The present invention relates generally to agricultural equipment and, more particularly, to a system having a roller device for preparing a field with leftover residual plant matter.
As plant matter is leftover on a field from one season to the next, farming operations continue to struggle with residual stubble when preparing the field for a new crop. These challenges are especially evident in no-till farming, which has become more popular over the recent years. For example, planting seeds between rows of leftover corn stalks is difficult without removing or minimizing the presence of the corn stalks in the planted rows.
Thus, it would be desirable to develop a system that overcomes the problems and limitations associated with leftover residual plant matter.
In accordance with one embodiment, an agricultural system includes a tow bar for attachment to a towing vehicle in a trailing position relative to a direction of movement along a field. The system further includes a plurality of row-cleaning devices attached in parallel strip positions along the tow bar, and at least one roller device. Each row-cleaning device includes a rigid frame for attachment to the tow bar, a leading coulter, and one or more furrow-opener disks. The furrow-opener disks are in a trailing position relative to the leading coulter, each of the furrow-opener disks having a leading edge adjacent to a trailing edge of the leading coulter. Each row-cleaning device further includes a pivotable row-cleaning linkage attached to the rigid frame, the leading coulter and the furrow-opener disks being coupled to the rigid frame via the pivotable row-cleaning linkage. The roller device extends between two adjacent parallel strip positions and is attached at each end to a respective rigid frame via a respective pivotable roller linkage. The pivotable roller linkage is independently movable relative to the pivotable row-cleaning linkage.
In accordance with another embodiment, an agricultural system includes a tow bar for attachment to a towing vehicle in a trailing position relative to a direction of movement along a field. The system further includes a plurality of row-cleaning devices attached in parallel strip positions along the tow bar, the plurality of row-cleaning devices including a first row-cleaning device and a second row-cleaning device. The first row-cleaning device is attached in a first strip position and includes a first rigid frame for attachment to the tow bar, a first leading coulter, and one or more first furrow-opener disks in a trailing position relative to the first leading coulter. The first row-cleaning device includes a first pivotable row-cleaning linkage attached to the first rigid frame, the first leading coulter and the first furrow-opener disks being coupled to the first rigid frame via the first pivotable row-cleaning linkage. The second row-cleaning device is attached in a second strip position, the second strip position being adjacent and parallel to the first strip position, the second row-cleaning device including a second rigid frame for attachment to the tow bar, a second leading coulter, one or more second furrow-opener disks in a trailing position relative to the second leading coulter. The second row-cleaning device further includes a second pivotable row-cleaning linkage attached to the second rigid frame, the second leading coulter and the second furrow-opener disks being coupled to the second rigid frame via the second pivotable row-cleaning linkage. The system further includes a roller device attached between the first row-cleaning device and the second row-cleaning device, the roller device including a first pivotable roller linkage attached at a first end of the roller device and being independently movable from the first rigid frame. The roller device further includes a second pivotable roller linkage attached at a second end of the roller device and being independently movable from the second rigid frame, and at least one roller bearing mounted along a rotational axis of the roller device.
The invention may best be understood by reference to the following description taken in conjunction with the accompanying drawings.
Although the invention will be described in connection with certain preferred embodiments, it will be understood that the invention is not limited to those particular embodiments. On the contrary, the invention is intended to cover all alternatives, modifications, and equivalent arrangements as may be included within the spirit and scope of the invention as defined by the appended claims.
Turning now to the drawings and referring first to
The row unit 103a includes a row-cleaning device 104 and a rigid frame 106 for attachment to the tow bar 102 The row-cleaning device 104 includes a leading coulter 108 and a pair of furrow-opener disks 110 that are attached in a trailing position relative to the leading coulter 108, each of the furrow-opener disks 110 having a leading edge 110a adjacent to a trailing edge 108a of the leading coulter 108. Only one of the furrow-opener disks 110 is visible in
More specifically, the furrow-opener disks 110 have the respective leading edges 110a adjacent to each other and near the trailing edge 108a of the leading coulter 108. The leading coulter 108 is positioned such that the leading edges 110a of the two furrow-opener disks 110 are obscured by the trailing edge 108a of the leading coulter 108 from a front farming position. The front farming position is forward of the row-cleaning device 104 along the direction of movement V along the field 130.
The row-cleaning device 104 is attached to the agricultural system 100 in a respective strip position B of a plurality of parallel strip positions along the tow bar 102. As further illustrated in
A pivotable row-cleaning linkage 112 is attached to the rigid frame 106. The leading coulter 108 and the furrow-opener disks 110 are coupled to the rigid frame 106 via the pivotable row-cleaning linkage 112. Additionally, a supplemental force for up-down movement is provided via a row-cleaning actuator 113. The row-cleaning linkage 112 is a parallel linkage according to one exemplary embodiment.
