The invention described and claimed hereinbelow is also described in European Patent Application EP 07015319.3 filed on Aug. 3, 2007. This European Patent Application, subject matter of which is incorporated herein by reference, provides the basis for a claim of priority of invention under 35 U.S.C. 119(a)-(d).
The invention relates to an agricultural working machine with at least one spout.
DE 44 26 059 discloses a generic agricultural working machine designed as a forage harvester to whose spout is assigned a camera which detects both the end region of the spout and the loading space of the trailer. Furthermore, a monitor is provided in the vicinity of the driver's seat arranged in the vehicle cab, on which monitor are visualised the sequences recorded by the camera in such a manner that both the end region of the spout and the loading space of the transport container are visualised in one and the same representation.
This has the particular advantage that the operator of the agricultural working machine is able to distinguish clearly whether the line of product escaping from the spout in the region of the discharge cap describes a parabolic trajectory which introduces the crop line reliably into loading space of the transport vehicle without the driver having to turn round and without his having to observe the spout and the transport vehicle directly.
The essential disadvantage of a product jet detection device thus structured is that the operator of the agricultural working machine must draw the correct conclusions from the images generated by the camera and finally carry out the position adaptation of the spout himself. Because the operator of the agricultural working machine must monitor and control a multiplicity of machine functions in the harvesting process, the driver can quickly become overloaded by this on the one hand. On the other hand the optimised position adjustment of the spout depends substantially on the skills of the driver and, depending on experience, may vary considerably from driver to driver, so that sometimes no optimised position of the spout is found, or it is difficult to find it.
To avoid these disadvantages EP 1 344 445 proposes a camera-based system for controlling the spout, in which the sequences generated by the camera are analysed by an evaluation unit and the evaluation unit automatically generates control signals for the position change of the spout as a function of the analysis result. In this case the control signals result immediately in pressure application or pressure relief of the lifting cylinders guiding the spout and its discharge cap. An essential disadvantage of control system structured in this manner is that the possibilities of guiding the project jet depend on the kinematic possibilities of the spouts themselves. In such a system the operators of agricultural working machines and transport vehicles are not totally released from the task of monitoring the transfer process.
The object of the invention is to avoid the prior art disadvantages described and, in particular, to propose a control system for a spout of agricultural working machines which almost completely relieves the operator of the agricultural working machine of the task of monitoring the transfer process.
Because the electro-optical device assigned to the agricultural working machine records characteristic parameters of the spout and characteristic parameters of the transport vehicle and/or the agricultural working machine, this ensures that a control system for the spout of agricultural working machines is provided which almost completely relieves the operator of the agricultural working machine of the task of monitoring the transfer process.
In an advantageous design of the invention the characteristic parameters are kinematic and/or geometric parameters of the spout, the transport vehicle and the agricultural working machine, so that the control of the position change can be defined by means of known mathematical relations.
Since the characteristic parameters may be the filling level of the transport vehicle, the fill rate of the transport vehicle, a filling level pattern representing the filing level of the transport vehicle, the recognition of the position of the side walls of the transport vehicle, the speed of travel and/or the steering angle of the transport vehicle, the speed of travel and/or the steering angle of the agricultural working machine, the length of cut and chop quality of the crop conveyed from the spout, parameters are available which permit optimum guidance, at least of the spout, and hence uniform filling of the storage container of the transport vehicle.
In an advantageous further development of the invention the agricultural working machine and/or the transport vehicle can generate characteristic parameters which include at least the speed of travel and/or steering angle of the transport vehicle, the speed of travel and/or the steering angle of the agricultural working machine and GPS-based position data on the agricultural working machine and/or the transport vehicle. The advantage of this is that the position control of the agricultural working machine and of the transport vehicle can be incorporated in the transfer process so that rapid, precise position changing of the spout can be effected.
In an advantageous further development of the invention the filling level pattern includes the identification of patterns, these patterns including a pattern for the crop, a pattern for the storage container and a pattern for the area surrounding the storage container or a combination of these. Such a design has the advantage that the variation in filling level, the position of the agricultural working machine and of the transport vehicle relative to each other, and the position of the spout, can quickly be determined by comparing the patterns.
A position control system that is technically simple to convert is provided when the electro-optical device is coupled to a signal processing device and the signal processing device is designed so that it processes as input signals the information signals generated by the electro-optical device, information signals generated by the transport vehicle and information signals generated by the agricultural working machine or a combination of these into output signals, and so that the output signals form position control signals for controlling the position of the spout and/or the transport vehicle and/or the agricultural working machine.
