Agricultural inter-row mowing device

Information

  • Patent Grant
  • 11083134
  • Patent Number
    11,083,134
  • Date Filed
    Friday, November 16, 2018
    6 years ago
  • Date Issued
    Tuesday, August 10, 2021
    3 years ago
Abstract
An agricultural mowing device includes a shaft, a first cutting device, and a second cutting device. The shaft has an upper section, a middle section, and a lower section. The shaft is advanced in a field between two adjacent rows of planted matter. The first cutting device is mounted to the lower section of the shaft. The first cutting device extends laterally from the shaft to a distance covering only a distance between the two adjacent rows. The first cutting device cuts plant matter that grows between the two adjacent rows. The second cutting device is mounted to the middle section of the shaft. The second cutting device extends laterally from the shaft to a distance covering at least a portion of at least one of the two adjacent rows. The second cutting device cuts plant matter that grows in the at least one of the two adjacent rows.
Description
FIELD OF THE INVENTION

The present invention relates generally to agricultural equipment and, more particularly, to a mowing device with an inter-row cutting unit for mowing between adjacent crop rows in a field containing a planted crop.


SUMMARY OF THE INVENTION

According to some implementations of the present disclosure, a mowing device attaches to a tractor to allow mowing between rows of planted crops, such as corn or soybeans, in an agricultural field, and optionally delivering weed-control and other substances.


According to some implementations of the present disclosure, an agricultural mowing device for controlling plants in a planted field includes a shaft, a first cutting device, and a second cutting device. The shaft has an upper section, a middle section, and a lower section. The shaft is advanced in a field between two adjacent rows of planted matter. The first cutting device is mounted to the lower section of the shaft. The first cutting device extends laterally from the shaft to a distance covering only a distance between the two adjacent rows. The first cutting device cuts plant matter that grows between the two adjacent rows. The second cutting device is mounted to the middle section of the shaft. The second cutting device extends laterally from the shaft to a distance covering at least a portion of at least one of the two adjacent rows. The second cutting device cuts plant matter that grows in the at least one of the two adjacent rows.


According to some implementations of the present disclosure, an agricultural system includes a mounting frame for attachment to an agricultural vehicle and a plurality of agricultural mowing devices for controlling plants in a planted field. At least one of the agricultural mowing devices is positionable between two adjacent rows of planted matter. The at least one of the agricultural mowing devices includes a shaft, a first cutting device, a second cutting device, and a mounting assembly. The shaft has an upper section, a middle section, and a lower section. The first cutting device is mounted to the lower section of the shaft and extending laterally from the shaft to a first distance covering only the space between the two adjacent rows. The second cutting device is mounted to the middle section of the shaft and extending laterally from the shaft to a distance covering at least a portion of at least one of the two adjacent rows. The mounting assembly is mounted to the upper section of the shaft for attachment to the mounting frame.


The foregoing and additional aspects and implementations of the present disclosure will be apparent to those of ordinary skill in the art in view of the detailed description of various embodiments and/or implementations, which is made with reference to the drawings, a brief description of which is provided next.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention may best be understood by reference to the following description taken in conjunction with the accompanying drawings.



FIG. 1 is a perspective view illustrating an organic device with a single weed-control unit and a single motor.



FIG. 2 is a perspective view illustrating an agricultural system with multiple weed-control units driven by a single motor.



FIG. 3 is a side view illustrating an agricultural system with an agricultural vehicle attached to a weed-control unit having a single motor and a front gauge wheel.



FIG. 4 is a rear view illustrating height adjustment of weed-control units.



FIG. 5 is a perspective view illustrating weed-control units with front and rear gauge wheels.



FIG. 6 is a rear view illustrating pivoting movement of weed-control units.



FIG. 7 is a perspective view illustrating spring-loaded weed-control units with front and rear gauge wheels.



FIG. 8 is a top view illustrating single weed-control units with respective motors.



FIG. 9 is a rear view illustrating pivoting movement of weed-control units with a spring-loaded element.



FIG. 10 is a top perspective view illustrating an agricultural mowing device.



FIG. 11 is a bottom perspective view of the agricultural mowing device shown in FIG. 10.



FIG. 12 is an enlarged side elevation view of the agricultural mowing device shown in FIG. 10.



FIG. 13 is a sectional view taken along a longitudinal section taken along a longitudinal plane extending through the center of the agricultural mowing device shown in FIG. 10.



FIG. 14 is an end elevation taken from the front end of the agricultural mowing device shown in FIG. 10.



FIG. 15 is an enlarged section taken along line 15-15 in FIG. 12.



FIG. 16 is an enlarged section taken along line 16-16 in FIG. 12 with the mowing device turned upside down.



FIG. 17 is an enlarged perspective view taken from the bottom of the mowing blades in the agricultural mowing device shown in FIG. 10.



FIG. 18 is a top view of the agricultural mowing device shown in FIG. 10.



FIG. 19A is an enlarged perspective view illustrating two pairs of mowing blades in the agricultural mowing device shown in FIG. 10.



FIG. 19B is an enlarged perspective view illustrating one pair of mowing blades in the agricultural mowing device shown in FIG. 10 in a first orientation.



FIG. 19C is an enlarged perspective view illustrating one pair of mowing blades in the agricultural mowing device shown in FIG. 10 in a second orientation.



FIG. 19D is an enlarged perspective view illustrating one pair of mowing blades in the agricultural mowing device shown in FIG. 10 in a third orientation.



FIG. 20 illustrates a mower attached to a front end of a high-clearance sprayer type vehicle.



FIG. 21 is a side elevation view illustrating an agricultural mowing device with a primary weed-control unit and a secondary weed control unit.



FIG. 22 is a front elevation view illustrating the agricultural mowing device shown in FIG. 21.



FIG. 23 is a top perspective view illustrating the agricultural mowing device shown in FIG. 21.



FIG. 24 is a bottom perspective view illustrating the agricultural mowing device shown in FIG. 21.



FIG. 25A illustrates a front elevation view of the agricultural mowing device shown in FIG. 21 prior to mowing a set of plant matter.



FIG. 25B illustrates a front elevation view of the agricultural mowing device shown in FIG. 21 after mowing a set of plant matter.



FIG. 26 is a bottom view illustrating the agricultural mowing device shown in FIG. 21 attached to a mounting frame.



FIG. 27 is a side elevation view illustrating an agricultural mowing system with a plurality of agricultural mowing devices shown in FIG. 21.



FIG. 28 is a rear elevation view illustrating the agricultural mowing system shown in FIG. 27.



FIG. 29 is a bottom view illustrating the agricultural mowing system shown in FIG. 27.





While the present disclosure is susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and will be described in detail herein. It should be understood, however, that the present disclosure is not intended to be limited to the particular forms disclosed. Rather, the present disclosure is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the present disclosure as defined by the appended claims.


DETAILED DESCRIPTION OF ILLUSTRATED EMBODIMENTS

Although the invention will be described in connection with certain preferred embodiments, it will be understood that the invention is not limited to those particular embodiments. On the contrary, the invention is intended to cover all alternatives, modifications, and equivalent arrangements as may be included within the spirit and scope of the invention as defined by the appended claims.


Turning now to the drawings and referring initially to FIG. 1, an organic device 100 is attachable to an agricultural towing vehicle, e.g., a tractor, for mowing and/or spraying weeds located between rows in a field of planted matter (e.g., crops). The device 100 includes a vertically adjustable shaft 102 that is attached, at an upper end 104, to the towing vehicle via an attachment link 106 and, at a lower end 108, to a weed-control unit 110. The weed-control unit 110 includes a dedicated motor 112 and a rotatable cutting blade 114. By way of example, the motor 112 is a hydraulic or electric motor. The device 100 further includes a sprayer input with one or more sprayer input tubes 116 that are coupled to an end of the weed-control unit 110 for delivering weed-control and/or other substances.