A first roller device 114a has a first end 116a and a second end 118a. The first end 116a is attached to the rigid frame 106 via a pivotable roller linkage 120. More specifically, the first end 116a is directly attached to a separator frame 121, which, in turn, is attached to the roller linkage 120. The second end 118a is attached in a similar manner as the first end 116a, near the parallel strip position A, illustrated in
A second roller device 114b has a first end 116b and a second end 118b. The second roller device 114b is attached similarly to the first roller device 114a, with the first end 116b being attached to an opposite side of the separator frame 121, for indirect attachment to the rigid frame 106 via the roller linkage 120. The second end 118b of the second roller device 114b is near a respective parallel strip position C, illustrated in
Each of the roller devices 114a, 114b includes a plurality of roller protrusions 128 that extend outwardly from a peripheral surface of the respective roller device 114a, 114b. The roller protrusions 128 are attached, for example, to the respective peripheral surface via welding or mechanical fasteners. One advantage of the roller protrusions 128 is directed to reducing the amount of force required to crush residual plant matter, based on the reduction of surface area of contact surfaces between the roller devices 114a, 114b and residual plant matter. Alternatively, the roller protrusions 128 are integrally formed from a single piece of material, for example, by machining the roller devices 114a, 114b with the roller protrusions 128 in a unitary construction. Alternatively yet, the roller devices 114a, 114b lack any roller protrusions 128 and are generally cylindrically shaped segments with substantially smooth surfaces.
The roller devices 114a, 114b are generally cylindrically shaped with a hollow (or partially hollow) interior 129 through which a supporting axle is mounted (as illustrated in
In the illustrated embodiment, the roller devices 114a, 114b are mounted in a trailing position relative to the row-cleaning device 104. However, in an alternative embodiment the roller devices 114a, 114b are mounted in a forward position relative to the row-cleaning device 104.
In yet other alternative embodiments, at least one of the roller devices 114a, 114b is a crimping device attached to an agricultural device having one or more separators. The crimping device is described in more detail in U.S. Patent Application Publication No. 2013/0000535 to Charles H. Martin and Dominic R. Martin, titled “Agricultural Field Preparation Device,” published on Jan. 3, 2013, and which is herein incorporated by reference in its entirety.
The agricultural system 100 is movable in a direction V along a field 130 in which standing residual plant matter 132 forward of the row-cleaning device 104 is leveled by the roller device 114a into crushed residual plant matter 134. The residual plant matter, such as small grain cover crop, can include (for example) barley, wheat, oats, spelt, rye, clover, weeds, etc.
The cover crops are typically planted after a primary crop has been harvested, such as corn, in order to reduce compaction of the soil. The type of field preparation that typically occurs simultaneously with crushing of the standing residual plant matter 132 is typically planting of a primary crop, such as corn. However, the agricultural system 100 is not limited to planting, and may include spreading fertilizer or other type of field preparation associated with “no-till” or other types of reduced tillage techniques, such as strip-tilling, if desired.
Referring to
The mini-roller device 115 can be a miniature version of the roller device 114a, being attached to the row-cleaning linkage 112 (instead of the leading coulter 108 and the furrow-opener disks 110). Optionally, the mini-roller device 115 can be any size that sufficiently covers the surface area otherwise left uncovered between the first and second roller devices 114a, 114b.
Referring to
The roller actuator 125 has a movable piston end 127 mounted to the separator frame 123 and a fixed end 129 mounted to the rigid frame 106. According to some examples, the roller actuator 125 is a hydraulic actuator or a pneumatic actuator. The force and movement of the roller actuator 125 and the roller linkage 120, relative to the rigid frame 106, is achieved independently of the row-cleaning linkage 112.
A roller actuator 125 is coupled at each end of a respective roller device, such as the first end 116b and the second end 118b of the second roller device 114b illustrated in
Referring to
For example, the second roller device 114b extends between a first row unit 103a and a second row unit 103b. The first roller device 114a extends between the first row unit 103a and an adjacent row unit that is mounted (but not shown) along the tow bar 102 at the strip position A. The third roller device 103c extends between the second row unit 103b and an adjacent row unit that is mounted (but not shown) along the tow bar 102 at the strip position D. The row units at strip positions A and D are similar and/or identical to the first and second row units 103a, 103b.
Referring to
Furthermore, as the agricultural system 100 advance in the direction V along the field 130, the row-cleaning device 104 moves up-down independent of the roller device 114a because each is independently attached to and actuated from the rigid frame 106. The roller device 114a moves pivotably and is actuated in response to a supplemental force provided by the roller actuator 125, as described above in reference to
The row-cleaning actuator 113 is coupled between the row-cleaning linkage 112 and the rigid frame 106 to provide the desired supplemental force to the respective. The row-cleaning actuator 113, by way of example, is a hydraulic or pneumatic actuator.
One benefit of the agricultural system 100, in which the row-cleaning device 104 is combined with the roller device 114a is directed to preparing in a single pas strips of soil despite the presence of standing residual plant matter 132 in the field 130. Such agricultural actions like separating residual plant matter 132, crushing stems of the residual plant matter 132, and planting seeds in an open furrow of the strips, all occur within the same pass of the agricultural system 100.
Additional benefits of the agricultural system 100 are directed to the crushed residual plant matter 132. For example, the crushed residual plant matter 134 is effectively terminated or destroyed and remains in contact or in close proximity with the surface of the soil, returning nutrients to the soil, such as nitrogen, and thereby reducing the amount of fertilizer that must be subsequently applied to grow the primary crop. In another example, the crushed residual plant matter 132 remains in contact with or in close proximity with the surface of the soil helps maintain moisture in the soil. It has been shown that such increased moisture retention directly results in an increased yield of the primary crop. In yet another example, by virtue of the crushed residual plant matter 132 remaining in contact or in close proximity with the surface of the soil, a toxin is released as a result of which weed growth is substantially diminished without (or reduced) application of herbicides. In yet another example, the presence of residual plant matter 132 or cover crop, by virtue of the root mass of the residual plant matter 132, significantly reduces soil erosion that would otherwise occur without such ground cover after harvest of the primary crop.
