The present invention relates to agrochemical compositions: their use for foliar application; their use at low spray volumes; their use by unmanned aerial systems (UAS), unmanned guided vehicles (UGV), and tractor mounted boom sprayers fitted with conventional nozzles but also pulse width modulation spray nozzles or rotating disc droplet applicators; and their application for controlling agricultural pests, weeds or diseases, in particular on waxy leaves, and in particular the present invention relates to agrochemical compositions with a reduced drift, in particular in spray applications.
Pesticidal active compounds (AIs), e.g., herbicides, fungicides, insecticides, bactericides, miticides, plant growth regulators, etc., and their formulated products are often sprayed, usually after dilution in an aqueous spray liquid, onto plants and/or their habitat.
While modern agriculture faces many challenges in producing sufficient food in a safe and sustainable way, there is also a need to utilise crop protection products to enhance the safety, quality and yield while minimising the impact to the environment and agricultural land. Many crop protection products, whether chemical or biological, are normally applied at relatively high spray volumes, for example in selected cases >50 L/ha, and often >150-400 L/ha. A consequence of this is that much energy must be expended to carry the high volume of spray liquid and then apply it to the crop by spray application. This can be performed by large tractors which on account of their weight and also the weight of the spray liquid produce CO 2 from the mechanical work involved and also cause detrimental compaction of the soil, affecting root growth, health and yield of the plants, as well as the energy subsequently expended in remediating these effects.
Moreover, when applying such spray formulations, a more or less pronounced drifting of the spray solution containing the active substance(s) may be observed, depending on the wind conditions, nozzle type, and other application parameters such as, for example, nozzle pressure, boom height, and tractor speed.
Pesticide spray drift is a major source of concern in relation to the environmental impact of agriculture on natural ecosystems and urban areas. Furthermore, this drift is undesirable because it causes a certain part of the applied agrochemical to be lost as far as the intended application rate of the treated area is concerned.
More importantly, the drifting material might cause damage to neighbouring crops and especially, have effects on the local environment (e.g., surface water, non-target flora and fauna) as well as bystanders and occupants in residential areas.
There is a need for a solution that significantly reduces the drift of the active ingredients/formulations, both when sprayed, while at the same time preferably reducing high volumes of spray liquid and reducing the weight of the equipment required to apply the product.
Various methods are used to prevent the drifting of the spray outside the field borders. The use of natural or artificial windbreaks is well known. However, it has been described that even when such screens are used, drift can cause deposition of the active substances behind such borders (e.g., “Deposition of spray drift behind border structures”, M. De Schampheleire et al. Crop Protection 28 (2009) 1061-1075). Another frequently used drift mitigation measure is buffer zones, either off-crop or in-crop. A disadvantage of off-crop buffer zones is that part of the field cannot be sown with a crop, an economic cost to the farmer. A disadvantage of in-crop buffer zones is that part of the crop is not protected adequately, resulting in a lower yield and perhaps resistance development. Clearly, this is something farmers want to prevent.
Next to physically limiting spray drift, it is also possible to alter the structure of the spray cloud so that less drops are prone to drift—i.e., typically those drops prone to drift have a diameter under 100 μm. This can be done by choosing different types of nozzles, changing the pressure at which the spray cloud is produced, or by changing the properties of the spray liquid itself. Especially changing nozzles and/or nozzle pressure is something farmers do not prefer to do because it is time consuming and makes the production of their crop more expensive. Also, the equipment necessary on sprayer to deal with variable application rates is not common. For these reasons, a more acceptable way to optimise a spray cloud, so that it leads to less or more limited drift, is by adjusting the properties of the spray liquid.
Although other factors such as meteorological conditions and spray boom height contribute to the potential for drift, spray droplet size distribution has been found to be a predominant factor. Teske et. al. (Teske M. E., Hewitt A. J., Valcore, D. L. 2004. The Role of Small Droplets in Classifying Drop Size Distributions ILASS Americas 17th Annual Conference: Arlington VA) have reported a value of <156 microns (μm) as the fraction of the spray droplet distribution that contributes to drift. Other researchers consider droplets with diameter <150 μm to be most drift-prone (J. H. Combellack, N. M. Westen and R. G. Richardson, Crop Prot., 1996, 15, 147-152, O. Permin, L. N. Jorgensen and K. Persson, Crop Prot., 1992, 11, 541-546). Another group H. Zhu, R. W. Dexter, R. D. Fox, D. L. Reichard, R. D. Brazee and H. E. Ozkan, J. Agric. Engineering Res., 1997, 67, 35-45.) cites a value of <200 μm as the driftable fraction. Based on theoretical studies and computer simulations, spray droplets with diameter <100 μm have been identified as the most drift-prone (H. Holterman, Kinetics and evaporation of water drops in air, 2003, IMAG Report 2003-12; P. A. Hobson, P. C. H. Miller, P. J. Walklate, C. R. Tuck and N. M. Western, J. Agr. Eng. Res., 1993, 54, 293-305; P. C. H. Miller, The measurement of spray drift, Pesticide Outlook, 2003, 14, 205-209). A good estimation of droplet size likely to contribute to drift, therefore, is the fraction below about 100 lam (driftable fraction). The smaller the droplets the longer is the residence time in the air and the higher is the tendency to evaporate and/or to drift rather than deposit within the field borders. A way to minimize the drift effect is by adding suitable drift control agents to pesticide formulations that increase the size of the droplets in the spray cloud—i.e., shift the droplet spectra towards larger droplets. When searching for solutions to overcome the drift problem, it has to be taken into account that the biological performance of the resulting application is not reduced. The use of formulation (both in-can and tank-mix) that increase the spray droplet size may reduce the efficacy to some extent, mainly because of reduced cover (e.g., “Biological efficacy of herbicides and fungicides applied with low-drift and twin-fluid nozzles” P. K. Jensen et al. Crop Protection 20 (2001)57-64). Retention of larger droplets on leaf surfaces can be reduced as they run-off or bounce or shatter and redistribute. Fewer larger droplets adhering to the leaf surface can reduce overall biological efficacy. Furthermore, for crops where the spray cloud has to penetrate into the canopy of the crop, very large droplets can pass directly through canopies, or bounce off leaves, or shatter and redistribute to soil. All these effects of applying active compound in large droplets may add to reduced efficacy.