The device 100 is advanced between adjacent rows of planted matter, such as a left row 120 and a right row 122 of plants 124 in a field 126. As the device 100 is advanced, it mows growing weeds 128 with the cutting blade 114 to clear a reduced or weed-free path 130 between the rows 120, 122. In addition to, or instead of, the mowing achieved by the cutting blade 114, the device 100 further outputs one or more weed-control substances from the sprayer input tubes 116. The weed-control substance is helpful in reducing and/or preventing the reappearance of weeds in the path 130.


Referring to FIG. 2, an agricultural system 200 includes multiple organic devices 202 driven by a single motor 204. The organic devices 202 include a left device 202A, a center device 202B, and a right device 202C, with each device having a respective shaft 206. In this example, the shaft 206 has a fixed height, with all the devices 202 having the same height.


The motor 204 is mounted to an upper end of the shaft 206 of the center device 202B. In turn, each upper end of the left and right devices 202A, 202C is coupled via a respective rotating belt or chain 208 to the center device 202B. As such, the single motor 204 drives all the devices 202 simultaneously, and is located in the center of the device so that the edges can be located as close to the planted crop as possible.


Referring to FIG. 3, an agricultural system 300 has an agricultural vehicle 302 that is attached to an organic device 304 via a frame linkage 306. The device 304 has a weed-control unit 305, a single motor 308, and a front gauge wheel 310. As the device 304 advances in a direction D along a field 312, growing weeds 314 are mowed and/or treated with weed-control substances to achieve a generally weed-free or reduced-weed path 316 between the rows of planted matter 318.


Referring to FIG. 4, an agricultural system 400 has a plurality of organic devices 402 with respective weed-control units 404 and shafts 406. The shafts 406 are adjustable, having an H range of positions, in accordance with a weed height present in the field. As applicable, the devices 402 are generally similar (but not necessarily identical) to and include one or more components of the devices 100, 202, and 304 described above and illustrated in FIGS. 1-3.


Referring to FIG. 5, an agricultural system 500 has a plurality of organic devices 502 with respective weed-control units 504. Each device 502 has a pair of gauge wheels that includes a front gauge wheel 506 and a rear gauge wheel 508. The gauge wheels 506, 508 are mounted to a shaft 510 via a gauge frame 512.


Referring to FIG. 6, an agricultural system 600 has a plurality of pivotable organic devices 602 with respective weed-control units 604 and motors 605. The weed-control units 604 are attached to lower ends of respective shafts 606, which include an outer protective shield 608 and an internal substance-insertion tube 609. The shafts 606 are independently pivotable at various angles, such as angles A1 and A2, with each shaft 606 pivoting between respective rows 610-613 of plants 614. For example, a left shaft 606A pivots at an angle A2 between a first row 610 and a second row 611, while a center shaft 606B simultaneously pivots at an angle A1 between the second row 611 and a third row 612.


The pivoting feature allows the devices 602 to be spaced across rows at distances that are not necessarily the same width. For example, a right shaft 606C is spaced away from the center shaft 606B at a width W1 that is greater than the space by which the left shaft 606A is spaced away from the center shaft 606B (at a smaller width W2).


Referring to FIG. 7, an agricultural system 700 has a plurality of organic devices 702 with respective weed-control units 704. Each organic device 702 has a shaft 706 with a spring-loaded element 708 at a lower end that is attached to the weed-control unit 704. The spring-loaded element 708 allows automatic adjustment of the weed-control unit 704 when passing over uneven terrain or weeds. The weed-control units 704 further include a pair of front and rear gauge wheels 710, 712.


Referring to FIG. 8, an agricultural system 800 has a plurality of organic devices 802 with respective motors 804. The devices 802 have cutting blades 806 that are independently powered, respectively, by the motors 804.


Referring to FIG. 9, an agricultural system 900 has a plurality of pivotable organic devices 902 with respective weed-control units 904 and motors 905. The weed-control units 904 are attached to lower ends of respective shafts 906, which are independently pivotable at various angles (such as angles A1 and A2). A spring-loaded element 907 is mounted at the lower end of each shaft 906 to allow self-adjustment of the weed-control unit 904 over uneven terrain or weeds. As the agricultural system 900 is advanced, it mows down growing weeds 910-913 to clear reduced or weed-free paths between adjacent rows of planted matter.


The pivoting motion of the devices 902 is achieved, in part, by a top bearing element 903 and/or a bottom bearing element 908. The bottom bearing element 908, which is at a fixed distance from the top bearing element 903, allows the weed-control unit 904 to float parallel to the ground (in response to the weight of the weed-control unit 904). The height of the weed-control unit 904 is optionally maintained at a desired height via gauge wheels. Alternatively, according to another example, the height of the weed-control unit 904 is maintained via a motor drive unit mounted inside the shaft 906 or inside the bottom bearing element 908.


While features illustrated in FIGS. 1-9 are combinable in a single embodiment, FIGS. 10-18 illustrate a modified mowing device 1100 that includes a 4-bar linkage 1110 for attaching a cutting device 1112 to a tractor by a mounting assembly 1102. As best shown in FIGS. 10-11, a vertical pivot pin 1104 in the mounting assembly 1102 permits the 4-bar linkage 1110, and thus the cutting device, to be pivoted horizontally relative to the tractor. Two pairs of horizontal pivot pins 1103a and 1103b at opposite ends of the 4-bar linkage 1110 permit that linkage to be pivoted vertically relative to the mounting assembly 1102. A hydraulic cylinder 1108 connected between the mounting assembly 1102 and the 4-bar linkage 1110 applies a controllable down pressure on the 4-bar linkage 1110 and thus on the cutting device 1112.


Referring to FIGS. 10-14, the cutting device 1112 includes a housing that is supported between a skid 1126 on the front and a rear wheel 1120 that is able to be adjusted up and down with a height adjustment assembly 1118 that is one part of the height setting of the blade assemblies 1137. The housing contains a shaft 1136 that carries four pairs of blade assemblies 1137 for cutting off weeds or other material at a level just slightly above the ground surface, in the area between adjacent rows of a planted crop, without cutting the crop plants. The shaft 1136 that carries the blade assemblies 1137 is driven by a motor 1114 mounted on the outside surface of one of the side walls of the housing. The side walls are pivoted on the lower front ends of rods 1138 and 1139 that also support the front portion of the top wall 1132 of the housing, which is narrow enough to fit between adjacent rows of a planted crop. The pivoted mounting of the housing permits the tapered front wall of the housing to float upwardly over obstacles, and the front skid 1126 and the rear wheel 1120 enable the device 1112 to float over the surfaces of such obstacles. The tapered front end of the housing allows it to run in canopied crops.


The blade assemblies 1137 preferably include flail blades 1134 to deal with relatively heavy grass or scrub, particularly where contact with loose debris may be possible. As depicted in FIGS. 15 and 16, adjacent pairs of the flail blades 1134 in the blade assemblies 1137 are staggered with respect to each other to provide a complete cut. The flail blades 1134 are shaped like a “T” or “Y.” If a flail blade strikes an immovable object, it simply bounces off,


The cutting device 1112 has a front shield 1122 with a top wall 1132 that helps guide the mower assembly in turns because the skid 1126 does not turn in reference to the main assembly 1112. The rods 1138 and 1139 that support the front shield 1122 are connected to the cutting device 1112 via pivot points 1130, which allows the shield to move up and down with the ground, and pushes the planted crop (e.g., corn, beans and other crops) away from the mower.