Referring to
For example, the first row unit 103a moves up to advance past the rock 144 when the second roller device 114b encounters the rock 144. The rock 144 causes the second roller device 114b to flex upwards. The second roller device 114b pivots about the central roller bearing 140 and relative to the central axle 142, with the first end 116b moving upwards and the second end 118b moving downwards. The movement of the second roller device 114b causes movement of the first row unit 103a, which, in turn, causes movement of the first roller device 114a. The first roller device 114a, similar to the second roller device 114b, pivots about its central roller bearing and relative to its central axle 142, with the first end 116a moving upwards and the second end 118 a moving downwards. The second and third row units 103b, 103c, and the third and fourth roller devices 114c, 114d remain generally unaffected by the movement of the first row unit 103a and the first and second roller devices 114a, 114b.
Optionally, instead of a single roller bearing 140, two roller bearings are centrally located along one or more of the roller devices 114a-114d. Each of the two roller bearings is mounted on a respective, opposite side of the supporting bracket 143.
Referring to
Referring to
The residue-clearing sub-assembly 202 includes a forward coulter wheel 220 flanked by a pair of toothed wheels 222, 223 overlapping a rear edge portion of the forward coulter wheel 220. Thus, the residue-clearing sub-assembly 202 is similar, but necessarily identical, to the row-cleaning device 104. The forward coulter wheel 220 cuts through the residue on the soil, such as stalks from a previous year's planting, and cuts a shallow slit in the soil. The trailing toothed residue-clearing wheels 222, 223 then kick the cut residue off to opposite sides of the slit cut by the forward coulter wheel 220, thus clearing a row for planting (e.g., strip rows A-C illustrated in
The tillage and depth-control sub-assembly 204 includes a pair of rearward coulter wheels 230, 231 that are offset from each other both laterally and fore and aft, and two gauge wheels 232, 233. The rear edges of the rearward coulter wheels 230, 231 are tilted inwardly toward the slit cut by the forward coulter wheel 220, and the lower edges of the rearward coulter wheels 230, 213 are tilted outwardly away from the slit. Thus, each of the rearward coulter wheels 230, 231 makes contact with the soil at an angle in two planes, causing each of the rearward coulter wheels 230, 231 to apply a force to the soil that is upward and toward the center of the row. The aggregate effect of this angular relationship on the soil is a turbulent swirling and mixing of the soil in the space between the two rearward coulter wheels 230, 231. The turbulent swirling and mixing of the soil incorporates air and residue into the soil, and, further, breaks the soil into finer pieces. Soil thrown laterally by the leading coulter wheel 230 is caught by the trailing coulter wheel 231 to retain that soil in the tilled area between the two rearward coulter wheels 230, 231 and to form a ridge for planting.
The gauge wheels 232, 233 control the depth to which the row unit 201 penetrates into the soil, and also intercept soil and residue thrown upwardly and laterally by the trailing coulter wheel 231, to retain that soil in the strip being tilled. This prevents soil loss form the tilled area and facilitates the creation of the ridge, or berm, which is desirable for planting. Because the height of the axes of rotation of all the wheels 220, 222, 223, 230, 231 is fixed relative to the height of the axes of rotation of the gauge wheels 232, 233, the interaction among all the wheels remains essentially the same at all times. Alternatively, instead of gauge wheels, the row unit 201 includes small-belted caterpillar tracks or similar devices for controlling the depth.
Each of the gauge wheels 232, 233 includes a swirl device 240 having multiple tines 242 and being attached to a central portion of the inboard side of each respective gauge wheel 232, 233. As such, the swirl device 240 is located rearwardly of the of the tillage device (e.g., rearward coulter wheels 230, 231) and is positioned to intercept soil and residue displaced upwardly by the tillage device. The swirl device 240 rotates with the respective gauge wheel 232, 233 and helps to control the distribution of soil moving toward the respective gauge wheel 232, 233 from the rearmost of the coulter wheels 220, 230, 231.
The swirl device 240 intercepts a portion of the soil and residue thrown upwardly and laterally towards the gauge wheels 232, 233 by the trailing coulter wheel 231 and distributes the intercepted soil and residue across the tilled strip adjacent the gauge wheels 232, 233. The swirl device 240 also helps to break up clumpy soil. Because the outside diameter of the swirl device 240 is smaller than the outside diameter of the gauge wheels 232, 233, the swirl device 240 operates above ground level and does not dig into the earth. Another benefit of the swirl device 240 is that it produces thorough incorporation of fertilizer, especially dry fertilizer, with the soil within the worked strip where it is needed by the plants, rather than leaving the fertilizer in concentrated ribbons. This allows the application of more fertilizer in the strip, possibly just ahead of the planter by a few hours, without burning the seed, and may eliminate a second trip to side dress. The total amount of fertilizer applied to produce optimum crop yields may even be reduced. Fertilizer that is not thoroughly incorporated in the soil may be lost to the atmosphere or runoff, which is costly and may pollute both ground water and surface water.