It also has to be taken into account that many compounds added to a formulation to improve efficacy, storage, rainfastness and other important properties often have a negative effect on drift properties of the spray broth, i.e. tend to reduce droplet size or enhance evaporation afterwards.
Moreover, in agriculture, low spray volume application technologies including unmanned aerial systems (UAS), unmanned guided vehicles (UGV), and tractor mounted boom sprayers fitted with pulse width modulation spray nozzles or rotating disc droplet applicators are offering farmers solutions to apply products with low spray volumes, typically down to 10 to 20 l/ha or less. These solutions have advantages including for example that they require significantly less water which is important in regions where the supply of water is limited, require less energy to transport and apply the spray liquid, are faster both from quicker filling of the spray tank and faster application, reduce the CO 2 generation from both the reduced volume of spray liquid to transport and from the use of smaller and lighter vehicles, reduced soil compaction damage, and enabling the use of cheaper application systems.
However, Wang et al [Field evaluation of an unmanned aerial vehicle (UAV) sprayer: effect of spray volume on deposition and the control of pests and disease in wheat. Pest Management Science 2019 doi/epdf/10.1002/ps.5321] demonstrated that as the spray volume is decreased from 450 and 225 l/ha to 28.1, 16.8 and 9.0 l/ha, the coverage (% area), number of spray deposits per area, and diameter of the spray deposits as measured on water sensitive paper all decreased (see Table 3 in Wang et al, 2019). In parallel, the biological control efficacy for both wheat aphid control and powdery mildew control decreased at low spray volumes with the greatest decrease observed at 9.0 l/ha, followed by 16.8 l/ha (see FIGS. 6, 7 and 8 in Wang et al, 2019).
There is therefore a need to design formulation systems that overcome the reduction in the coverage and diameter of the spray deposits at low spray volumes even through the number of spray deposits per area is decreasing: as the spray volume decreases, the number of spray droplets per unit area decreases proportionately for the same spray droplet spectra size. This is especially necessary below 25 l/ha, more especially below 17 l/ha, and even more especially at 10 l/ha and below.
Moreover, due to an increase in concentration of adjuvants in the spray solution to enhance the spreading and the uptake into the plant, there is a higher chance for wash-off of the spray solution due to the higher local concentration of adjuvants and among them spreading agents.
Also, higher concentrations of surfactants in low spray volume formulations and spray broths usually lead to a smaller droplet size which in turn increases drift.
Therefore, there is a need to provide formulations which, when sprayed not only at “normal” volumes (50-500 l/ha) but also at ultra-low spray volumes according to the present invention, show a good coverage of the crops to provide good biological efficacy while at the same time have a good or acceptable uptake and do not show a high wash-off.
The solution is provided by formulations according to claim 1 and specifically by formulations containing specific drift reducing agents in combination with selected spreading, uptake and rainfastness agents at specific concentrations. Such formulations provide minimized or at least maintained drift while simultaneously providing increased coverage and increased diameter of spray deposits at low spray volumes, while maintaining or improving uptake, spreading, biological efficacy and rainfastness. Furthermore, the increased coverage and increased diameter of spray deposits is comparable to the coverage obtained at normal higher spray volumes.
Moreover, the formulations exemplifying the invention are particularly effective on hard to wet leaf surfaces where more conventional spray volumes have poor retention and coverage.
For low volume applications a particular advantage of the invention stemming from the low total amount of all ingredients compared to the level required at normal higher spray volumes is lower cost of formulations and their ease of production. Further advantages include improved formulation stability and simplified manufacture, less cost of goods as well as less impact on the environment.
Formulations, also for tank mixes, known in the prior art containing drift reducing agents are principally designed for much higher spray volumes and generally contain lower concentrations of spreading agents in the spray broth. Nevertheless, due to the high spray volumes used in the prior art, the total amount of spreading agents used and therefore in the environment is higher than according to the present invention.
The concentration of the drift reducing agents is an important element of the invention, since in particular for oil based drift retardants, which also are used as penetration enhancers, suitable effects occur already at much lower concentrations then any effect on the penetration of actives. Thus, with low amounts of said oils and little impact on the environment drift can be reduced significantly. “Low amounts of said drift reducing agents (also referred to as drift retardants) means less than 25 g/l. This means, that already with an amount of 5 to 10 g/ha good drift reduction can be achieved instead of conventional 100-500 g/ha, which has to be present for an uptake effect.
On the other hand, high oil contents increase volume of product, manufacture complexity and can decrease product stability, thus they should be avoided if not necessary as uptake enhancer or solvent.
The minimum concentration of drift reducing agents is achieved, normally at 0.5 g/l.
With regard to the spreading agents in low volume applications, in a spray volume of 500 l/ha as it is used in the prior art, about 250 g/ha of spreading agents would be required to achieve suitable spreading. Hence, faced with the task to reduce the spray volume, the skilled person would apply the same concentration of spreading agents in the formulation. For example, for a spray volume of 10 l/ha about 5 g/ha (about 0.05% in the spray broth) surfactant would be required. However, at such a low volume with such low concentration of spreading agents sufficient spreading cannot be achieved (see examples).