As best shown in FIG. 15, the flail blades 1134 are driven by a motor 1114 connected to a shaft 1144 which turns an upper pulley 1148, and a belt or chain 1152 within a shield 1154 turns a tiller blade pulley 1156 that is connected to a tiller blade shaft 1136. The motor 1114 may be a hydraulic or electric motor, or could be replaced with a PTO driveshaft or a ground drive.


This blade shaft 1136 has pivot bolts 1158 mounted on it with cutting blades 1134 that pivot around the bolts, this allows the cutting blades 1134 to hit a weed, for example, and grab the weed and move at a different speed than the shaft 1136.


As best shown in FIG. 16, the material cut by the flail blades 1134 is discharged rearwardly into a rear discharge area 1140 where a deflector 1142 guides the mowed clippings to both of the adjacent rows of planted crop, to provide sun coverage and/or to decompose and feed both rows of planted crop. This covers the roots of the crop plants to provide shade and additional weed control within the planted rows. Referring to FIGS. 17-18, the cutting device 1112 further includes a sprayer input 1172 with one or more sprayer input tubes 1170 that are coupled to an end in the cutting device 1112 for delivering weed-control and/or other substances 1174.


Referring to FIGS. 19A-D, each blade assembly 1137 has two pairs of flailing cutters 1134 mounted on opposite ends of the blade assembly 1137. The other portions of each pair of flailing cutters are bent away from each other. The inner end portions of the cutters have elongated apertures through which fastening bolts 1161 pass to attach the cutters between a pair of an elliptical plate 1162 attached to a driven shaft 1158. Thus, the rotating shaft 1158 rotates each pair of cutters 1134 in a vertical circular path, so that the bent portions pass repeatedly over the surface of the soil. The side edges of the bent portions of the cutters thus slice the stems and leaves of any weeds or other material in the area between adjacent rows of the planted crop.


A flail mower is a type of powered garden/agricultural equipment, which is used to deal with heavier grass/scrub which a normal lawn mower could not cope with. Some smaller models are self-powered, but many are PTO driven implements, which can attach to the three-point hitches found on the rear of most tractors. This type of mower is best used to provide a rough cut to taller grass where contact with loose debris may be possible such as roadsides.


The flail mower gets its name from the use of “flails” attached to its rotating horizontal drum (also called tube, rotor, or axle). Many implement companies also refer to the flails as knives or blades. The rows of flails are usually staggered to provide a complete cut. The flails are attached to the drum using chain links or brackets, depending on the manufacturer. The rotating drum is perpendicular to the axis of the tractor. The PTO driveshaft along the tractor's axis must make a right angle through the use of a gearbox in order to transfer its rotational energy to the drum. As the drum rotates, centrifugal force pushes the flails outward.


Standard flails are shaped like an extruded “T” or “Y” and a chain attaches to the bottom. There are also proprietary flails with various shapes for shredding larger brush and others that leave a smooth, finish cut.


If a flail strikes an immovable object, it simply bounces off. Other rotary type mowers have a tendency to grab and throw the object out of the mower deck if its small enough. This fact makes the flail mower best suited for areas where thrown objects would cause damage.



FIG. 20 illustrates the mower attached to the front end of a high-clearance sprayer type vehicle 1300. The mower is mounted on a controllable support arm 1306 projecting from the front end of the vehicle 1300, so that the mower 1100 can be raised above the height of planted crops so that the mower does not mow crop plants at the end of a field. For example, the height of the mower can be controlled in response to a GPS signal and/or an optical camera row steering system.


Referring generally to FIGS. 21-26, an agricultural mowing device 2000 includes a primary weed-control unit 2300 for cutting material (e.g., weeds) between the rows in a planted field of crops (e.g., corn, soybeans, etc.), the same as or similar to implementations illustrated in FIGS. 10-20, except that the agricultural mowing device 2000 further includes a secondary weed-control unit 2400 for inter-row removal of unwanted material (e.g., weeds and/or other crops that grow among the rows in the planted field of crops) that generally grow at a higher height than the planted crops in the row.


In some implementations, as best shown in FIGS. 21-24, the agricultural mowing device 2000 includes a linkage assembly 2100 for attaching a cutting device to a vehicle (e.g., tractor) by a mounting assembly 2200. The linkage assembly 2100 includes a four-bar linkage. A vertical pivot pin 2201 (FIGS. 23-24) in the mounting assembly 2200 permits the linkage assembly 2100, and thus the primary weed-control unit 2300 and the secondary mowing unit 2400, to be pivoted horizontally relative to the tractor. Two pairs of horizontal pivot pins 2101 and 2102 (FIGS. 21-22) at opposite ends of the linkage assembly 2100 permit that linkage assembly 2110 to be pivoted vertically relative to the mounting assembly 2200. A hydraulic cylinder 2500 connected between the mounting assembly 2200 and the linkage assembly 2100 applies a controllable down pressure on the linkage assembly 2100 and thus on the primary and secondary weed-control units 2300 and 2400.


The agricultural mowing device 2000 includes a vertically adjustable shaft 2600 that is attached to the linkage assembly 2100 at an upper end 2610, and to the primary weed-control unit 2300 at a lower end 2620. The adjustable shaft 2600 is also attached to the secondary weed-control unit 2400 between the upper end 2610 and the lower end 2620. The secondary weed-control unit 2400 is positioned at a height tall enough where secondary weed-control unit 2400 will cut off weeds or other material without cutting the planted crop plants. The primary and secondary weed-control units 2300 and 2400 are driven by a single motor 2650. By way of example, the motor 2650 is a hydraulic motor, an electric motor, an internal combustion engine, or the like, or in any combination thereof. Additionally or alternatively, the motor is mechanically connected to the PTO on a tractor, driving all at once. However, multiple motors are also contemplated to drive each of the weed-control units 2300 and 2400 separately.


The agricultural mowing device 2000 further includes a rear gauge wheel 2660 that is coupled to the adjustable shaft 2600 via, for example, a gauge frame 2670. The gauge wheel 2660 aids in adjusting the height of the weed-control units 2300 and 2400 over uneven terrain or weeds. It is also contemplated that the agricultural mowing device 2000 includes multiple gauge wheels instead of a single gauge wheel 2660. The gauge wheel 2660 is coupled to a depth adjuster 2680, which aids in adjusting the height of the weed-control units 2300 and 2400. In some implementations, the depth adjuster 2680 includes a spring-loaded element (not shown) such that the primary and secondary weed-control units 2300 and 2400 automatically adjust in height when passing over uneven terrain (e.g., the weed-control units 2300 and 2400 float up and down following contour of the terrain). Additionally or alternatively, the depth adjuster 2680 includes a motor drive unit (not shown). Additionally or alternatively, the depth adjuster 2680 includes a manual adjuster that manually positions the weed-control units 2300 and 2400 at fixed distances on the adjustable shaft 2600.