In the embodiment described above, all the coulter wheels 220, 230, 231 are corrugated or fluted coulter wheels, but a wide variety of different coulter wheels are well known in the agricultural industry, and any of them may be used. The same is true of the toothed residue-clearing wheels 222, 223—a wide variety of different configurations of toothed wheels are well known in the agricultural industry for residue clearing, and any of them may be used.
The illustrative row unit 201 is urged downwardly against the soil by its own weight. If it is desired to have the ability to increase this downward force, or to be able to adjust the force, a hydraulic or pneumatic cylinder and/or one or more springs may be added between the common frame 206 and the four-bar linkage assembly 208, or between the common frame 206 and the front frame 210, to urge the common frame 206 downwardly with a controllable force. Such a hydraulic cylinder may also be used to lift the row unit off the ground for transport by a heavier, stronger, fixed-height frame that is also used to transport large quantities of fertilizer for application via multiple residue-clearing and tillage row units.
The agricultural system 200 further includes a roller device 250 that is mounted for crushing residual plant matter. The configuration and/or attachment of the roller device 250 is similar to and/or identical to the roller devices 114a-114d described above in reference to
Referring to
In alternative embodiments one or more of the wheels described above are forged blades with an induction hardened edge. The forged blades are beneficial because they are ductile and, as such, are not prone to shatter. Furthermore, in addition to being resisting to shattering, the forged blades maintain a hardened edge. In a further optional embodiment, one or more of the coulters described above is made of cast iron and includes a beveled edge.
In other alternative embodiments, various hydraulic configurations are included in one or more of the agricultural systems 100, 200. For example, hydraulic cylinders are mounted to any movable components of the agricultural systems 100, 200 in which a controllable down/up pressure is desired for maintaining a required component-to-ground pressure.
It will be evident to those skilled in the art that the invention is not limited to the details of the foregoing illustrated embodiment and that the present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof. The present embodiment is therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
Number | Name | Date | Kind |
---|---|---|---|
114002 | Godfrey | Apr 1871 | A |
353491 | Wells | Feb 1886 | A |
523508 | Bauer et al. | Jul 1894 | A |
736369 | Dynes et al. | Aug 1903 | A |
803088 | Barker | Oct 1905 | A |
1134462 | Kendrick | Apr 1915 | A |
1158023 | Beaver | Oct 1915 | A |
1247744 | Trimble | Nov 1917 | A |
1260752 | Casaday | Mar 1918 | A |
1321040 | Hoffman | Nov 1919 | A |
1391593 | Sweeting | Sep 1921 | A |
1398668 | Bordsen | Nov 1921 | A |
1791462 | Bermel | Feb 1931 | A |
1901299 | Johnson | Mar 1933 | A |
1901778 | Schlag | Mar 1933 | A |
2014334 | Johnson | Sep 1935 | A |
2058539 | Welty et al. | Oct 1936 | A |
2269051 | Cahoy | Jan 1942 | A |
2341143 | Herr | Feb 1944 | A |
2505276 | Boroski | Apr 1950 | A |
2561763 | Waters et al. | Jul 1951 | A |
2593176 | Patterson | Apr 1952 | A |
2611306 | Strehlow et al. | Sep 1952 | A |
2612827 | Baggette et al. | Oct 1952 | A |
2691353 | Secondo | Oct 1954 | A |
2692544 | Jessup | Oct 1954 | A |
2715286 | Saveson | Aug 1955 | A |
2754622 | Rohnert | Jul 1956 | A |
2771044 | Putifer | Nov 1956 | A |
2773343 | Oppel | Dec 1956 | A |
2777373 | Pursche | Jan 1957 | A |
2799234 | Chancey | Jul 1957 | A |
2805574 | Jackson, Jr. et al. | Sep 1957 | A |
2925872 | Darnell | Feb 1960 | A |
2960358 | Christison | Nov 1960 | A |
3010744 | Hollis | Nov 1961 | A |