Moreover, as pointed out above, according to the present invention, uptake enhancers have to be present to enable uptake of the active ingredients into the plants to enhance biological efficacy, while at the same time a rain fastness additive has to be present to prevent wash-off in an intolerable amount.
As has been shown in prior applications, we have found that increasing the concentration of spreading agents as the spray volume decreases can compensate for the loss in coverage (due to insufficient spreading) from the reduction in spray volume. It was surprisingly found that for every reduction of the spray volume by 50%, the concentration of surfactant should roughly be doubled.
Thus, although the absolute concentration of the spreading agents is increased compared to formulations known in the art, the relative total amount per ha can be decreased, which is advantageous, both economically and ecologically, while coverage by and efficacy of the formulation according to the invention is improved, maintained or at least kept at an acceptable level when other benefits of the low volume applications are considered, e.g. less costs of formulation due to less cost of goods, smaller vehicles with less working costs, less compacting of soil etc.
Further, we have surprisingly found that the formulations according to the present invention show low drift, good spreading properties and a comparable or enhanced uptake of active ingredient when compared to formulations without drift retardant agents known in the art.
It also has been found, that despite the high concentration of spreading agents, wetters and uptake enhancers the rainfastness and drift reduction of the formulations according to the present invention is also comparable or better than those of the reference formulations based on the prior art.
Further, it was found that when methyl esters of vegetable oils are used as b), there is also a positive effect observed on foaming, i.e. a reduction of foam, of the formulation, in particular in connection with the organosilicone spreaders.
As pointed out above, the formulations of the present invention are particularly suited for low volume applications depending on the leaf surface texture. Bico et al [Wetting of textured surfaces, Colloids and Surfaces A, 206 (2002) 41-46] have established that compared to smooth surfaces, textured surfaces can enhance the wetting for formulation spray dilutions with contact angles <90° and reduce the wetting for contact angles >90°.
This is also the case for leaf surfaces, in particular textured leaf surfaces, when sprayed in a method according to the invention resulting in low total amounts (per ha) of spreading agents due to the low spray volumes with formulations according to the invention having a high concentration of the spreading agents. Remarkably high coverage of the leaf surfaces by the spray liquid, even to a level greater than would be normally be expected, could be demonstrated.
Textured leaf surfaces include leaves containing micron-scale wax crystals on the surface such as garlic, onions, leeks, soybean (≤GS 16 (BBCH 16)), oats, wheat, barley, rice, sugarcane, pineapple, banana, linseed, lilies, orchids, corn (≤GS 15 (BBCH 15)), cabbage, brussels sprouts, broccoli, cauliflower, rye, rapeseed, tulips and peanut for example, and leaves with surface textures such as lotus plant leaves for example.
The same is obviously true for the application on weeds with textured leaf surfaces, for example Cassia obtusifolia, Chenopodium album, Agropyron repens, Alopecurus myosuroides, Apera spica-venti, Avena fatua, Brachiaria plantaginea, Bromus secalinus, Cynodon dactylon, Digitaria sanguinalis, Echinochloa crus-galli, Panicum dichotomiflorum, Poa annua, Setaria faberi and Sorghum halepense amongst others.
The surface texture can be determined by scanning electron microscope (SEM) observations and the leaf wettability determined by measuring the contact angle made by a drop of water on the leaf surface.
In summary, the object of the present invention is to provide a formulation which can be applied in high (200-500 l/ha or even higher) to low volumes, i.e. <20 l/ha, while still providing good drift reduction, leaf coverage, uptake and biological efficacy against fungicidal pathogens, weeds and pests, and providing good rain-fastness, and at the same time reducing the amounts of additional additives applied per ha, as well as a method of using said formulation at high to low volumes (<20 l/ha), and the use of said formulation for application in low volumes as defined above.
While the application on textured leaves is preferred, surprisingly it was found that also on non-textured leaves the formulations according to the instant invention showed good spreading and coverage as well as other properties compared to classical spray application formulations for 200 l/ha.
In one aspect, the present invention is directed to the use of the compositions according to the invention for foliar application.
If not otherwise indicated, % in this application means percent by weight (% w/w).
It is understood that in case of combinations of various components, the percentages of all components of the formulations always sum up to 100.
Further, if not otherwise indicated, the reference “to volume” for water indicates that water is added to a total volume of a formulation of 1000 ml (1 l). For the sake of clarity it is understood that if unclear the density of the formulation is understood as to be 1 g/cm3.
In the context of the present invention aqueous based agrochemical compositions comprise at least 5% of water and include suspension concentrates, aqueous suspensions, suspo-emulsions or capsule suspensions, preferably suspension concentrates and aqueous suspensions.
Further, it is understood, that the preferred given ranges of the application volumes or application rates as well as of the respective ingredients as given in the instant specification can be freely combined and all combinations are disclosed herein, however, in a more preferred embodiment, the ingredients are preferably present in the ranges of the same degree of preference, and even more preferred the ingredients are present in the most preferred ranges.
It is further understood that the formulations of the instant invention do not refer to tank-mix formulations, but to ready to use (in-can) formulations, which can be used without further additions of adjuvants, like surfactant, wetters, uptake enhancers, drift or rainfastness tank-mix additives.
In one aspect, the invention refers to a formulation comprising:
In another preferred embodiment c) is present in 5 to 150 g/l and wherein b) is present in 0.01 to 50 g/l.
If not otherwise indicated in the present invention the carrier is usually used to volume the formulation. Preferably, the concentration of carrier in the formulation according to the invention is at least 5% w/w, more preferred at least 10% w/w such as at least 20% w/w, at least 40% w/w, at least 50% w/w, at least 60% w/w, at least 70% w/w and at least 80% w/w or respectively at least 50 g/l, more preferred at least 100 g/l such as at least 200 g/l, at least 400 g/l, at least 500 g/l, at least 600 g/l, at least 700 g/l and at least 800 g/l.