Referring to FIG. 22, the primary weed-control unit 2300 includes a cutting assembly 2310. Similarly, the secondary weed control unit 2400 includes a cutting assembly 2410. The cutting assemblies 2310 and 2410 may include rotating blades, oscillating blades, flail blades, a rotary cutter, a rotating cutter, or an oscillating cutter, or the like, or in any combination thereof. As an example, the cutting assemblies 2310 and 2410 each includes a plurality of sickles. In some embodiments, the cutting assembly 2310 of the primary weed control unit 2300 includes one set of sickles 2311 positioned along the entire length of the cutting assembly 2310. The cutting assembly 2410 of the secondary weed control unit 2400 includes two sets of sickles 2411 and 2412 located on opposite sides of the secondary weed control unit 2400. There is a gap between the two sets of sickles 2411 and 2412, such that a majority of the weeds being cut by the primary weed control unit 2300 are not cut twice up top by the secondary weed control unit 2400 (as best shown in FIGS. 25A-B).


Referring to FIGS. 25A-B, the primary weed-control unit 2300 also includes a pair of tapered deflectors 2320 positioned in front of and at opposite ends of the cutting assembly 2310 for guiding and lifting adjacent rows of planted matter 2950 away from the cutting assembly 2310. The secondary weed-control unit 2400 includes a pair of tapered deflectors 2420 located in front of and at opposite ends of the cutting assembly 2410 for guiding and pulling the unwanted material 2920 (e.g., weeds and/or regrowth) towards the cutting assembly 2410. The cutting assembly 2310 of the primary weed-control unit 2300 is narrow enough to fit between adjacent rows of planted matters. The cutting assembly 2410 of the secondary weed-control unit 2400 extends into the rows of planted matter 2950.


As best shown in FIG. 25A, prior to cutting, weeds 2910 can grow between adjacent rows of planted matter 2950. In addition, weeds 2920 can grow within the rows of planted matter 2950, which often grow at a higher height than the planted matter 2950. Turning to FIG. 25B, as the agricultural mowing device 2000 advances between adjacent rows of planted matter 2950, the primary weed-control unit cuts growing weeds 2910 between the rows of planted matter 2950 to clear a reduced or weed-free path. The secondary weed-control unit cuts growing weeds 2920 among the rows of planted matter 2950 to reduce re-growth.


Additionally or alternatively, the agricultural mowing device 2000 includes a sprayer input (not shown) with one or more sprayer input tubes that are coupled to an end of the weed-control unit for delivering weed-control and/or other substances. The weed-control substance is helpful in reducing and/or preventing the reappearance of weeds.


Referring to FIGS. 26-29, an agricultural system 20 has a plurality of agricultural mowing devices 2000 with respective primary and secondary weed-control units 2300 and 2400, for mowing multiple rows at the same time. Each agricultural mowing devices 2000 has a rear gauge wheel 2660 that is mounted to an adjustable shaft 2600. The agricultural mowing devices 2000 are coupled to one another via, for example, a mounting frame 2700. As best shown in FIG. 26, an agricultural mowing device 2000 is attached to the mounting frame 2700 via a pair of U-shaped bolts 2710. Alternatively, an agricultural mowing device 2000 is attached to the mounting frame 2700 via a mounting plate 2720 (FIG. 29). The agricultural mowing devices 2000 are individually driven by their respective motors 2650. Additionally or alternatively, the agricultural mowing devices 2000 are driven by a single motor that are coupled to each agricultural mowing device 2000 via, for example, a rotating belt (not shown). As such, the single motor drives simultaneously each of the agricultural mowing devices 2000. As best shown in FIG. 29, the agricultural mowing devices 2000 are spaced from one another and positioned more or less forward relative to one another in the direction of advancement of the agricultural system 20, such that portions of the respective secondary weed-control units 2400 overlap one another to provide better coverage of the planted crops.


Additionally or alternatively, the secondary weed-control unit is located on an ancillary mowing device that does not include a primary weed-control unit. The ancillary mowing device includes a vertically adjustable shaft that is coupled to the secondary weed-control unit for removing (e.g., cutting) weeds above planted crops growing among the planted crops. An ancillary system includes a plurality of ancillary mowing devices. The ancillary agricultural system aids a primary agricultural system (e.g., implementations illustrated in FIGS. 10-20) to cut regrowth among the rows of planted matter, where the primary agricultural system cuts rows of weeds closer to the ground between the rows of planted matter.


In addition to weed control, it is also contemplated that the agricultural devices and systems described above are capable of being broadly used in regenerative farming systems. For example, in a field of cash crops and living cover crops (e.g., a legume cover crop), the agricultural system supplies fertilizer to the cash crop via the nitrogen fixation of the legume. The agricultural mowing devices would be used to control weeds, but also to cut the cover crop so that the clippings decompose, thereby fertilizing the cash crop.


It will be evident to those skilled in the art that the invention is not limited to the details of the foregoing illustrated embodiment and that the present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof. For example, the present embodiment is therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.

Claims
  • 1. An agricultural mowing device comprising: a shaft capable of being advanced in a field between two adjacent rows of planted matter;a first cutting device mounted to a lower section of the shaft, the first cutting device extending laterally from the shaft to a distance covering only a distance between the two adjacent rows, the first cutting device cutting plant matter that grows between the two adjacent rows; anda second cutting device mounted at a height higher than a height of the first cutting device measured vertically from a ground surface, the second cutting device extending laterally from the shaft to a distance covering at least a portion of at least one of the two adjacent rows, the second cutting device cutting plant matter that grows in the at least one of the two adjacent rows, the second cutting device including an upper connector on which an upper cutting member is mounted, the upper cutting member including a plurality of sickle teeth positionable at each of two end portions of the upper connector such that a gap exists at a center portion of the upper connector.
  • 2. The agricultural mowing device of claim 1, wherein the first cutting device includes a lower connector on which a lower cutting member is mounted.
  • 3. The agricultural mowing device of claim 2, wherein the lower cutting member includes at least one of a plurality of sickle knives, a plurality of rotatable blades, a plurality of oscillating blades, a plurality of flail blades, a rotary cutter, a rotating cutter, an oscillating cutter, or any combination thereof.
  • 4. The agricultural mowing device of claim 1, wherein the plurality of sickle teeth is continuous along a length of the upper connector.
  • 5. The agricultural mowing device of claim 1, wherein the plurality of sickle teeth is positionable at each of the two end portions and a part of the center portion of the upper connector of the second cutting device, such that two gaps exist at the center portion of the upper connector.
  • 6. The agricultural mowing device of claim 2, further comprising at least one motor coupled to at least one of the cutting devices for driving the respective cutting member of the at least one of the cutting devices.
  • 7. The agricultural mowing device of claim 6, wherein the at least one motor is configured to mechanically couple to a power source on an agricultural vehicle, and wherein the at least one motor includes an electric motor, a hydraulic motor, an internal combustion engine, or any combination thereof.
  • 8. The agricultural mowing device of claim 6, wherein a first motor of the at least one motor is coupled to the first cutting device, a second motor of the at least one motor being coupled to the second cutting device.
  • 9. The agricultural mowing device of claim 8, wherein the first motor and the second motor are the same type of motor.
  • 10. The agricultural mowing device of claim 1, wherein the first cutting device includes a pair of deflectors in front of the first cutting device for pushing the two adjacent rows of planted matter away from the first cutting device.
  • 11. The agricultural mowing device of claim 1, wherein the second cutting device includes a pair of deflectors in front of the second cutting device for pulling plant matter from the adjacent rows of planted matter into the second cutting device.
  • 12. The agricultural mowing device of claim 1, further comprising a depth adjuster for adjusting the vertical distance between the cutting devices and the ground beneath the cutting devices.
  • 13. The agricultural mowing device of claim 12, wherein the depth adjuster includes a gauge wheel positionable rearwardly relative to the cutting devices.
  • 14. An agricultural system comprising: a mounting frame for attachment to an agricultural vehicle; anda plurality of agricultural mowing devices for mowing plant matter between a plurality of rows in a planted field, the plurality of agricultural mowing devices including a first agricultural mowing device and a second agricultural mowing device positionable less forwardly relative to the first agricultural mowing device, the first agricultural mowing device and the second agricultural mowing device being positionable between two adjacent rows of planted matter, each of the first agricultural mowing device and the second agricultural mowing device including a first cutting device mounted to a lower section of a shaft and extending laterally from the shaft to a first distance covering only a space between the two adjacent rows,a second cutting device mounted to a middle section of the shaft and extending laterally from the shaft to a distance covering at least a portion of at least one of the two adjacent rows, anda mounting assembly mounted to an upper section of the shaft for attachment to the mounting frame;wherein the second cutting devices of the first agricultural mowing device and the second agricultural mowing device overlap each other in the portion of the at least one of the two adjacent rows.
  • 15. The agricultural system of claim 14, wherein the first and second agricultural mowing devices are mounted to the mounting frame.
  • 16. The agricultural system of claim 14, wherein the first agricultural mowing device is positionable at a lateral distance from the second agricultural mowing device measured from a first shaft of the first agricultural mowing device to a second shaft of the second agricultural mowing device, and wherein the lateral distance is substantially the same as a width of the row of planted matter between the first agricultural mowing device and the second agricultural mowing device.
  • 17. The agricultural system of claim 14, wherein the first agricultural mowing device is positionable more forwardly relative to the second agricultural mowing device such that an end portion of the second cutting device of the first agricultural mowing device overlaps an end portion of the second cutting device of the second agricultural mowing device in a lateral dimension, thereby covering the entire width of the row of planted matter between the two agricultural mowing devices.
  • 18. The agricultural system of claim 17, wherein the first agricultural mowing device is positionable adjacent to the second agricultural mowing device.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 15/941,613, titled “Agricultural Mowing Device,” filed on Mar. 30, 2018, which is a continuation-in-part of U.S. patent application Ser. No. 15/392,731, titled “Agricultural Organic Device for Weed Control,” filed on Dec. 28, 2016, which in turn claims priority to U.S. Provisional Patent Application No. 62/271,770 titled “Agricultural Organic Device For Weed Control,” filed on Dec. 28, 2015, which are incorporated herein by reference in their respective entireties.