3014547 | Van der Lely | Dec 1961 | A |
3038424 | Johnson | Jun 1962 | A |
3042121 | Broetzman et al. | Jul 1962 | A |
3057092 | Curlett | Oct 1962 | A |
3058243 | McGee | Oct 1962 | A |
3065879 | Jennings et al. | Nov 1962 | A |
3110973 | Reynolds | Nov 1963 | A |
3122901 | Thompson | Mar 1964 | A |
3123152 | Biskis | Mar 1964 | A |
3188989 | Johnston | Jun 1965 | A |
3213514 | Evans | Oct 1965 | A |
3250109 | Spyridakis | May 1966 | A |
3314278 | Bergman | Apr 1967 | A |
3319589 | Moran | May 1967 | A |
3351139 | Schmitz et al. | Nov 1967 | A |
3355930 | Fedorov | Dec 1967 | A |
3370450 | Scheucher | Feb 1968 | A |
3420273 | Greer | Jan 1969 | A |
3447495 | Miller et al. | Jun 1969 | A |
3539020 | Andersson et al. | Nov 1970 | A |
3543603 | Gley | Dec 1970 | A |
3561541 | Woelfel | Feb 1971 | A |
3576098 | Brewer | Apr 1971 | A |
3581685 | Taylor | Jun 1971 | A |
3593720 | Botterill et al. | Jul 1971 | A |
3606745 | Girodat | Sep 1971 | A |
3635495 | Orendorff | Jan 1972 | A |
3653446 | Kalmon | Apr 1972 | A |
3701327 | Krumholz | Oct 1972 | A |
3708019 | Ryan | Jan 1973 | A |
3718191 | Williams | Feb 1973 | A |
3749035 | Cayton et al. | Jul 1973 | A |
3753341 | Berg, Jr. et al. | Aug 1973 | A |
3766988 | Whitesides | Oct 1973 | A |
3774446 | Diehl | Nov 1973 | A |
3939846 | Drozhzhin et al. | Feb 1976 | A |
3945532 | Marks | Mar 1976 | A |
3975890 | Rodger | Aug 1976 | A |
4009668 | Brass et al. | Mar 1977 | A |
4018101 | Mihalic | Apr 1977 | A |
4044697 | Swanson | Aug 1977 | A |
4055126 | Brown et al. | Oct 1977 | A |
4058171 | van der Lely | Nov 1977 | A |
4063597 | Day | Dec 1977 | A |
4096730 | Martin | Jun 1978 | A |
4099576 | Jilani | Jul 1978 | A |
4122715 | Yokoyama et al. | Oct 1978 | A |
4129082 | Betulius | Dec 1978 | A |
4141200 | Johnson | Feb 1979 | A |
4141302 | Morrison, Jr. et al. | Feb 1979 | A |
4141676 | Jannen et al. | Feb 1979 | A |
4142589 | Schlagenhauf | Mar 1979 | A |
4147305 | Hunt | Apr 1979 | A |
4149475 | Bailey et al. | Apr 1979 | A |
4157661 | Schindel | Jun 1979 | A |
4173259 | Heckenkamp | Nov 1979 | A |
4182099 | Davis et al. | Jan 1980 | A |
4187916 | Harden et al. | Feb 1980 | A |
4191262 | Sylvester | Mar 1980 | A |
4196567 | Davis et al. | Apr 1980 | A |
4196917 | Oakes et al. | Apr 1980 | A |
4206817 | Bowerman | Jun 1980 | A |
4208974 | Dreyer et al. | Jun 1980 | A |
4213408 | West et al. | Jul 1980 | A |
4225191 | Knoski | Sep 1980 | A |
4233803 | Davis et al. | Nov 1980 | A |
4241674 | Mellinger | Dec 1980 | A |
4249613 | Scribner | Feb 1981 | A |
4280419 | Fischer | Jul 1981 | A |
4295532 | Williams et al. | Oct 1981 | A |
4301870 | Cane et al. | Nov 1981 | A |
4307674 | Jennings et al. | Dec 1981 | A |
4311104 | Steilen et al. | Jan 1982 | A |
4317355 | Hatsuno et al. | Mar 1982 | A |
4359101 | Gagnon | Nov 1982 | A |
4375837 | van der Lely et al. | Mar 1983 | A |
4377979 | Peterson et al. | Mar 1983 | A |
4407371 | Hohl | Oct 1983 | A |
4430952 | Murray | Feb 1984 | A |
4433568 | Kondo | Feb 1984 | A |
4438710 | Paladino | Mar 1984 | A |
4445445 | Sterrett | May 1984 | A |
4461355 | Peterson et al. | Jul 1984 | A |
4481830 | Smith et al. | Nov 1984 | A |
4499775 | Lasoen | Feb 1985 | A |
4506610 | Neal | Mar 1985 | A |
4508178 | Cowell et al. | Apr 1985 | A |
4528920 | Neumeyer | Jul 1985 | A |
4530405 | White | Jul 1985 | A |
4537262 | van der Lely | Aug 1985 | A |
4538688 | Szucs et al. | Sep 1985 | A |
4550122 | David et al. | Oct 1985 | A |
4553607 | Behn et al. | Nov 1985 | A |
4580506 | Fleischer et al. | Apr 1986 | A |
4596200 | Gafford et al. | Jun 1986 | A |
4598654 | Robertson | Jul 1986 | A |
4603746 | Swales | Aug 1986 | A |
4604906 | Scarpa | Aug 1986 | A |
4630773 | Ortlip | Dec 1986 | A |
4643043 | Furuta et al. | Feb 1987 | A |
4646620 | Buchl | Mar 1987 | A |
4650005 | Tebben | Mar 1987 | A |
4669550 | Sittre | Jun 1987 | A |
4671193 | States | Jun 1987 | A |
