The present invention relates to agricultural implements, and, more particularly, to tillage implements.
Turnbuckles can be used in agricultural implements to adjust lift wheels for a variety of conditions. As is known, a turnbuckle usually consists of a frame with a pair of threaded openings and threaded pins threaded into the threaded openings. One of the threaded openings and associated threaded pins have a left-hand thread and the other threaded opening and associated threaded pin have a right-hand thread, so rotation of the frame causes both of the threaded pins to advance into their respective threaded openings or both threaded pins to advance out of their respective threaded openings. The tension between elements connected to the turnbuckle by the threaded pins can thus be adjusted by rotating the frame. In the case of a tillage implement, adjusting the tension between the elements can adjust the fore-to-aft leveling of the implement.
During operation of the implement, the frame of the turnbuckle can turn when it is loaded if the frame is not locked into position and cause unwanted changes to the fore-to-aft leveling and soil penetration depth of the shanks. A common locking device is a jam nut that is tightened onto the face of the frame by rotating the jam nut on threads of the threaded pins, with the friction from the jam nut on the face preventing rotation of the frame and undesired adjustment of the soil penetration depth. On larger turnbuckles which require greater locking forces, this requires a large jam nut which must be engaged by a correspondingly large wrench, which a user must carry in order to adjust the turnbuckle. If the user forgets or loses the wrench, the turnbuckle cannot be easily unlocked for adjustment or preparing the implement for high-speed travel. Alternatively, the implement can have the large wrench as a built-in element, but this increases the complexity of the implement.
What is needed in the art is a more convenient way to lock the turnbuckle of an agricultural implement.
The present invention provides an agricultural implement with a latch that pivots about a fulcrum carried above a turnbuckle frame and has a notch formed therein which prevents substantial rotation of the frame when engaged with a non-circular region of the frame.
The invention in one form is directed to an agricultural implement including a chassis; a linkage carried by the chassis; a turnbuckle connected to the linkage and having a frame which includes a threaded hole formed therein and a non-circular region; and a latch pivotable about a fulcrum carried above the frame, the latch having a notch formed therein which is shaped to prevent substantial rotation of the frame when engaged with the non-circular region of the frame.
The invention in another form is directed to a turnbuckle assembly including a frame having a threaded hole and a non-circular region; a threaded pin threaded into the threaded hole; and a latch pivotable about a fulcrum which is held above the frame, the latch having a notch formed therein which is shaped to prevent substantial rotation of the frame when engaged with the non-circular region of said frame.
An advantage of the present invention is the notch of the latch can be pivoted into engagement with the non-circular region of the frame to conveniently prevent substantial rotation of the frame.
Another advantage is the notch of the latch can be pivoted out of engagement with the non-circular region of the frame to conveniently allow adjustment of the turnbuckle.
Yet another advantage is the latch does not add a substantial amount of weight or complexity to the implement.
Yet another advantage is the location of the center of gravity of the latch can be adjusted so the notch of the latch can engage the non-circular region of the turnbuckle frame when the turnbuckle moves vertically.
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate embodiments of the invention and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Referring now to the drawings, and more particularly to
Referring now to
Referring specifically now to
As shown in
During use of the implement 10, the rocker linkage 27, which can be pivotably connected to the turnbuckle 18, can move vertically to adjust the lift wheels 16. To vertically adjust the lift wheels 16, the rocker linkage 27 can be connected to a cylinder or other actuator (not shown) which will extend and retract to cause the linkage 27 to move and cause a corresponding raising or lowering of the lift arm 15 and lift wheels 16. As the turnbuckle 18 is linked to the rocker linkage 27, this movement will also cause the turnbuckle 18 to vertically move. Since the latch 36 is pivotable about the fulcrum 38, which is above the frame 26 of the turnbuckle 18, controlling the location of the center of gravity of the latch 36, which is affected by the mass distribution of the latch 36, can assist in keeping the latch 36 in position so the notch 44 stays engaged with the non-circular region 46 of the frame 26 even when the turnbuckle 18 moves vertically with the rocker linkage 27. Similarly, there may be instances when a user will want to disengage the notch 44 from the non-circular region 46 of the frame 26 in order to rotate the frame 26 and adjust the angular position of the lift arm 15 and lift wheels 16 relative to the pivoting tube 17. To allow this, the latch 36 can have the notch 44 formed in a first longitudinal end 48 of the latch 36 while an opposite longitudinal end 50 of the latch 36 is un-notched, i.e., cannot engage the non-circular region 46 to prevent rotation of the frame 26. This allows the latch 36 to have two positions: a locking position where the notch 44 is placed adjacent to the non-circular region 46 to engage the non-circular region 46 and prevent substantial rotation; and a rotating position where the un-notched longitudinal end 50 is adjacent to the non-circular region 46 and the notch 44 cannot engage the non-circular region 46 to prevent rotation of the frame 26.