US Referenced Citations (517)
Number Name Date Kind
114002 Godfrey Apr 1871 A
123966 Wing Feb 1872 A
321906 McCormick Jul 1885 A
353491 Wells Feb 1886 A
523508 Bauer Jul 1894 A
736369 Dynes Aug 1903 A
803088 Barker Oct 1905 A
1069264 Keller Aug 1913 A
1134462 Kendrick Apr 1915 A
1158023 Beaver Oct 1915 A
1247744 Trimble Nov 1917 A
1260752 Casaday Mar 1918 A
1321040 Hoffman Nov 1919 A
1391593 Sweeting Sep 1921 A
1398668 Bordsen Nov 1921 A
1442032 Luce Jan 1923 A
1481981 Boye Jan 1924 A
1791462 Bermel Feb 1931 A
1844255 Kaupke Feb 1932 A
1901299 Johnson Mar 1933 A
1901778 Schlag Mar 1933 A
1938132 Broemmelsick Dec 1933 A
2014334 Johnson Sep 1935 A
2044304 James Jun 1936 A
2058539 Welty Oct 1936 A
2213600 Wetmore Sep 1940 A
2249637 Rietz Jul 1941 A
2269051 Cahoy Jan 1942 A
2285932 Leavitt Jun 1942 A
2298539 Mott Oct 1942 A
2341143 Herr Feb 1944 A
2505276 Boroski Apr 1950 A
2561763 Waters Jul 1951 A
2593176 Patterson Apr 1952 A
2596527 Bushong May 1952 A
2611306 Strehlow Sep 1952 A
2612827 Baggette Oct 1952 A
2664040 Beard Dec 1953 A
2691353 Secondo Oct 1954 A
2692544 Jessup Oct 1954 A
2715286 Saveson Aug 1955 A
2754622 Rohnert Jul 1956 A
2878633 Mullin Oct 1956 A
2771044 Putifer Nov 1956 A
2773343 Oppel Dec 1956 A
2777373 Pursche Jan 1957 A
2799234 Chancey Jul 1957 A
2805574 Jackson, Jr. Sep 1957 A
2860716 Flock Nov 1958 A
2925872 Darnell Feb 1960 A
2960358 Christison Nov 1960 A
3010744 Hollis Nov 1961 A
3014547 Van der Lely Dec 1961 A
3038424 Johnson Jun 1962 A
3042121 Broetzman Jul 1962 A
3057092 Curlett Oct 1962 A
3058243 McGee Oct 1962 A
3065879 Jennings Nov 1962 A
3080004 McNair Mar 1963 A
3082829 Buddingh Mar 1963 A
3103993 Gies Sep 1963 A
3110973 Reynolds Nov 1963 A
3115739 Thoen Dec 1963 A
3122901 Thompson Mar 1964 A
3123152 Biskis Mar 1964 A
3188989 Johnston Jun 1965 A
3213514 Evans Oct 1965 A
3256942 Van Sickle Apr 1966 A
3250109 Spyridakis May 1966 A
3261150 Fitzgerald Jul 1966 A
3314278 Bergman Apr 1967 A
3319589 Moran May 1967 A
3351139 Schmitz Nov 1967 A
3355930 Fedorov Dec 1967 A
3368788 Padula Feb 1968 A
3368789 Martin Feb 1968 A
3370450 Scheucher Feb 1968 A
3397933 Hatcher Aug 1968 A
3420273 Greer Jan 1969 A
3433474 Piret Mar 1969 A
3447495 Miller Jun 1969 A
3498036 Cowling Mar 1970 A
3500937 Erickson Mar 1970 A
3507233 Greig Apr 1970 A
3539020 Andersson Nov 1970 A
3543603 Gley Dec 1970 A
3561541 Woelfel Feb 1971 A
3576098 Brewer Apr 1971 A
3581685 Taylor Jun 1971 A
3593720 Botterill Jul 1971 A
D221461 Hagenstad Aug 1971 S
3599403 Gantz Aug 1971 A
3606745 Girodat Sep 1971 A
3635495 Orendorff Jan 1972 A
3650334 Hagenstad Mar 1972 A
3653446 Kalmon Apr 1972 A
3701327 Krumholz Oct 1972 A
3708019 Ryan Jan 1973 A
3711974 Webb Jan 1973 A
3718191 Williams Feb 1973 A
3749035 Cayton Jul 1973 A
3753341 Berg, Jr. Aug 1973 A
3766988 Whitesides Oct 1973 A
3774446 Diehl Nov 1973 A
3795291 Naito Mar 1974 A
3906814 Magnussen Sep 1975 A
3939846 Drozhzhin Feb 1976 A
3945532 Marks Mar 1976 A
3970012 Jones Jul 1976 A
3975890 Rodger Aug 1976 A
3986464 Uppiano Oct 1976 A
4008557 Ruback Feb 1977 A
4009668 Brass Mar 1977 A
4018101 Mihalic Apr 1977 A
4044697 Swanson Aug 1977 A
4055126 Brown Oct 1977 A
4058171 Van der Lely Nov 1977 A
4063597 Day Dec 1977 A
4069029 Hudson Jan 1978 A
4096730 Martin Jun 1978 A
4099576 Jilani Jul 1978 A
4104851 Perry Aug 1978 A
4122715 Yokoyama Oct 1978 A
4129082 Betulius Dec 1978 A
4135349 Schwertner Jan 1979 A
4141200 Johnson Feb 1979 A
4141302 Morrison, Jr. Feb 1979 A
4141676 Jannen Feb 1979 A
4142589 Schlagenhauf Mar 1979 A
4147305 Hunt Apr 1979 A
4149475 Bailey Apr 1979 A
4157661 Schindel Jun 1979 A
4161090 Watts, Jr. Jul 1979 A
4173259 Heckenkamp Nov 1979 A
4182099 Davis Jan 1980 A
4187916 Harden Feb 1980 A
4191262 Sylvester Mar 1980 A
4194575 Whalen Mar 1980 A
4196567 Davis Apr 1980 A
4196917 Oakes Apr 1980 A
4206817 Bowerman Jun 1980 A
4208974 Dreyer Jun 1980 A
4213408 West Jul 1980 A
4225191 Knoski Sep 1980 A
4233803 Davis Nov 1980 A
4241674 Mellinger Dec 1980 A
4249613 Scribner Feb 1981 A
4280419 Fischer Jul 1981 A
4294181 Smith Oct 1981 A
4295532 Williams Oct 1981 A
4301870 Carre Nov 1981 A
4307674 Jennings Dec 1981 A
4311104 Steilen Jan 1982 A
4317355 Hatsuno Mar 1982 A
4359101 Gagnon Nov 1982 A
4375837 van der Lely Mar 1983 A
4377979 Peterson Mar 1983 A
4384444 Rossler May 1983 A
4391335 Birkenbach Jul 1983 A
4398608 Boetto Aug 1983 A
4407371 Hohl Oct 1983 A
4407660 Nevens Oct 1983 A
4413685 Gremelspacher Nov 1983 A
4430952 Murray Feb 1984 A
4433568 Kondo Feb 1984 A
4438710 Paladino Mar 1984 A
4445445 Sterrett May 1984 A
4461355 Peterson Jul 1984 A
4481830 Smith Nov 1984 A
4499775 Lasoen Feb 1985 A
4506610 Neal Mar 1985 A