The formulation is preferably a spray application to be used on crops.
In a further preferred embodiment the formulation is a flowable formulation containing active ingredients in particulate form, in particular SC, SE and OD formulations. Most preferred the formulation is a SC formulation.
In a preferred embodiment according to the present invention, also for the following embodiments in the specification, the carrier is water.
In a preferred embodiment the formulation of the instant invention comprises
In a preferred embodiment the formulation of the instant invention comprises
In another embodiment at least one of f2, f3, f4 and f5 are mandatory, preferably, at least two of f1, f2, f3, f4 and f5 are mandatory, and in yet another embodiment f1, f2, f3, f4 and f5 are mandatory.
In a preferred embodiment component a) is preferably present in an amount from 5 to 500 g/l, preferably from 10 to 320 g/l, and most preferred from 20 to 230 g/l.
In an alternative embodiment component a) is a fungicide.
In an alternative embodiment component a) is an insecticide.
In an alternative embodiment component a) is a herbicide.
In a preferred embodiment component b) is present in 0.01 to 50 g/l, preferably from 0.1 to 30 g/l, and most preferred from 1 to 20 g/l.
In case b) is selected from the group of vegetable oils and esters, b) preferably is present in 1 to 50 g/l, preferably from 5 to 30 g/l, and most preferred from 8 to 25 g/l.
In case b) is selected from the group of polymeric drift reducing agents, b) preferably is present in 0.05 to 10 g/l, preferably from 0.1 to 8 g/l, and most preferred from 0.2 to 6 g/l.
In a preferred embodiment component c) is present in 5 to 150 g/l, preferably from 10 to 120 g/l, and most preferred from 20 to 80 g/l.
In a preferred embodiment component d) is present in 10 to 180 g/l, preferably from 20 to 150 g/l, and most preferred from 30 to 140 g/l.
In a preferred embodiment component e) is present in 5 to 150 g/l, preferably from 10 to 100 g/l, and most preferred from 20 to 80 g/l.
In a preferred embodiment the one or more component f1) is present in 4 to 250 g/l, preferably from 8 to 120 g/l, and most preferred from 10 to 80 g/l.
In a preferred embodiment the one or more component f2) is present in 0 to 60 g/l, preferably from 1 to 20 g/l, and most preferred from 2 to 10 g/l.
In a preferred embodiment the one or more component f3) is present in 0 to 30 g/l, preferably from 0.5 to 20 g/l, and most preferred from 1 to 12 g/l.
In a preferred embodiment the one or more component f4) is present in 0 to 200 g/l, preferably from 5 to 150 g/l, and most preferred from 10 to 120 g/l.
In a preferred embodiment the one or more component f5) is present in 0 to 200 g/l, preferably from 0.1 to 120 g/l, and most preferred from 0.5 to 80 g/l.
In one embodiment the formulation comprises the components a) to f) in the following amounts
In another embodiment the formulation comprises the components a) to f) in the following amounts
In one embodiment the formulation comprises
In one embodiment the formulation comprises
In one embodiment the formulation comprises
In one embodiment the formulation comprises
It is understood that in case a solid carrier is used, the above referenced amounts refer to 1 kg instead of to 1 l, i.e. g/kg.
As indicated above, component g) is always added to volume, i.e. to 1 l or 1 kg.
In a further preferred embodiment of the present invention the formulation consists only of the above described ingredients a) to g) in the specified amounts and ranges.
In a preferred embodiment the herbicide is used in combination with a safener, which is preferably selected from the group comprising isoxadifen-ethyl and mefenpyr-diethyl.
The instant invention further applies to a method of application of the above referenced formulations, wherein the formulation is applied at a spray volume of between 1 and 30 l/ha, preferably 1 and 20 l/ha, more preferred 2 and 15 l/ha, and most preferably 5 and 15 l/ha.
More preferred, the instant invention applies to a method of application of the above referenced formulations, wherein the formulation is applied at a spray volume of between 1 and 30 l/ha, preferably 1 and 20 l/ha, more preferred 2 and 15 l/ha, and most preferably 5 and 15 l/ha, and the amount of c) is present in 5 to 250 g/l, preferably from 8 to 120 g/l, and most preferred from 10 to 80 g/l, wherein in a further preferred embodiment a) is present from 5 to 500 g/l, preferably from 10 to 320 g/l, and most preferred from 20 to 230 g/l, and even further preferred b) is present from 0.01 to 50 g/l, preferably from 0.1 to 30 g/l, and most preferred from 1 to 20 g/l, and in case of b) being an vegetable oil or ester from in 1 to 50 g/l, preferably from 5 to 30 g/l, and most preferred from 8 to 25 g/l, in case of b) being a drift reducing polymer in 0.05 to 10 g/l, preferably from 0.1 to 8 g/l, and most preferred from 0.2 to 6 g/l, and even further preferred c) is present in an amount from 5 to 150 g/l, preferably from 10 to 120 g/l, and most preferred from 20 to 80 g/l., and more preferred also d) is present in an amount from 10 to 180 g/l, preferably from 20 to 150 g/l, and most preferred from 30 to 140 g/l.
In another aspect the instant invention applies to a method of application of the above referenced formulations,
Further, the drift reducing agent b) in case of b) being a vegetable oil or ester of an vegetable oil is preferably applied from 0.1 g/ha to 50 g/ha, more preferably from 1 g/ha to 40 g/ha, and most preferred from 5 g/ha to 30 g/ha.