Because a change of position of the spout relative to the transport vehicle can also be effected by means of the easily and rapidly convertible speed control system of the transport vehicle and/or the agricultural working machine, provision is made, in a further advantageous design of the invention, for position variation relations to be stored in the signal processing device, and for the signal processing device to generate the position control signals of the spout and/or the transport vehicle and/or the agricultural working machine as a function of one or more of these position variation relations.
Since the position control signals control the steering and/or the speed of travel of the transport vehicle and/or the agricultural working machine, the considerably more complicated actuation of the spout itself may also be dispensed with whilst still guaranteeing optimum filling of the transport vehicle.
A technically simple conversion of the detection of the transport vehicle is achieved when the electro-optical device is designed as a camera which generates a three-dimensional image at least of the storage container to be filled, so that the stream of crop to be conveyed into the storage container can be controlled very precisely, in terms of optimum filling, as a function of the spatial conditions.
Since the camera is designed as a 3D Photonic Mixer Device camera of prior art, which determines the spatial coordinate in addition to two-dimensional image coordinates from the running time measurement of the image generating signal waves, and generates a three-dimensional image from the two-dimensional image coordinates and the spatial coordinate, a spatial representation at least of the storage container is generated in a technically proven manner. The same result is obtained if the electro-optical device is designed, for example, as a panorama image camera, an infrared or laser scanner or stereo camera.
Since the filling height, the positions of the side walls, the height of the side walls, the height of the storage container and/or the transport vehicle above the ground, the transport vehicle type, the position of the roof opening of the transport vehicle and the empty volume of the storage container of the transport vehicle are derived from the three-dimensional image information, the system generates a very accurate three-dimensional image at least of the geometrical conditions of the storage container. Finally, if, in an advantageous design of the invention, filling horizons are determined from the calculated locally resolved filling heights, taking into consideration the calculated side wall heights, the transfer process can be adapted very precisely to the filling conditions of the storage container.
In an advantageous design of the invention a displacement of the impact area caused by disturbing factors can be determined, the position control of the spout and/or the transport vehicle and/or the agricultural working machine being influenced so that the actual impact area corresponds to the position of the impact area determined in the signal processing device. A typical disturbing factor may in this context be the wind velocity, the acceleration and/or the velocity of the crop stream, the lift up movement of the spout by collision between obstacles and the agricultural working machine or a combination thereof, because the crop jet is frequently deflected very intensively by this and is sometimes conveyed beyond the side walls of the storage container.
An optimum view of the transfer process and filling of the transport vehicle is obtained when the electro-optical device is arranged downstream in the product ejection direction of the spout and is coupled to the spout by means of a supporting frame structure or the electro-optical device is arranged directly to the discharge cap of the spout. This effect is supported further when, in an advantageous further development of the invention, the spout comprises, at its outlet-side end, a discharge cap that can be pivoted about a pivoting axis orientated transversely to the direction of escape of the product flow, the movement of the supporting frame structure being coupled to the movement of the discharge cap.
In another aspect of the invention the electro-optical device is designed as panorama image camera, as infrared or laser scanner or stereo camera.
The better the detection of the transfer process, the more accurately the transfer process is controlled. In this context provision is made, in a further advantageous design, for electro-optical devices to be assigned to the transport vehicle and/or the storage container, the signal process device taking into consideration the information signals from these electro-optical devices when analysing the information signals from the further electro-optical device.
Because the operator is directly relieved of the task of controlling and monitoring of the transfer process, it is extremely important that the operator of the agricultural working machine and/or the transport vehicle is actively informed of critical conditions of the transfer process. For this purpose provision is made, in an advantageous further development of the invention, for the image analysis of the signal processing device to be monitored and critical conditions that impair the derivation of image information to be signalled. In this context provision is made, in an advantageous design, for the signalling to be effected by facing a video sequence into a monitor accessible to the operator of the agricultural working machine and/or the transport vehicle.
To simplify the image analysis and for faster detection of critical conditions of the transfer process by the operator of the agricultural working machine and/or the transport vehicle, provision is made, in an advantageous design of the invention, for characteristic lines and/or orientation points to be visualised in the video sequence, the characteristic lines and/or the orientation points simulating at least the upper side wall edges. Finally, in order to be able to implement the automatic control of the transfer process efficiently, it is proposed in a further advantageous design to assign a coordinate system to the side wall edges simulated by the characteristic lines and/or the orientation points and defining the inlet opening of the storage container, so that the position of the jet of crop escaping from the spout can be controlled along this coordinate system so that finally this coordinate system also forms a characteristic parameter of the transport vehicle.
A particularly efficient application of the position variation of the spout, the agricultural working machine and the transport vehicle is provided when circumnavigating obstacles where, because of the variation in transverse distance between the agricultural working machine and the transport vehicle, the flow of crop escaping from the spout frequently no longer reaches the storage container and falls to the ground as lost product.