4674578 | Bexten et al. | Jun 1987 | A |
4703809 | Van den Ende | Nov 1987 | A |
4726304 | Dreyer et al. | Feb 1988 | A |
4738461 | Stephenson et al. | Apr 1988 | A |
4744316 | Lienemann et al. | May 1988 | A |
4762075 | Halford | Aug 1988 | A |
4765190 | Strubbe | Aug 1988 | A |
4768387 | Kemp et al. | Sep 1988 | A |
4779684 | Schultz | Oct 1988 | A |
4785890 | Martin | Nov 1988 | A |
4825957 | White et al. | May 1989 | A |
4825959 | Wilhelm | May 1989 | A |
4920901 | Pounds | May 1990 | A |
4926767 | Thomas | May 1990 | A |
4930431 | Alexander | Jun 1990 | A |
4986367 | Kinzenbaw | Jan 1991 | A |
4998488 | Hansson | Mar 1991 | A |
5015997 | Strubbe | May 1991 | A |
5027525 | Haukaas | Jul 1991 | A |
5033397 | Colburn, Jr. | Jul 1991 | A |
5065632 | Reuter | Nov 1991 | A |
5074227 | Schwitters | Dec 1991 | A |
5076180 | Schneider | Dec 1991 | A |
5092255 | Long et al. | Mar 1992 | A |
5113957 | Tamai et al. | May 1992 | A |
5129282 | Bassett et al. | Jul 1992 | A |
5136934 | Darby, Jr. | Aug 1992 | A |
5190112 | Johnston et al. | Mar 1993 | A |
5234060 | Carter | Aug 1993 | A |
5240080 | Bassett et al. | Aug 1993 | A |
5255617 | Williams et al. | Oct 1993 | A |
5269237 | Baker et al. | Dec 1993 | A |
5282389 | Faivre et al. | Feb 1994 | A |
5285854 | Thacker et al. | Feb 1994 | A |
5333694 | Roggenbuck et al. | Aug 1994 | A |
5337832 | Bassett | Aug 1994 | A |
5341754 | Winterton | Aug 1994 | A |
5346019 | Kinzenbaw et al. | Sep 1994 | A |
5346020 | Bassett | Sep 1994 | A |
5349911 | Holst et al. | Sep 1994 | A |
5351635 | Hulicsko | Oct 1994 | A |
5379847 | Snyder | Jan 1995 | A |
5394946 | Clifton et al. | Mar 1995 | A |
5398771 | Hornung et al. | Mar 1995 | A |
5419402 | Heintzman | May 1995 | A |
5427192 | Stephenson et al. | Jun 1995 | A |
5443023 | Carroll | Aug 1995 | A |
5443125 | Clark et al. | Aug 1995 | A |
5461995 | Winterton | Oct 1995 | A |
5462124 | Rawson | Oct 1995 | A |
5473999 | Rawson et al. | Dec 1995 | A |
5474135 | Schlagel | Dec 1995 | A |
5477682 | Tobiasz | Dec 1995 | A |
5477792 | Bassett et al. | Dec 1995 | A |
5479868 | Bassett | Jan 1996 | A |
5479992 | Bassett | Jan 1996 | A |
5485796 | Bassett | Jan 1996 | A |
5485886 | Bassett | Jan 1996 | A |
5497717 | Martin | Mar 1996 | A |
5497837 | Kehrney | Mar 1996 | A |
5499683 | Bassett | Mar 1996 | A |
5499685 | Downing, Jr. | Mar 1996 | A |
5517932 | Ott et al. | May 1996 | A |
5524525 | Nikkel et al. | Jun 1996 | A |
5531171 | Whitesel et al. | Jul 1996 | A |
5542362 | Bassett | Aug 1996 | A |
5544709 | Lowe et al. | Aug 1996 | A |
5562165 | Janelle et al. | Oct 1996 | A |
5590611 | Smith | Jan 1997 | A |
5603269 | Bassett | Feb 1997 | A |
5623997 | Rawson et al. | Apr 1997 | A |
5640914 | Rawson | Jun 1997 | A |
5657707 | Dresher et al. | Aug 1997 | A |
5660126 | Freed et al. | Aug 1997 | A |
5685245 | Bassett | Nov 1997 | A |
5704430 | Smith et al. | Jan 1998 | A |
5709271 | Bassett | Jan 1998 | A |
5725057 | Taylor | Mar 1998 | A |
5727638 | Wodrich et al. | Mar 1998 | A |
5852982 | Peter | Dec 1998 | A |
5868207 | Langbakk et al. | Feb 1999 | A |
5878678 | Stephens et al. | Mar 1999 | A |
RE36243 | Rawson et al. | Jul 1999 | E |
5953895 | Hobbs | Sep 1999 | A |
5970891 | Schlagel | Oct 1999 | A |
5970892 | Wendling et al. | Oct 1999 | A |
5988293 | Brueggen et al. | Nov 1999 | A |
6067918 | Kirby | May 2000 | A |
6068061 | Smith | May 2000 | A |
6164385 | Buchl | Dec 2000 | A |
6223663 | Wendling et al. | May 2001 | B1 |
6223828 | Paulson et al. | May 2001 | B1 |
6237696 | Mayerle | May 2001 | B1 |
6253692 | Wendling et al. | Jul 2001 | B1 |
6314897 | Hagny | Nov 2001 | B1 |
6325156 | Barry | Dec 2001 | B1 |
6330922 | King | Dec 2001 | B1 |
6331142 | Bischoff | Dec 2001 | B1 |
6343661 | Thomspon et al. | Feb 2002 | B1 |
6347594 | Wendling et al. | Feb 2002 | B1 |
6382326 | Goins et al. | May 2002 | B1 |
6389999 | Duello | May 2002 | B1 |