Further, the drift reducing agent b) in case of b) being a polymer is preferably applied from 0.01 g/ha to 25 g/ha, more preferably from 0.05 g/ha to 10 g/ha, and most preferred from 0.1 g/ha to 6 g/ha.
In contrast to the aforementioned oils as drift reducing agents the corresponding polymers have to be present in higher concentrations in the instant formulation in case they shall be sprayed later at higher spray volumes, since dilution has a stronger effect on those.
Further, the spreading agent c) is preferably applied from 5 g/ha to 150 g/ha, more preferably from 7.5 g/ha to 100 g/ha, and most preferred from 10 g/ha to 60 g/ha.
In one embodiment, the with the above indicated method applied amount of a) to the crop is between 2 and 10 g/ha.
In another embodiment, the with the above indicated method applied amount of a) to the crop is between and 110 g/ha.
In one embodiment in the applications described above, the active ingredient (ai) a) is preferably applied from 2 and 150 g/ha, preferably between 5 and 120 g/ha, and more preferred between 20 and 100 g/ha, while correspondingly the spreading agent is preferably applied from 10 g/ha to 100 g/ha, more preferably from 20 g/ha to 80 g/ha, and most preferred from 40 g/ha to 60 g/ha.
In particular the formulations of the instant invention are useful for application with a spray volume of between 1 and 20 l/ha, preferably 2 and 15 l/ha, more preferably 5 and 15 l/ha on plants or crops with textured leaf surfaces, preferably on wheat, barley, rice, rapeseed, soybean (young plants) and cabbage.
Further, the instant invention refers to a method of treating crops with textured leaf surfaces, preferably wheat, barley, rice, rapeseed, soybean (young plants) and cabbage, with a spray volume of between 1 and 20 l/ha, preferably 2 and 15 l/ha, more preferably 5 and 15 l/ha.
In a preferred embodiment the above described applications are applied on crops with textured leaf surfaces, preferably on wheat, barley, rice, rapeseed, soybean (young plants) and cabbage.
In one embodiment the active ingredient is a fungicide or a mixture of two fungicides or a mixture of three fungicides.
In another embodiment the active ingredient is an insecticide or a mixture of two insecticides or a mixture of three insecticides.
In yet another embodiment the active ingredient is a herbicide or a mixture of two herbicides or a mixture of three herbicides, wherein preferably in the mixtures on mixing partner is a safener.
In one embodiment the concentration of the additives b) to e) in the spray liquid of the agrochemical composition as described herein is from
In one embodiment the) dose of the additives b) to e) per ha in the spray liquid of the agrochemical composition as described herein the is from
In one embodiment the concentration in the formulation, the concentration in the spray liquid and the dose of the additives b) to e) per ha is combined in the following way
The corresponding doses of spreading agent (c) in formulations according to the invention to the applied doses are:
A 2 l/ha liquid formulation delivering
A 1 l/ha liquid formulation delivering:
A 0.5 l/ha liquid formulation delivering:
A 0.2 l/ha liquid formulation delivering:
A 2 kg/ha solid formulation delivering:
A 1 kg/ha solid formulation delivering:
A 0.5 kg/ha solid formulation delivering:
The concentrations of spreading agent (c) in formulations that are applied at other dose per hectare rates can be calculated in the same way.
In the context of the present invention, suitable formulation types are by definition suspension concentrates, aqueous suspensions, suspo-emulsions or capsule suspensions, emulsion concentrates, water dispersible granules, oil dispersions, emulsifiable concentrates, dispersible concentrates, wettable granules, preferably suspension concentrates, aqueous suspensions, suspo-emulsions and oil dispersions, wherein in the case of non-aqueous formulations or solid formulations the sprayable formulation are obtained by adding water.
The active compounds identified here by their common names are known and are described, for example, in the pesticide handbook (“The Pesticide Manual” 16th Ed., British Crop Protection Council 2012) or can be found on the Internet (e.g. http://www.alanwood.net/pesticides). The classification is based on the current IRAC Mode of Action Classification Scheme at the time of filing of this patent application.
Examples of fungicides (a) according to the invention are:
Examples of insecticides (a) according to the invention are:
Examples of herbicides a) according to the invention are:
The at least one active ingredient is preferably selected from the group comprising fungicides selected from the group comprising classes as described here above (1) Inhibitors of the respiratory chain at complex, in particular azoles, (2) Inhibitors of the respiratory chain at complex I or II, (3) Inhibitors of the respiratory chain at complex, (4) Inhibitors of the mitosis and cell division, (6) Compounds capable to induce a host defence, (10) Inhibitors of the lipid and membrane synthesis, and (15).
Further preferred, the at least one active ingredient a) as fungicide is selected from the group comprising Trifloxystrobin, Bixafen, Prothioconazole, Inpyrfluxam, Isoflucypram, Fluopicolide, Fluopyram, Fluoxapiprolin, Isotianil.
The at least one insecticide is preferably selected from the group comprising insecticides selected from the group comprising classes as described here above (2 GABA-gated chloride channel antagonists, (3) Sodium channel modulators/voltage-dependent sodium channel blockers (4) (4) Nicotinic acetylcholine receptor (nAChR) competitive activators, (23) Inhibitors of acetyl-CoA carboxylase, (28) Ryanodinreceptor-modulators, (30) other active ingredients.
Also further preferred, the at least one active ingredient a) as insecticide is selected from the group comprising Spirotetramat, Tetraniliprole, Ethiprole, Imidacloprid, Deltamethrin, Flupyradifuron, Spidoxamat.
Lastly further preferred, the at least one active ingredient a) as herbicide is selected from the group comprising Triafamone, Tembotrione, Thiencarbazone-methyl, preferably in combination with safeners Isoxadifen-ethyl and Cyprosulfamat.