4508178 Cowell Apr 1985 A
4528920 Neumeyer Jul 1985 A
4530405 White Jul 1985 A
4537262 van der Lely Aug 1985 A
4538688 Szucs Sep 1985 A
4550122 David Oct 1985 A
4553607 Behn Nov 1985 A
4580506 Fleischer Apr 1986 A
4592428 Whitney Jun 1986 A
4596200 Gafford Jun 1986 A
4598654 Robertson Jul 1986 A
4603746 Swales Aug 1986 A
4604906 Scarpa Aug 1986 A
4619329 Gorbett Oct 1986 A
4630773 Ortlip Dec 1986 A
4643043 Furuta Feb 1987 A
4646620 Buchl Mar 1987 A
4646850 Brown Mar 1987 A
4648466 Baker Mar 1987 A
4650005 Tebben Mar 1987 A
4669550 Sittre Jun 1987 A
4671193 States Jun 1987 A
4674578 Bexten Jun 1987 A
4682550 Joy Jul 1987 A
4703809 Van den Ende Nov 1987 A
4726304 Dreyer Feb 1988 A
RE32644 Brundage Apr 1988 E
4738461 Stephenson Apr 1988 A
4744316 Lienemann May 1988 A
4762075 Halford Aug 1988 A
4765190 Strubbe Aug 1988 A
4768387 Kemp Sep 1988 A
4776404 Rogers Oct 1988 A
4779684 Schultz Oct 1988 A
4785890 Martin Nov 1988 A
4819738 Fountain Apr 1989 A
4825957 White May 1989 A
4825959 Wilhelm May 1989 A
4919211 Cope Apr 1990 A
4920901 Pounds May 1990 A
4926622 McKee May 1990 A
4926767 Thomas May 1990 A
4930431 Alexander Jun 1990 A
4986367 Kinzenbaw Jan 1991 A
4987841 Rawson Jan 1991 A
4998488 Hansson Mar 1991 A
5015997 Strubbe May 1991 A
5022333 McClure Jun 1991 A
5027525 Haukaas Jul 1991 A
5033397 Colburn, Jr. Jul 1991 A
5065632 Reuter Nov 1991 A
5074227 Schwitters Dec 1991 A
5076180 Schneider Dec 1991 A
5092255 Long Mar 1992 A
5113957 Tamai May 1992 A
5129282 Bassett Jul 1992 A
5136934 Darby, Jr. Aug 1992 A
5190112 Johnston Mar 1993 A
5220773 Klaeger Jun 1993 A
5224553 Heintzman Jul 1993 A
5234060 Carter Aug 1993 A
5240080 Bassett Aug 1993 A
5255617 Williams Oct 1993 A
5269237 Baker Dec 1993 A
5282389 Faivre Feb 1994 A
5285854 Thacker Feb 1994 A
5333694 Roggenbuck Aug 1994 A
5337832 Bassett Aug 1994 A
5341754 Winterton Aug 1994 A
5346019 Kinzenbaw Sep 1994 A
5346020 Bassett Sep 1994 A
5349911 Hoist Sep 1994 A
5351635 Hulicsko Oct 1994 A
5379847 Snyder Jan 1995 A
5394946 Clifton Mar 1995 A
5398771 Hornung Mar 1995 A
5419402 Heintzman May 1995 A
5427192 Stephenson Jun 1995 A
5443023 Carroll Aug 1995 A
5443125 Clark Aug 1995 A
5461995 Winterton Oct 1995 A
5462124 Rawson Oct 1995 A
5473999 Rawson Dec 1995 A
5474135 Schlagel Dec 1995 A
5477682 Tobiasz Dec 1995 A
5477792 Bassett Dec 1995 A
5479868 Bassett Jan 1996 A
5479992 Bassett Jan 1996 A
5485796 Bassett Jan 1996 A
5485886 Bassett Jan 1996 A
5497717 Martin Mar 1996 A
5497837 Kehrney Mar 1996 A
5499042 Yanagawa Mar 1996 A
5499683 Bassett Mar 1996 A
5499685 Downing, Jr. Mar 1996 A
5517932 Ott May 1996 A
5524525 Nikkei Jun 1996 A
5531171 Whitesel Jul 1996 A
5542362 Bassett Aug 1996 A
5544709 Lowe Aug 1996 A
5562165 Janelle Oct 1996 A
5590611 Smith Jan 1997 A
5603269 Bassett Feb 1997 A
5623997 Rawson Apr 1997 A
5640914 Rawson Jun 1997 A
5657707 Dresher Aug 1997 A
5660126 Freed Aug 1997 A
5685245 Bassett Nov 1997 A
5704430 Smith Jan 1998 A
5709271 Bassett Jan 1998 A
5725057 Taylor Mar 1998 A
5727638 Wodrich Mar 1998 A
5730074 Peter Mar 1998 A
5809757 McLean Sep 1998 A
5833011 Boertlein Nov 1998 A
5852982 Peter Dec 1998 A
5868207 Langbakk Feb 1999 A
5878678 Stephens Mar 1999 A
RE36243 Rawson Jul 1999 E
5953895 Hobbs Sep 1999 A
5970891 Schlagel Oct 1999 A
5970892 Wendling Oct 1999 A
5988293 Brueggen Nov 1999 A
6067918 Kirby May 2000 A
6068061 Smith May 2000 A
6079340 Flamme Jun 2000 A
6082274 Peter Jul 2000 A
6085501 Walch Jul 2000 A
6091997 Flamme Jul 2000 A
6145288 Tamian Nov 2000 A
6164385 Buchl Dec 2000 A
6176334 Lorenzen Jan 2001 B1
6223663 Wendling May 2001 B1
6223828 Paulson May 2001 B1
6237696 Mayerle May 2001 B1
6253692 Wendling Jul 2001 B1
6289829 Fish Sep 2001 B1
6295939 Emms Oct 2001 B1
6314897 Hagny Nov 2001 B1
6325156 Barry Dec 2001 B1
6330922 King Dec 2001 B1
6331142 Bischoff Dec 2001 B1
6343661 Thomspon Feb 2002 B1
6347594 Wendling Feb 2002 B1
6382326 Goins May 2002 B1
6389999 Duello May 2002 B1
6453832 Schaffert Sep 2002 B1
6454019 Prairie Sep 2002 B1
6460623 Knussman Oct 2002 B1
6497088 Holley Dec 2002 B1
6516595 Rhody Feb 2003 B2
6526735 Meyer Mar 2003 B2
6530334 Hagny Mar 2003 B2
6575104 Brummelhuis Jun 2003 B2
6622468 Lucand Sep 2003 B2
6644224 Bassett Nov 2003 B1
6681868 Kovach Jan 2004 B2
6701856 Zoke Mar 2004 B1
6701857 Jensen Mar 2004 B1
6715433 Friestad Apr 2004 B1
6763773 Schaffert Jul 2004 B2
6786130 Steinlage Sep 2004 B2
6827029 Wendte Dec 2004 B1
6834598 Jüptner Dec 2004 B2
6840853 Foth Jan 2005 B2
6843047 Hurtis Jan 2005 B2
6853937 Shibusawa Feb 2005 B2
6886650 Bremmer May 2005 B2
6889943 Dinh May 2005 B2
6892656 Schneider May 2005 B2
6907833 Thompson Jun 2005 B2