6453832 | Schaffert | Sep 2002 | B1 |
6454019 | Prairie et al. | Sep 2002 | B1 |
6460623 | Knussman et al. | Oct 2002 | B1 |
6516595 | Rhody et al. | Feb 2003 | B2 |
6530334 | Hagny | Mar 2003 | B2 |
6575104 | Brummelhuis | Jun 2003 | B2 |
6644224 | Bassett | Nov 2003 | B1 |
6681868 | Kovach et al. | Jan 2004 | B2 |
6701856 | Zoke et al. | Mar 2004 | B1 |
6701857 | Jensen et al. | Mar 2004 | B1 |
6715433 | Friestad | Apr 2004 | B1 |
6786130 | Steinlage et al. | Sep 2004 | B2 |
6834598 | Jüptner | Dec 2004 | B2 |
6840853 | Foth | Jan 2005 | B2 |
6886650 | Bremmer | May 2005 | B2 |
6912963 | Bassett | Jul 2005 | B2 |
6968907 | Raper | Nov 2005 | B1 |
6986313 | Halford et al. | Jan 2006 | B2 |
6997400 | Hanna et al. | Feb 2006 | B1 |
7004090 | Swanson | Feb 2006 | B2 |
7044070 | Kaster et al. | May 2006 | B2 |
7063167 | Staszak et al. | Jun 2006 | B1 |
7159523 | Bourgault et al. | Jan 2007 | B2 |
7222575 | Bassett | May 2007 | B2 |
7290491 | Summach et al. | Nov 2007 | B2 |
7360494 | Martin | Apr 2008 | B2 |
7360495 | Martin | Apr 2008 | B1 |
7438006 | Mariman et al. | Oct 2008 | B2 |
7451712 | Bassett et al. | Nov 2008 | B2 |
7523709 | Kiest | Apr 2009 | B1 |
7540333 | Bettin et al. | Jun 2009 | B2 |
7575066 | Bauer | Aug 2009 | B2 |
7584707 | Sauder et al. | Sep 2009 | B2 |
7665539 | Bassett et al. | Feb 2010 | B2 |
7673570 | Bassett | Mar 2010 | B1 |
7743718 | Bassett | Jun 2010 | B2 |
7870827 | Bassett | Jan 2011 | B2 |
7938074 | Liu | May 2011 | B2 |
7944210 | Fischer et al. | May 2011 | B2 |
7946231 | Martin et al. | May 2011 | B2 |
8146519 | Bassett | Apr 2012 | B2 |
8151717 | Bassett | Apr 2012 | B2 |
8171707 | Kitchel | May 2012 | B2 |
8327780 | Bassett | Dec 2012 | B2 |
8359988 | Bassett | Jan 2013 | B2 |
8380356 | Zielke et al. | Feb 2013 | B1 |
8386137 | Sauder et al. | Feb 2013 | B2 |
8393407 | Freed | Mar 2013 | B2 |
8408149 | Rylander | Apr 2013 | B2 |
6644224 | Bassett | Jun 2013 | C1 |
6912963 | Bassett | Jun 2013 | C1 |
7222575 | Bassett | Jun 2013 | C1 |
8544397 | Bassett | Oct 2013 | B2 |
8544398 | Bassett | Oct 2013 | B2 |
8550020 | Sauder et al. | Oct 2013 | B2 |
8573319 | Casper et al. | Nov 2013 | B1 |
8634992 | Sauder et al. | Jan 2014 | B2 |
8636077 | Bassett | Jan 2014 | B2 |
8863857 | Bassett | Oct 2014 | B2 |
8985232 | Bassett | Mar 2015 | B2 |
9107337 | Bassett | Aug 2015 | B2 |
20020162492 | Juptner | Nov 2002 | A1 |
20060102058 | Swanson | May 2006 | A1 |
20060191695 | Walker et al. | Aug 2006 | A1 |
20060237203 | Miskin | Oct 2006 | A1 |
20070044694 | Martin | Mar 2007 | A1 |
20070272134 | Baker et al. | Nov 2007 | A1 |
20080093093 | Sheppard et al. | Apr 2008 | A1 |
20080173220 | Wuertz | Jul 2008 | A1 |
20080236461 | Sauder et al. | Oct 2008 | A1 |
20080256916 | Vaske et al. | Oct 2008 | A1 |
20100019471 | Ruckle et al. | Jan 2010 | A1 |
20100108336 | Thomson et al. | May 2010 | A1 |
20100180695 | Sauder et al. | Jul 2010 | A1 |
20100198529 | Sauder et al. | Aug 2010 | A1 |
20100282480 | Breker et al. | Nov 2010 | A1 |
20110247537 | Freed | Oct 2011 | A1 |
20110313575 | Kowalchuk et al. | Dec 2011 | A1 |
20120167809 | Bassett | Jul 2012 | A1 |
20120186216 | Vaske et al. | Jul 2012 | A1 |
20120210920 | Bassett | Aug 2012 | A1 |
20120216731 | Schilling et al. | Aug 2012 | A1 |
20120232691 | Green et al. | Sep 2012 | A1 |
20120255475 | Mariman et al. | Oct 2012 | A1 |
20120305274 | Bassett | Dec 2012 | A1 |
20130000535 | Martin | Jan 2013 | A1 |
20130032363 | Curry et al. | Feb 2013 | A1 |
20130112121 | Achen et al. | May 2013 | A1 |
20130112124 | Bergen et al. | May 2013 | A1 |
20130133904 | Bassett | May 2013 | A1 |
20130146318 | Bassett | Jun 2013 | A1 |
20130192186 | Bassett | Aug 2013 | A1 |
20130199808 | Bassett | Aug 2013 | A1 |
20130213676 | Bassett | Aug 2013 | A1 |
20130248212 | Bassett | Sep 2013 | A1 |
20130264078 | Bassett | Oct 2013 | A1 |
20130306337 | Bassett | Nov 2013 | A1 |