Even more preferred, the at least one active ingredient is selected from the group comprising trifloxystrobin, bixafen, prothioconazole, inpyrfluxam, isoflucypram, fluopicolide, fluopyram, fluoxapiprolin, isotianil, spirotetramat, tetraniliprole, ethiprole, imidacloprid, deltamethrin, flupyradifuron, spidoxamat, triafamone, tembotrione, thiencarbazone-methyl, isoxadifen-ethyl and cyprosulfamat.
All named active ingredients as described here above can be present in the form of the free compound or, if their functional groups enable this, an agrochemically active salt thereof.
Furthermore, mesomeric forms as well as stereoisomeres or enantiomeres, where applicable, shall be enclosed, as these modifications are well known to the skilled artisan, as well as polymorphic modifications.
If not otherwise specified, in the present invention solid, agrochemical active compounds a) are to be understood as meaning all substances customary for plant treatment, whose melting point is above 20° C.
Suitable drift reducing agents are poly(ethylene oxides), wherein the polymer has an average molecular weight preferably from 0.5 to 12 million g/mol, more preferred from 0.75 to 10 million g/mol, and most preferred from 1 to 8 million g/mol, and hydroxypropyl guar, as well as vegetable oils and vegetable oil esters and diesters (including esters with glycerine and propylene glycol).
Particularly preferred are methyl, ethyl, isopropyl, isobutyl, butyl, hexyl and ethylheyxl esters.
More preferred the vegetable oils and esters are selected from the group consisting of methyl oleate, methyl palmitate, rape seed oil methyl ester, isopropyl myristate, isopropyl palmitate, ethylhexyl palmitate, ethylhexyl oleate, mixture of ethylhexyl myristate/laurate, ethylhexyl laurate, mixture of ethylhexyl caprylate/caprate, diisopropyl adipate, coconut oil propyleneglycol diester, sunflower oil, rapeseed oil, corn oil, soybean oil, rice bran oil, olive oil, peanut oil, mixed caprylic and capric triglycerides, and mixed decanoyl and octanoyl glycerides.
Also suitable as drift reducing agent are mineral oils.
Suitable spreading agents are selected from the group comprising mono- and diesters of sulfosuccinate metal salts with branched or linear alcohols comprising 1-10 carbon atoms, in particular alkali metal salts, more particular sodium salts, and most particular sodium dioctylsulfosuccinate; as well as organosilicone ethoxylates such as organomodified polysiloxanes/trisiloxane alkoxylates with the following CAS No. 27306-78-1, 67674-67-3, 134180-76-0, e.g., Silwet® L77, Silwet® 408, Silwet® 806, BreakThru® 5240, BreakThru® 5278.
Other suitable spreading agents are ethoxylated diacetylene-diols with 1 to 6 EO, e.g. Surfynol® 420 and 440, as well as 1-hexanol, 3,5,5-trimethyl-, ethoxylated, propoxylated (CAS-No 204336-40-3), e.g. Break-Thru® Vibrant.
Preferred are polyalkyleneoxide modified heptamethyltrisiloxane, more preferred selected from the group comprising the siloxane groups Poly(oxy-1,2-ethanediyl), .alpha.-methyl-.omega.-[3-[1,3,3,3-tetramethyl-1-[(trimethylsilyl)oxy]disiloxanyl]propoxy] (CAS No (27306-78-1), Poly(oxy-1,2-ethanediyl), .alpha.-[3-[1,3,3,3-tetramethyl-1-[(trimethylsilyl)oxy]disiloxanyl]propyl]-. omega. -hydroxy (Cas No 67674-67-3), and Oxirane, methyl-, polymer with oxirane, mono3-1,3,3,3-tetramethyl-1-(trimethylsilyl)oxydisiloxanylpropyl ether (Cas No 134180-76-0).
Preferably the spreading agent is selected from the group comprising sodium dioctylsulfosuccinate, polyalkyleneoxide modified heptamethyltrisiloxane and ethoxylated diacetylene-diols.
The uptake enhancer may also be selected from the following group of compounds:
Other suitable uptake enhancers are alcohol ethoxylates, preferably selected from the group comprising ethoxylated alcohols, propoxy-ethoxylated alcohols, ethoxylated carboxylic acids, propoxy-ethoxylated carboxylic acids, or ethoxylated mono-, di- or triesters of glycerine comprising fatty acids with 8-18 carbon atoms and an average of 5-40 EO units. Said ethoxylated or propoxy-ethoxylated alcohols or carboxylic acids are optionally further modified by addition of a methyl radical to the remaining alcohol functionality (cf. “Me end-capped”). The term “alcohols” according to d) refers to alcohols that can be branched or linear, saturated or unsaturated, with 6-22 carbon atoms and optionally carry additional substituents, such as OH groups. The term “carboxylic acids” according to d) refers to carboxylic acids that can be branched or linear, saturated or unsaturated, with 6-22 carbon atoms and optionally carry additional substituents, such as OH groups.
Suitable components according to d) by way of example are:
Suitable rain-fast additives are acrylic based emulsion polymers or polymer dispersions and styrene based emulsion polymers or polymer dispersions d) are aqueous polymer dispersions with a Tg in the range from −100° C. to 30° C., preferably between −60° C. and 20° C., more preferably between −50° C. and most preferably between −45° C. and 5° C., for example Acronal V215, Acronal 3612, Licomer ADH 205 and Atplus FA. Particularly preferred are Licomer ADH205, and Atplus FA.
Preferably, the polymer is selected from the group consisting of acrylic polymers, styrene polymers, vinyl polymers and derivatives thereof, polyolefins, polyurethanes and natural polymers and derivatives thereof.