Since in a further advantageous design of the invention patterns of different storage container types are stored in the signal processing unit, where the pattern of the storage container generated by the electro-optical device and/or the signal processing device can be compared with the stored patterns and the appropriate trailer type can be detected and selected, this ensures that the container identification can be completed quickly and a reliable contour pattern can be used. In such a case the influence of a side wall contour that is not fully detected by the elector-optical device is reduced to an interference or interruption of the transfer process by incorrect position control of the spout.
In another aspect of the invention one gets a high-flexible analyzing tool if the patterns, generated by the electro-optical device are structured as 3D patterns and/or shape patterns and/or texture patterns and/or colour patterns.
For improving the visibility conditions of the crop stream and/or the position of the storage container detected by the electro-optical device, provision is made, to use a electro-optical device consisting of at least one camera and at least one light source, illuminating the crop stream and/or the storage container detected by the camera, whereas the at least one light source could be attached to the spout of the forage harvester and/or the chassis of the forage harvester and/or the transport vehicle. The same effect can be achieved, if the illuminating direction of the at least one light source differs from the viewing direction of the camera. In a preferred solution the at least one light source illuminates the crop stream transversally and/or in an opposite direction to the viewing direction of the camera. Such an arrangement ensures that a light scattering, based on reflection of light waves on crop stream pieces, will be avoided, what improves the visibility of the illuminated area.
In the manner according to the invention spout 4 is assigned at least one electro-optical device 18, to be described in greater detail below, which device is fastened directly to the pivotably movable discharge cap 14 by means of a supporting frame structure 19 in the exemplary embodiment shown. Electro-optical device 18 is here positioned so that it is arranged downstream of spout 4 in the direction of product discharge 20, and at least partially detects crop flow 7 and transport vehicle 6 from an upper-side region. It lies within the scope of the invention for at least one or a plurality of electro-optical devices 18 to be positioned in any position of spout 4 or forage harvester 2, provided that detection region 21 of electro-optical device 18 at least partially detects transport vehicle 6.
Electro-optical device 18 is coupled either wire-based or wirelessly to a signal processing device 22 assigned in the exemplary embodiment shown to agricultural working machine 1, signal processing device 22 being integrated, for example, in the so-called data bus system 23 of forage harvester 2 and, in the simplest case, being arranged in driver's cab 3. In order to determine so-called geo-referenced position data of agricultural working machine 1 and spout 4 assigned to it, and of transport vehicle 6 consisting of tractor 24 and storage container 25, both forage harvester 2 and tractor 24 are provided with a so-called GPS system 26, 27, which by a known method, and hence a method which is not described in further detail, is able to generate satellite 28—based position data.
However, since detection region 21 of electro-optical device 18 at least partially detects storage container 25 of transport vehicle 6, according to
Finally, software modules 33 are stored in signal processing unit 22, which modules derive the corresponding characteristic parameters 30 in a manner to be described in greater detail below from information signals Z from electro-optical device 18, where these characteristic parameters 30 may be filling level 30a of transport vehicle 6, the fill rate of transport vehicle 6, a filling level pattern 30b representing the filling level of transport vehicle 6, the detection of the position of side walls 34 (30c) and travel speed 30d and steering movement 30e of transport vehicle 6, travel speed 30f and steering movement 30g of agricultural working machine 1, as well as length of cut (30h) and chop quality 30i of crop flow 7 conveyed out of spout 4. Moreover, output signals D, which form position control signals E for position controlling of spout 4, as well as position signals F, G for position controlling of agricultural working machine 1 and/or transport vehicle 6, are generated in signal processing device 22 in the manner according to the invention, taking into consideration the different input signals A-C.
Position control signals E, which effect the position control of spout 4, an effect the activation or deactivation of hydraulic or electric motor 8 assigned to spout 4, according to
Because on the one hand the position control of spout 4 is subject to highly complex geometric relationships, and because on the other hand delays due to inertia can arise when converting the generated position control signals E for actuating spout 4, it may be advantageous for transport vehicle 6 and/or agricultural working machine 1 itself to be incorporated in the process of position control, which is ultimately a control of the path of movement 20 of crop flow 7 escaping from spout 4. In a preferred design this can be effected in that position control signals F, G generated by signal processing device 22 and determined for position control of agricultural working machine 1 or transport vehicle 6, each effect an increase or reduction in the respective travel speed and/or influence the respective steering angle on forage harvester 2 and tractor 24. This also enables the optimum filling of storage container 25 also to be assisted by the fact that the relative speed of agricultural working machine 1 and transport vehicle 6, as well as their alignment to each other, based on the direction of travel, are varied, which ultimately results in a variation in the impact region of crop flow discharged 7 discharged from spout 4 on storage container 25.