6908052 Jacobson Jun 2005 B1
6912963 Bassett Jul 2005 B2
6923390 Barker Aug 2005 B1
6968907 Raper Nov 2005 B1
6986313 Halford Jan 2006 B2
6997400 Hanna Feb 2006 B1
7004090 Swanson Feb 2006 B2
7044070 Kaster May 2006 B2
7063167 Staszak Jun 2006 B1
7159523 Bourgault Jan 2007 B2
7163227 Burns Jan 2007 B1
7222575 Bassett May 2007 B2
7249448 Murphy Jul 2007 B2
7290491 Summach Nov 2007 B2
7325756 Giorgis Feb 2008 B1
7347036 Easley, Jr. Mar 2008 B1
7360494 Martin Apr 2008 B2
7360495 Martin Apr 2008 B1
7438006 Mariman Oct 2008 B2
7451712 Bassett Nov 2008 B2
7497174 Sauder Mar 2009 B2
7523709 Kiest Apr 2009 B1
7540245 Spicer Jun 2009 B1
7540333 Bettin Jun 2009 B2
7575066 Bauer Aug 2009 B2
7584707 Sauder Sep 2009 B2
7665539 Bassett Feb 2010 B2
7673570 Bassett Mar 2010 B1
7743718 Bassett Jun 2010 B2
7870827 Bassett Jan 2011 B2
7900429 Labar Mar 2011 B2
7918285 Graham Apr 2011 B1
7938074 Liu May 2011 B2
7944210 Fischer May 2011 B2
7946231 Martin May 2011 B2
7975629 Martin Jul 2011 B1
8146519 Bassett Apr 2012 B2
8151717 Bassett Apr 2012 B2
8171707 Kitchel May 2012 B2
D663326 Allensworth Jul 2012 S
8327780 Bassett Dec 2012 B2
8359988 Bassett Jan 2013 B2
8380356 Zielke Feb 2013 B1
8386137 Sauder Feb 2013 B2
8393407 Freed Mar 2013 B2
8408149 Rylander Apr 2013 B2
8544397 Bassett Oct 2013 B2
8544398 Bassett Oct 2013 B2
8550020 Sauder Oct 2013 B2
8573319 Casper Nov 2013 B1
8634992 Sauder Jan 2014 B2
8636077 Bassett Jan 2014 B2
8649930 Reeve Feb 2014 B2
8746661 Runkel Jun 2014 B2
8763713 Bassett Jul 2014 B2
8770308 Bassett Jul 2014 B2
8776702 Bassett Jul 2014 B2
RE45091 Bassett Aug 2014 E
8863857 Bassett Oct 2014 B2
8910581 Bassett Dec 2014 B2
8939095 Freed Jan 2015 B2
8985232 Bassett Mar 2015 B2
9003982 Elizalde Apr 2015 B1
9003983 Roth Apr 2015 B2
9055712 Bassett Jun 2015 B2
9107337 Bassett Aug 2015 B2
9107338 Bassett Aug 2015 B2
9113589 Bassett Aug 2015 B2
9144187 Bassett Sep 2015 B2
9148989 Van Buskirk Oct 2015 B2
9167740 Bassett Oct 2015 B2
9192088 Bruce Nov 2015 B2
9192089 Bassett Nov 2015 B2
9192091 Bassett Nov 2015 B2
9215838 Bassett Dec 2015 B2
9215839 Bassett Dec 2015 B2
9226440 Bassett Jan 2016 B2
9232687 Bassett Jan 2016 B2
9241438 Bassett Jan 2016 B2
9271437 Martin Mar 2016 B2
9307690 Bassett Apr 2016 B2
9392743 Camacho-Cook Jul 2016 B2
9504198 Martin Nov 2016 B2
9615497 Bassett Apr 2017 B2
9668398 Bassett Jun 2017 B2
9681601 Bassett Jun 2017 B2
9723778 Bassett Aug 2017 B2
9788472 Bassett Oct 2017 B2
9848522 Bassett Dec 2017 B2
9861022 Bassett Jan 2018 B2
9980421 Hammes May 2018 B1
10238024 Bassett Mar 2019 B2
10251324 Martin Apr 2019 B2
10251333 Bassett Apr 2019 B2
10375891 Martin Aug 2019 B2
20020073678 Lucand Jun 2002 A1
20020162492 Juptner Nov 2002 A1
20030141086 Kovach Jul 2003 A1
20030141088 Kovach Jul 2003 A1
20040005929 Piasecki Jan 2004 A1
20040148917 Eastwood Aug 2004 A1
20050000202 Scordilis Jan 2005 A1
20050005704 Adamchuck Jan 2005 A1
20050045080 Halford Mar 2005 A1
20050199842 Parsons Sep 2005 A1
20060102058 Swanson May 2006 A1
20060118662 Korus Jun 2006 A1
20060191695 Walker et al. Aug 2006 A1
20060213566 Johnson Sep 2006 A1
20060237203 Miskin Oct 2006 A1
20070044694 Martin Mar 2007 A1
20070272134 Baker Nov 2007 A1
20080093093 Sheppard Apr 2008 A1
20080173220 Wuertz Jul 2008 A1
20080236461 Sauder Oct 2008 A1
20080256916 Vaske Oct 2008 A1
20090133888 Kovach May 2009 A1
20090260902 Holman Oct 2009 A1
20100006309 Ankenman Jan 2010 A1
20100019471 Ruckle Jan 2010 A1
20100108336 Thomson May 2010 A1
20100180695 Sauder Jul 2010 A1
20100198529 Sauder Aug 2010 A1
20100282480 Breker Nov 2010 A1
20110101135 Korus May 2011 A1
20110147148 Ripa Jun 2011 A1
20110239920 Henry Oct 2011 A1
20110247537 Freed Oct 2011 A1
20110313575 Kowalchuk Dec 2011 A1
20120010782 Grabow Jan 2012 A1
20120167809 Bassett Jul 2012 A1
20120186216 Vaske Jul 2012 A1
20120186503 Sauder Jul 2012 A1
20120216731 Schilling Aug 2012 A1
20120232691 Green Sep 2012 A1
20120255475 Mariman Oct 2012 A1
20130032363 Curry Feb 2013 A1
20130112121 Achen May 2013 A1
20130112124 Bergen May 2013 A1
20130213676 Bassett Aug 2013 A1
20130325267 Adams Dec 2013 A1
20130333599 Bassett Dec 2013 A1
20140000448 Franklin, III Jan 2014 A1
20140026748 Stoller Jan 2014 A1
20140034339 Sauder Feb 2014 A1
20140034343 Sauder Feb 2014 A1
20140034344 Bassett Feb 2014 A1
20140165527 Oehler Jun 2014 A1
20140190712 Bassett Jul 2014 A1
20140197249 Roth Jul 2014 A1
20140214284 Sauder Jul 2014 A1
20140224513 Van Buskirk Aug 2014 A1
20140224843 Rollenhagen Aug 2014 A1
20140278696 Anderson Sep 2014 A1
20150216108 Roth Aug 2015 A1
20160100517 Bassett Apr 2016 A1
20160270285 Hennes Sep 2016 A1
20160309641 Taunton Oct 2016 A1