More preferably, the polymer is selected from the group consisting of acrylic polymers, styrene butadiene copolymers, styrene-maleic anhydride copolymers, polyvinyl alcohol, polyvinyl acetate, partially hydrolysed polyvinyl acetate, methyl vinyl ether-maleic anhydride copolymers, carboxy-modified polyvinyl alcohol, acetoacetyl-modified polyvinyl alcohol, diacetone-modified polyvinyl alcohol and silicon-modified polyvinyl alcohol, isopropylene-maleic anhydride copolymer, polyurethane, cellulose, gelatine, caesin, oxidised starch, starch-vinyl acetate graft copolymers, hydroxyethyl cellulose, methyl cellulose, ethyl cellulose, carboxymethyl cellulose and acetyl cellulose.
Most preferably the polymer is selected from copolymers of an acrylate and a styrene, wherein. Said acrylate selected from the list comprising 2-ethyl-hexyl acrylate, butyl acrylate, sec-butyl acrylate, ethyl acrylate, methyl acrylate, acrylic acid, acrylamide, iso-butyl acrylate, methyl methacrylate, or combinations thereof. Said styrene selected from the list comprising styrene, tert-butyl styrene, para-methyl styrene, or combinations thereof.
In a preferred embodiment the polymer, as described above, has a molecular weight of no more than 40000, preferably no more than 10000.
In a preferred embodiment the polymer D is an emulsion polymer as described in WO 2017/202684.
The glass transition temperature (Tg) is known for many polymers and is determined in the present invention, if not defined otherwise, according to ASTM E1356-08 (2014) “Standard Test Method for Assignment of the Glass Transition Temperatures by Differential Scanning calorimetry” wherein the sample is dried prior to DSC at 110° C. for one hour to eliminate effect of water and/or solvent, DSC sample size of 10-15 mg, measured from −100° C. to 100° C. at 20° C./min under N2, with Tg defined as midpoint of the transition region.
f1 Suitable non-ionic surfactants or dispersing aids f1) are all substances of this type which can customarily be employed in agrochemical agents. Preferably, polyethylene oxide-polypropylene oxide block copolymers, preferably having a molecular weight of more than 6,000 g/mol or a polyethylene oxide content of more than 45%, more preferably having a molecular weight of more than 6,000 g/mol and a polyethylene oxide content of more than 45%, polyoxyalkylenamine derivatives, polyvinylpyrrolidone, copolymers of polyvinyl alcohol and polyvinylpyrrolidone, and copolymers of (meth)acrylic acid and (meth)acrylic acid esters. Out of the examples mentioned above selected classes can be optionally phosphated, sulphonated or sulphated and neutralized with bases.
Possible anionic surfactants f1) are all substances of this type which can customarily be employed in agrochemical agents. Alkali metal, alkaline earth metal and ammonium salts of alkylsulphonic or alkylphospohric acids as well as alkylarylsulphonic or alkylarylphosphoric acids are preferred. A further preferred group of anionic surfactants or dispersing aids are alkali metal, alkaline earth metal and ammonium salts of polystyrenesulphonic acids, salts of polyvinylsulphonic acids, salts of alkylnaphthalene sulphonic acids, salts of naphthalene-sulphonic acid-formaldehyde condensation products, salts of condensation products of naphthalenesulphonic acid, phenolsulphonic acid and formaldehyde, and salts of lignosulphonic acid.
f2 A rheological modifier is an additive that when added to the recipe at a concentration that reduces the gravitational separation of the dispersed active ingredient during storage results in a substantial increase in the viscosity at low shear rates. Low shear rates are defined as 0.1 s−1 and below and a substantial increase as greater than ×2 for the purpose of this invention. The viscosity can be measured by a rotational shear rheometer.
Suitable rheological modifiers E2) by way of example are:
Preferred are xanthan gum, montmorillonite clays, bentonite clays and fumed silica.
f3 Suitable antifoam substances e3) are all substances which can customarily be employed in agrochemical agents for this purpose. Silicone oils, silicone oil preparations are preferred. Examples are Silcolapse® 426 and 432 from Bluestar Silicones, Silfoam® SRE and SC132 from Wacker, SAF-184° fron Silchem, Foam-Clear ArraPro-S® from Basildon Chemical Company Ltd, SAG ° 1572 and SAG ° 30 from Momentive [Dimethyl siloxanes and silicones, CAS No. 63148-62-9]. Preferred is SAG ° 1572.
f4 Suitable antifreeze agents are all substances which can customarily be employed in agrochemical agents for this purpose. Suitable examples are propylene glycol, ethylene glycol, urea and glycerine.
f5 Suitable other formulants e5) are selected from biocides, colourants, pH adjusters, buffers, stabilisers, antioxidants, inert filling materials, humectants, crystal growth inhibitors, micronutirients by way of example are:
Possible preservatives are all substances which can customarily be employed in agrochemical agents for this purpose. Suitable examples for preservatives are preparations containing 5-chloro-2-methyl-4-isothiazolin-3-one [CAS-No. 26172-55-4], 2-methyl-4-isothiazolin-3-one [CAS-No. 2682-20-4] or 1.2-benzisothiazol-3(2H)-one [CAS-No. 2634-33-5]. Examples which may be mentioned are Preventol® D7 (Lanxess), Kathon® CG/ICP (Dow), Acticide® SPX (Thor GmbH) and Proxel® GXL (Arch Chemicals).
Possible colourants are all substances which can customarily be employed in agrochemical agents for this purpose. Titanium dioxide, carbon black, zinc oxide, blue pigments, Brilliant Blue FCF, red pigments and Permanent Red FGR may be mentioned by way of example.