20130333599 | Bassett et al. | Dec 2013 | A1 |
20140026748 | Stoller et al. | Jan 2014 | A1 |
20140026792 | Bassett | Jan 2014 | A1 |
20140033958 | Bassett | Feb 2014 | A1 |
20140034339 | Sauder et al. | Feb 2014 | A1 |
20140034343 | Sauder et al. | Feb 2014 | A1 |
20140034344 | Bassett | Feb 2014 | A1 |
20140048001 | Bassett | Feb 2014 | A1 |
20140048295 | Bassett | Feb 2014 | A1 |
20140048296 | Bassett | Feb 2014 | A1 |
20140048297 | Bassett | Feb 2014 | A1 |
20140060864 | Martin | Mar 2014 | A1 |
20140224513 | Van Buskirk et al. | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
551372 | Oct 1956 | BE |
530673 | Sep 1956 | CA |
335464 | Sep 1921 | DE |
1108971 | Jun 1961 | DE |
24 02 411 | Jul 1975 | DE |
2 497 348 | Sep 2012 | EP |
1 574 412 | Sep 1980 | GB |
2 056 238 | Oct 1982 | GB |
54-57726 | May 1979 | JP |
392897 | Aug 1973 | SU |
436778 | Jul 1974 | SU |
611201 | Jun 1978 | SU |
625648 | Sep 1978 | SU |
1410884 | Jul 1988 | SU |
1466674 | Mar 1989 | SU |
WO 2011161140 | Dec 2011 | WO |
WO 2012149367 | Jan 2012 | WO |
WO 2012149415 | Jan 2012 | WO |
WO 2012167244 | Dec 2012 | WO |
WO 2013025898 | Feb 2013 | WO |
Entry |
---|
Case Corporation Brochure, Planters 900 Series Units/Modules Product Information, Aug. 1986 (4 pages). |
Buffalo Farm Equipment All Flex Cultivator Operator Manual, Apr. 1990 (7 pages). |
Shivvers, Moisture Trac 3000 Brochure, Aug. 21, 1990 (5 pages). |
The New Farm, “New Efficiencies in Nitrogen Application,” Feb. 1991, p. 6 (1 page). |
Hiniker Company, Flow & Acreage Continuous Tracking System Monitor Demonstration Manuel, date estimated as early as Feb. 1991 (7 pages). |
Russnogle, John, “Sky Spy: Gulf War Technology Pinpoints Field and Yields,” Top Producer, A Farm Journal Publication, Nov. 1991, pp. 12-14 (4 pages). |
Borgelt, Steven C., “Sensor Technologies and Control Strategies for Managing Variability,” University of Missouri, Apr. 14-16, 1992 (15 pages). |
Buffalo Farm Equipment Catalog on Models 4600, 4630, 4640, and 4620, date estimated as early as Feb. 1992 (4 pages). |
Hiniker 5000 Cultivator Brochure, date estimated as early as Feb. 1992 (4 pages). |
Hiniker Series 5000 Row Cultivator Rigid and Folding Toolbar Operator's Manual, date estimated as early as Feb. 1992 (5 pages). |
Orthman Manufacturing, Inc., Rowcrop Cultivator Booklet, date estimated as early as Feb. 1992 (4 pages). |
Yetter Catalog, date estimated as early as Feb. 1992 (4 pages). |
Exner, Rick, “Sustainable Agriculture: Practical Farmers of Iowa Reducing Weed Pressure in Ridge-Till,” Iowa State University University Extension, http://www.extension.iastate.edu/Publications/SA2.pdf, Jul. 1992, Reviewed Jul. 2009, retrieved Nov. 2, 2012 (4 pages). |
Finck, Charlene, “Listen to Your Soil,” Farm Journal Article, Jan. 1993, pp. 14-15 (2 pages). |
Acu-Grain, “Combine Yield Monitor 99% Accurate? ‘You Bet Your Bushels!!’” date estimated as early as Feb. 1993 (2 pages). |
John Deere, New 4435 Hydro Row-Crop and Small-Grain Combine, date estimated as early as Feb. 1993 (8 pages). |
Vansichen, R. et al., “Continuous Wheat Yield Measurement on a Combine,” date estimated as early as Feb. 1993 (5 pages). |
Yetter 2010 Product Catalog, date estimated as early as Jan. 2010 (2 pages). |
Yetter Cut and Move Manual, Sep. 2010 (28 pages). |
John Deere, Seat Catalog, date estimated as early Sep. 2011 (19 pages). |
Martin Industries, LLC Paired 13″ Spading Closing Wheels Brochure, date estimated as early as Jun. 6, 2012, pp. 18-25 (8 pages). |
Vogt, Willie, “Revisiting Robotics,” http://m.farmindustrynews.com/farm-equipment/revisiting-robotics, Dec. 19, 2013 (3 pages). |
John Deere, New Semi-Active Sea Suspension, http://www.deere.com/en—US/parts/agparts/semiactiveseat.html, date estimated as early as Jan. 2014, retrieved Feb. 6, 2014 (2 pages). |
Number | Date | Country | |
---|---|---|---|
20150216104 A1 | Aug 2015 | US |