20170094889 Garner Apr 2017 A1
20170127614 Button May 2017 A1
20170164548 Bassett Jun 2017 A1
20170300072 Bassett Jul 2017 A1
20170231145 Bassett Aug 2017 A1
20170303467 Simmons Oct 2017 A1
20170359940 Bassett Dec 2017 A1
20180000001 Bassett Jan 2018 A1
20180007834 Martin Jan 2018 A1
20180116098 Bassett May 2018 A1
20180139885 Bassett May 2018 A1
20180317380 Bassett Nov 2018 A1
20180317381 Bassett Nov 2018 A1
20190045703 Bassett Feb 2019 A1
20190059196 Bourgault Feb 2019 A1
20190082591 Bassett Mar 2019 A1
20190343042 Button Nov 2019 A1
Foreign Referenced Citations (30)
Number Date Country
551372 Oct 1956 BE
530673 Sep 1956 CA
335464 Sep 1921 DE
1108971 Jun 1961 DE
24 02 411 Jul 1975 DE
38 30 141 Feb 1990 DE
1 143 784 Feb 2007 EP
2 196 337 Jun 2010 EP
2 497 348 Sep 2012 EP
3 150 045 Apr 2017 EP
2891692 Apr 2007 FR
1 574 412 Sep 1980 GB
2 056 238 Oct 1982 GB
2 160 401 Dec 1985 GB
54-57726 May 1979 JP
392897 Aug 1973 SU
436778 Jul 1974 SU
611201 Jun 1978 SU
625648 Sep 1978 SU
1410884 Jul 1988 SU
1466674 Mar 1989 SU
WO 2001023241 Apr 2001 WO
WO 2009145381 Dec 2009 WO
WO 2011161140 Dec 2011 WO
WO 2012149367 Jan 2012 WO
WO 2012149415 Jan 2012 WO
WO 2012167244 Dec 2012 WO
WO 2013025898 Feb 2013 WO
WO 2016073964 May 2016 WO
WO 2016073966 May 2016 WO
Non-Patent Literature Citations (25)
Entry
Case Corporation Brochure, Planters 900 Series Units/Modules Product Information, Aug. 1986 (4 pages).
Buffalo Farm Equipment All Flex Cultivator Operator Manual, Apr. 1990 (7 pages).
Shivvers, Moisture Trac 3000 Brochure, Aug. 21, 1990 (5 pages).
The New Farm, “New Efficiencies in Nitrogen Application,” Feb. 1991, p. 6 (1 page).
Hiniker Company, Flow & Acreage Continuous Tracking System Monitor Demonstration Manuel, date estimated as early as Feb. 1991 (7 pages).
Russnogle, John, “Sky Spy: Gulf War Technology Pinpoints Field and Yields,” Top Producer, A Farm Journal Publication, Nov. 1991, pp. 12-14 (4 pages).
Borgelt, Steven C., “Sensor Technologies and Control Strategies for Managing Variability,” University of Missouri, Apr. 14-16, 1992 (15 pages).
Buffalo Farm Equipment Catalog on Models 4600, 4630, 4640, and 4620, date estimated as early as Feb. 1992 (4 pages).
Hiniker 5000 Cultivator Brochure, date estimated as early as Feb. 1992 (4 pages).
Hiniker Series 5000 Row Cultivator Rigid and Folding Toolbar Operator's Manual, date estimated as early as Feb. 1992 (5 pages).
Orthman Manufacturing, Inc., Rowcrop Cultivator Booklet, date estimated as early as Feb. 1992 (4 pages).
Yetter Catalog, date estimated as early as Feb. 1992 (4 pages).
Exner, Rick, “Sustainable Agriculture: Practical Farmers of Iowa Reducing Weed Pressure in Ridge-Till,” Iowa State University University Extension, http://www.extension.iastate.edu/Publications/SA2.pdf, Jul. 1992, Reviewed Jul. 2009, retrieved Nov. 2, 2012 (4 pages).
Finck, Charlene, “Listen to Your Soil,” Farm Journal Article, Jan. 1993, pp. 14-15 (2 pages).
Acu-Grain, “Combine Yield Monitor 99% Accurate? ‘You Bet Your Bushels!!’” date estimated as early as Feb. 1993 (2 pages).
John Deere, New 4435 Hydro Row-Crop and Small-Grain Combine, date estimated as early as Feb. 1993 (8 pages).
Vansichen, R. et al., “Continuous Wheat Yield Measurement on a Combine,” date estimated as early as Feb. 1993 (5 pages).
Yetter 2010 Product Catalog, date estimated as early as Jan. 2010 (2 pages).
Gason, 3 Row Vineyard Mower Brochure, http://www.fatcow.com.au/c/Gason/Three-row-vineyard-mower-a-world-firt-p23696, Jul. 2010 (1 page).
Yetter Cut and Move Manual, Sep. 2010 (28 pages).
Yetter Screw Adjust Residue Manager Operator's Manual, labeled “2565-729_REV_D” and dated Sep. 2010 on p. 36, retrieved Mar. 10, 2014 from the internet, available online Jul. 13, 2011, at https://web.archive.org/web/20110713162510/http://www.yetterco.com/help/manuals/Screw_Adjust_Residue_ Manager2.pdf.
John Deere, Seat Catalog, date estimated as early Sep. 2011 (19 pages).
Martin Industries, LLC Paired 13 Spading Closing Wheels Brochure, date estimated as early as Jun. 6, 2012, pp. 18-25 (8 pages).
Vogt, Willie, “Revisiting Robotics,” http://m.farmindustrynews.com/farm-equipment/revisiting-robotics, Dec. 19, 2013 (3 pages).
John Deere, New Semi-Active Sea Suspension, http://www.deere.com/en_US/parts/agparts/semiactiveseat.html, date estimated as early as Jan. 2014, retrieved Feb. 6, 2014 (2 pages).
Related Publications (1)
Number Date Country
20190082591 A1 Mar 2019 US
Provisional Applications (1)
Number Date Country
62271770 Dec 2015 US
Continuation in Parts (2)
Number Date Country
Parent 15941613 Mar 2018 US
Child 16194143 US
Parent 15392731 Dec 2016 US
Child 15941613 US