If agricultural working machine 1 and transport vehicle 6 have to circumnavigate obstacles 36 located in territory 35 to be worked, such as trees or telegraph poles, the situation then arises that agricultural working machine 1 and transport vehicle 6 separate from each other. Now in order also to ensure that crop flow 7 safely reaches storage container 25 of transport vehicle 6 when circumnavigating an obstacle 36 represented in
If an obstacle has to be circumnavigated the position control may be structured, for example, so that signal processing device 22 generates output signals D from input signals A-C received from spout 4, agricultural working machine 1 and transport vehicle 6, which input signals may include among other things, as described above, the steering angles and speeds of travel of forage harvester 2 and tractor 24, these output signals D effecting a position control of spout 4 and/or of agricultural working machine 1 and/or transport vehicle 6.
A preferred design of such a position control may, for example, be provided so that steering angles of forage harvester 2 and tractor 24, which are in opposite directions due to circumnavigation of obstacle 36 on the right and left side, are adapted to each other and are limited so that a certain transverse distance 39 between forage harvester 2 and transport vehicle 6 is not exceed and so that a position variation of spout 4 always ensures transfer of crop flow 7 into storage container 25. Signal processing device 22 therefore generates different position control signals E-G, as a function of the detected characteristic parameters 30-32, or a combination of them, which signals, taking into consideration the kinematic possibilities of spout 4, agricultural working machine 1 and transport vehicle 6, effect their position variation.
In the simplest case the so-called oversteering of spout 4, agricultural working machine 1 and transport vehicle 6 can be avoided by storing in signal processing device 22 characteristics in which different position variation relationships 40 are coded. A typical position variation relationship 40 would be, for example, for the extremely elaborate actuation of spout 4 to be replaced, for its position variation, by a control of the travel speed and/or steering movement of the agricultural working machine and/or transport vehicle 6 if the position of spout 4 required for optimum filling of storage container 25 can thereby be achieved more quickly and with little steering expenditure.
However, it is also conceivable for electro-optical device 18 to be assigned to spout 4 at any point and to perform position variations of spout 4 directly. If detection region 21 does not fully or adequately detect the object to be detected, in
Because of the three-dimensional image information it is also possible to determine a loading condition 53 of storage container 25 taking into consideration the determined filling height horizontal 52 and heights of the individual side walls 34. Furthermore it leis in the scope of invention to derive from three-dimensional image 44 an information about the height of the storage container 25 and/or the transport vehicle 6 above the ground, the storage container 25 type and, if existing, the position of a so-called roof opening of the storage container 25.
Because the image information is highly complex, the image information analysis may be based in a preferred design on the definition and detection of so-called patterns. As represented diagrammatically in
Furthermore, signal processing unit 22, or directly, camera 41, can be assigned a storage unit 61 (shown in
Depending on the quality of three-dimensional images 44, signal processing device 22, or directly, respective camera 41, can be designed so that it detects individual particles 59 of crop flow 7 from the image information of the three-dimensional images 44, and generates from this information on length of cut 60 and hence the chop quality.
Since signal processing device 22 coupled to the respective electro-optical device 18, or directly, the respective electro-optical device 18, generates a pattern 57 for surrounding area 29, the characteristic parameters speed of travel and steering movement 30f, g of agricultural working machine 1 may be derived from the shift of this pattern 57 from one image to the next when spout device 4 is not moved. Similarly, the characteristic parameters 32 speed of travel and steering movement 30d,e of transport vehicle 6 may be derived from the shift of pattern 56 representing storage container 25 to pattern 57, representing surrounding area 29, when spout 4 is not moved. On the contrary, the variation in loading condition 53 and the variation in the position of spout 4 in the space, which are ultimately all the components of characteristic parameters 30 generated by electro-optical device 18, may be derived from the change of position and shape of pattern 55, representing filling level pattern 54, between two images 44.
So that the three-dimensional images 44 generated by electro-optical device 18 are available not only for position control but also for the operator of the agricultural working machine and, if necessary, for the operator of transport vehicle 6, as shown in
It also lies within the scope of the invention for electro-optical devices 18 also to be assigned, according to
In a further design of the invention provision may also be made for a displacement of impact region 69, caused by disturbing factors, to be detected, the position control of spout 4 and/or transport vehicle 6 and/or agricultural working machine 1 being influenced so that the actual impact region 69 corresponds to the position of impact region 69 of crop flow 7 determined in signal processing device 22. According to
Furthermore, the position signals of agricultural working machine 1 and transport vehicle 6, generated by the different GPS systems 26, 27 sown in
In another configuration of the invention electro-optical device 18 consists of at least one camera 41 and at least one light source 74 (shown in
Number | Date | Country | Kind |
---|---|---|---|
07015319.3 | Aug 2007 | EP | regional |