Referring now to the drawings, and more specifically to
Pivot apparatus 14 provides a central point about which irrigation system 10 rotates in a circular or circular segment manner. Pivot apparatus 14 additionally has a swivelable pipe system for the delivery of water to water delivery pipes 16. Water travels through delivery pipe 16 in a pressurized manner to nozzles 18 for the expulsion of the water therethrough onto the field below. Nozzles 18 may project the water some distance or basically direct it down upon the crop canopy. Pipe supports 20 typically include rigid structures attached to pipe 16, which are then further supported by cables that traverse the length of each pipe 16 and may be attached to frames 12.
Elongate transport structure 22 is connected to irrigation system 10 along the length thereof. Elongate transport structure 22 may be rigidly supported along pipe 16 or attached to irrigation system 10 in a number of ways. Field robot 24 travels along elongate transport structure 22, which is in the form of a track in the embodiment shown in
Field robot 24 includes a conveyance device 26 for conveying field robot 24 in longitudinal directions 28 along track 22. A power supply positioned therein (not visible) drives conveyance device 26 and powers electrical circuitry within field robot 24. The power supply may be in the form of one or more batteries that may be periodically recharged along track 22. Track 22 may include power charging stations therealong or may supply constant power to field robot 24 along the length thereof. Additionally, an optional solar panel (not shown) may be electrically connected to field robot 24 to provide at least a portion of the power consumed by field robot 24 by way of solar radiation received thereon.
Field robot 24 also includes a displacement apparatus 30 that moves field robot 24 in generally vertical directions 32 along generally vertical rail 34, perpendicular to longitudinal directions 28. Displacement apparatus 30 allows field robot 24 to be lowered beneath the plant canopy to perform a selected sensing or work operation, as will be described below.
Field robot 24 further includes an inboard arm 36, outboard arm 38, and an implement 40. Inboard arm 36 is rotatably coupled with displacement apparatus 30, as indicated by double headed arrow 42. Outboard arm 38 is rotatably coupled with inboard arm 36, as indicated by double headed arrow 44. Of course, the particular configuration and length of arms 36 and/or 38 may vary, depending upon the application.
Implement 40 is coupled with the outboard end of outboard arm 38. Implement 40 is shown in dashed lines in
Field robot 24 may also have all implements constantly on-board. However, due to weight, space, cost, or power constraints, it may be necessary to only have a subset of all implements on field robot 24. Unused implements 40 stored at implement caddy 50 are exchanged by field robot 24 as needed. This type of automatic tool changing is well known for factory robots (e.g., see http://www.ristec.com/define-tc.htm).
Each implement 40 is configured as a tool or a sensor. For example, when configured as a tool, each implement 40 can be a soil probe, a plant sampler, or a clamp-on plant pressure sensor. When configured as a sensor, each implement can be, e.g., a crop sensor, a soil sensor, a weather sensor, an imaging device, or a plant bio-sensor.
Field robot 24 also includes a wireless communication link 52 (with only the antenna being visible in
A field robot 24 which is part of a larger field management system including a “back office computer”; pivot speed; water and chemical application rate controllers; and a long range wireless communications link (or less beneficial a USB memory stick style device) has some key benefits.
A mission or sequence of commands may be received by field robot 24 from a remotely located human or the back office computer. The mission may be one of several forms with varying degrees of local autonomy. That is, if certain conditions or met, actions may be taken without further communication from a back office computer or a human. On the other hand, data may be sent to a remote location for analysis and generation of a new mission without any actions being initiated locally.
When used as part of an irrigation control system, field robot 24 can be used to capture crop, soil, and weather information with spatial and temporal resolution that would be too expensive to gather manually. This information, when used with crop and soil models, can be used to generate irrigation prescriptions much more accurately than is currently within economic reach. When irrigation system 10 moves to a new location, field robot 24 can take the following measurements at multiple locations along the irrigation pipe:
Camera images to show any obvious moisture stress;
Soil moisture probes to measure soil moisture at various depths;
Temperature, humidity, sun, and wind ate various heights to more accurately model evapotransiration;
Light sensors and camera images to evaluate vegetative mass, canopy closure, etc.; and/or
Clamp on pressure sensors for measuring stomata closure in response to drought stress.
For nutrient management, an implement 40 in the form of a chlorophyll fluorescence meter such as one made by Hansatech http://www.hansatech-instruments.com/ can provide nutrient deficiency information useful in site-specific chemigation. Alternately, electronic sensors such as NIR for organic matter, soil conductivity, or “mobile wet lab” analysis could be performed.
For horticulture crops, vineyards, and orchards, an implement 40 in the form of a camera providing camera image data can be used to better estimate crop yield, quality, and maturity as color changes occur during ripening (e.g., http://www.ee.byu.edu/roboticvision/linear/papers/Color_Space.pdf#search='image% 20processing%20apple%20maturity'http://www.lib.ksu.edu/depts/issa/china/icets2000/c/c2.pdf#search='image%20processing%20apple%20maturity'; and http://www.gisdevelopment.net/application/agriculture/vield/agrivy0001e.htm). Insect and disease problems may be measured visually using camera image data for possible chemical application.
An implement 40 may also be in the form of a plant bio-sensor using nanotechnology and MEMs technology developments (e.g., see http://en.wikipedia.org/wiki/Biosensor). These can detect spores and other substances associated with pests and diseases long before crops have visual symptoms. Other examples include http://eet.com/news/latest/showArticle.jhtml?articleID=174403473. Earlier detection and treatment of pests and disease are often more effective than a later start to treatment. Similarly, these technologies may drive down the cost and increase the accuracy of soil nutrient sensing. Nutrient data can impact chemical application rates.
If a problem is observed on the crop, an implement 40 in the form of a clipper and grabber can obtain a plant sample and transport it to the central pivot for convenient pick-up by a human. Similarly, soil samples could be collected where problems are observed and transported to the center pivot. A road typically leads from the center pivot to a public road. This is much easier and less labor intensive than driving to a field and then having a human walk through crop to find the spot and collect the sample.
Field robot 24 may also have localization so that data can be georeferenced. GPS is one method. Determining the angle of the pipe relative to north and a distance (landmark, odometry, etc.) of field robot 24 from the center is another method. Other localization methods are known in the art.
During operation, field robot 24 moves along an agricultural elongate transport structure 22 carried by center pivot irrigation system 10 or on an uppermost member of a plant support trellis such as found in vineyards, tomato fields, and orchards (
Field robot 24 provides valuable information relative to nozzle operation, robotic operations, monitoring of the soil conditions, crop health, staging of the crop, insect identification, disease identification, information relative to scheduled scans of the crop, production of crop images, varied amounts of information specific to directed targets in the field, atmospheric information, infrared canopy scanning, information relative to pollination of the crop, information relative to stomata closure and other items critical to the growing of plants.
The agricultural automation system of the present invention using field robot 24 reduces labor costs through reduction in human field scouting to get the same or higher resolution of field data. Faster cycle times result since the data is communicated automatically by wireless communication rather than through a human intermediary. Richer data resources at the back office allow the field data to be combined with other data, such as weather history and forecasts, from other sources using algorithms and models that learn and improve over time. Lower system deployment and maintenance costs result from the centralized software with centralized data back-up and archiving, security, processing, etc., which in turn results in lower unit hardware, software, and maintenance costs in the field. More effective water and chemical application result from treatment plans derived from higher resolution, more timely data.
Having described the preferred embodiment, it will become apparent that various modifications can be made without departing from the scope of the invention as defined in the accompanying claims.