The latch 36 and fulcrum 38 can be arranged so a first region 52 of the latch 36, defined on a first side 54 of the fulcrum 38, includes the notched longitudinal end 48 and the un-notched longitudinal end 50 is included in a second region 56 of the latch 36 which is on a second side 58 of the fulcrum 38 opposite the first side 54. As the user will generally want the latch 36 biased toward the locking position when the implement 10 is traveling, the first region 52 of the latch 36 can have a greater mass than the second region 56 of the latch 36, so the center of gravity of the latch 36 is located in the first region 52 below the fulcrum 38 and biases the latch 36 toward locking engagement with the non-circular region 46 regardless of the relative vertical position of the frame 26 of the turnbuckle 18. By placing the center of gravity in the first region 52 of the latch 36 below the fulcrum 38, the notch 44 tends to stay tipped toward the non-circular region 46 even if the relative vertical spacing between the fulcrum 38 and the non-circular region 46 changes, such as when the turnbuckle 18 is moved by the rocker linkage 27, allowing the latch 36 to keep the turnbuckle 18 locked if the relative vertical position of the frame 26 changes. While forming the notch 44 in the first region 52 of the latch 36 requires removing material of the latch 36, making the first region 52 of the latch 36 have a greater mass than the second region 56 of the latch 36 is relatively simple and can be accomplished in a variety of ways. For example, a length L1 of the first region 52 can be greater than a length L2 of the second region 56, assuming the thickness and density of the material forming the two regions is similar. Further, a mass-reducing cutout 60 can be formed in the second region 56 to reduce the mass of material of the second region 56. It should be appreciated that such ways to make the mass of the first region 52 greater than the second region 56 are exemplary only and many other techniques can be utilized, such as adjusting the material density and/or thickness of the first region 52 compared to the second region 56.
To flip the latch 36 from the locking position, shown in
While this invention has been described with respect to at least one embodiment, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2843408 | Stukenborg | Jul 1958 | A |
2878043 | Edman et al. | Mar 1959 | A |
2878044 | Estes | Mar 1959 | A |
3081116 | Weiner et al. | Mar 1963 | A |
3803926 | Winter | Apr 1974 | A |
3825283 | Hansen | Jul 1974 | A |
4194757 | Lucas et al. | Mar 1980 | A |
4778194 | Koch et al. | Oct 1988 | A |
5156482 | Owings | Oct 1992 | A |
6056069 | Hagen et al. | May 2000 | A |
6609575 | Crabb | Aug 2003 | B1 |
7048071 | Huenink et al. | May 2006 | B1 |
8851199 | Sauermann | Oct 2014 | B2 |
9155238 | Sauermann | Oct 2015 | B2 |
9179590 | Heitlinger et al. | Nov 2015 | B2 |
9221313 | Heitlinger et al. | Dec 2015 | B2 |
20060127166 | Huenink et al. | Jun 2006 | A1 |
20150129259 | Sudbrink et al. | May 2015 | A1 |
Number | Date | Country |
---|---|---|
601981 | May 1948 | GB |
Number | Date | Country | |
---|---|---|---|
20170318729 A1 | Nov 2017 | US |