g., color bars/histograms etc. with or without numerical data) in a user-friendly manner. For example, overexposure may be indicated as ‘red’, when safe exposure may be indicated as ‘green’, while intermediate color codes indicating various levels of exposure so that the user may make an informed decision.
It will be apparent to those skilled in the art after reading this detailed disclosure that the foregoing detailed disclosure is intended to be presented by way of example only and is not limiting. For example, though the disclosure often mentions health monitoring as the illustrative area of application, UV sensors and associated circuitry discussed herein may be applicable in others areas, including, but not limited to, security, forensics, astronomy, pest control, sanitary compliance, air/water purification, authentication, chemical markers, fire detection, reading illegible papyri and manuscripts, etc. Having local UV radiation measurement/awareness can be utilized as input to build smart buildings, smart cars etc. For example, if excess UV radiation level is detected, ‘smart windows’ in smart buildings and/or smart cars may be activated automatically to improve overall wellness of the occupants. This may be done by activating a UV-absorbing screen/shade.
Various alterations, improvements, and modifications of the systems and embodiments may occur and are intended for those skilled in the art, though not expressly stated herein. These alterations, improvements, and modifications are intended to be suggested by this disclosure, and are within the spirit and scope of the exemplary aspects of this disclosure.
Moreover, certain terminology has been used to describe embodiments of the present disclosure. For example, the terms “one embodiment,” “an embodiment,” and/or “some embodiments” mean that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present disclosure. Therefore, it is emphasized and should be appreciated that two or more references to “an embodiment” or “one embodiment” or “an alternative embodiment” in various portions of this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures or characteristics may be combined as suitable in one or more embodiments of the present disclosure. In addition, the term “logic” is representative of hardware, firmware, software (or any combination thereof) to perform one or more functions. For instance, examples of “hardware” include, but are not limited to, an integrated circuit, a finite state machine, or even combinatorial logic. The integrated circuit may take the form of a processor such as a microprocessor, an application specific integrated circuit, a digital signal processor, a micro-controller, or the like.
Furthermore, the recited order of method, processing elements, or sequences, or the use of numbers, letters, or other designations therefore, is not intended to limit the claimed, processes and methods to any order except as can be specified in the claims. Although the above disclosure discusses through various examples what is currently considered to be a variety of useful aspects of the disclosure, it is to be understood that such detail is solely for that purpose, and that the appended claims are not limited to the disclosed aspects, but, on the contrary, are intended to cover modifications and equivalent arrangements that are within the spirit and scope of the disclosed aspects.
Similarly, it should be appreciated that in the foregoing description of embodiments of the present disclosure, various features are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure aiding in the understanding of one or more of the various inventive aspects. This method of disclosure, however, is not to be interpreted as reflecting an intention that the claimed subject matter requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the appended claims are hereby expressly incorporated into this detailed description.