Possible pH adjusters and buffers are all substances which can customarily be employed in agrochemical agents for this purpose. Citric acid, sulfuric acid, hydrochloric acid, sodium hydroxide, sodium hydrogen phosphate (Na2HPO4), sodium dihydrogen phosphate (NaH2PO4), potassium dihydrogen phosphate (KH2PO4), potassium hydrogen phosphate (K2HPO4), may be mentioned by way of example.
Suitable stabilisers and antioxidants are all substances which can customarily be employed in agrochemical agents for this purpose. Butylhydroxytoluene [3.5-Di-tert-butyl-4-hydroxytoluol, CAS-No. 128-37-0] is preferred.
Carriers (g) are those which can customarily be used for this purpose in agrochemical formulations.
A carrier is a solid or liquid, natural or synthetic, organic or inorganic substance that is generally inert, and which may be used as a solvent. The carrier generally improves the application of the compounds, for instance, to plants, plants parts or seeds. Examples of suitable
Preferred solid carriers are selected from clays, talc and silica.
Examples of suitable liquid carriers include, but are not limited to, water, organic solvents and combinations thereof. Examples of suitable solvents include polar and nonpolar organic chemical liquids, for example from the classes of
Most preferred the carrier is water.
These spray liquids are applied by customary methods, i.e., for example, by spraying, pouring or injecting, in particular by spraying, and most particular by spraying by UAV.
The application rate of the formulations according to the invention can be varied within a relatively wide range. It is guided by the particular active agrochemicals and by their amount in the formulations.
With the aid of the formulations according to the invention it is possible to deliver active agrochemical to plants and/or their habitat in a particularly advantageous way.
The present invention is also directed to the use of agrochemical compositions according to the invention for the application of the agrochemical active compounds contained to plants and/or their habitat.
With the formulations of the invention it is possible to treat all plants and plant parts. By plants here are meant all plants and plant populations, such as desirable and unwanted wild plants or crop plants (including naturally occurring crop plants). Crop plants may be plants which can be obtained by conventional breeding and optimization methods or by biotechnological and gene-technological methods or combinations of these methods, including the transgenic plants and including the plant cultivars which can or cannot be protected by varietal property rights. By plant parts are to be meant all above-ground and below-ground parts and organs of the plants, such as shoot, leaf, flower and root, an exemplary listing embracing leaves, needles, stems, trunks, flowers, fruit bodies, fruits and seeds and also roots, tubers and rhizomes. The plant parts also include harvested material and also vegetative and generative propagation material.
What may be emphasized in this context is the particularly advantageous effect of the formulations according to the invention with regard to their use in cereal plants such as, for example, wheat, oats, barley, spelt, triticale and rye, but also in maize, sorghum and millet, rice, sugar cane, soya beans, sunflowers, potatoes, cotton, oilseed rape, canola, tobacco, sugar beet, fodder beet, asparagus, hops and fruit plants (comprising pome fruit such as, for example, apples and pears, stone fruit such as, for example, peaches, nectarines, cherries, plums and apricots, citrus fruits such as, for example, oranges, grapefruits, limes, lemons, kumquats, tangerines and satsumas, nuts such as, for example, pistachios, almonds, walnuts and pecan nuts, tropical fruits such as, for example, mango, papaya, pineapple, dates and bananas, and grapes) and vegetables (comprising leaf vegetables such as, for example, endives, corn salad, Florence fennel, lettuce, cos lettuce, Swiss chard, spinach and chicory for salad use, cabbages such as, for example, cauliflower, broccoli, Chinese leaves, Brassica oleracea (L.) convar. acephala var. sabellica L. (curly kale, feathered cabbage), kohlrabi, Brussels sprouts, red cabbage, white cabbage and Savoy cabbage, fruit vegetables such as, for example, aubergines, cucumbers, capsicums, table pumpkins, tomatoes, courgettes and sweetcorn, root vegetables such as, for example celeriac, wild turnips, carrots, including yellow cultivars, Raphanus sativus var. niger and var. radicula, beetroot, scorzonera and celery, legumes such as, for example, peas and beans, and vegetables from the Allium family such as, for example, leeks and onions.
The treatment of the plants and plant parts in accordance with the invention with the inventive formulations is carried out directly or by action on their environment, habitat or storage area in accordance with the customary treatment methods, for example by dipping, spraying, vaporizing, atomizing, broadcasting or painting on and, in the case of propagation material, especially seeds, additionally by single or multiple coating.
The active agrochemicals comprised develop a better biological activity than when applied in the form of the corresponding conventional formulations.
If not otherwise defined in this application, the molecular weight refers to the weight-average molecular weight Mw which is determined by GPC in methylene chloride at 25° C. with polystyrene as the standard.
In Tables M1a and M1b the contact angle of water on leaf surfaces for textured and non-textured is shown.
Hordeum vulgare (var. Montoya)
Zea mays
Zea mays
Zea mays
Glycine max
Glycine max
Oryza sativa
Triticum aestivum
Chenopodium album
Digitaria sanguinalis
Malus domestica
Solanum lycopersicum
Zea mays
Zea mays
Zea mays
Zea mays
Abutilon theophrasti
Amaranthus retroflexus
Examples of non-textured crops and plants include tomatoes, peppers, potatoes, carrot, celery, sugar beet, beetroot, spinach, lettuce, beans, peas, clover, apple, pear, peach, apricot, plum, mango, avocado, olive, citrus, orange, lemon, lime, grape, fig, cucumber, melon, water melon, strawberry, raspberry, blueberry, sunflower, pumpkin, soybean (≥GS 16 (BBCH 16)), corn (≥GS 15 (BBCH 15), cotton.
Examples of textured crops and plants include garlic, onions, leeks, soybean (≤GS 16 (BBCH 16)), oats, wheat, barley, rice, sugarcane, pineapple, banana, linseed, lilies, orchids, corn (≤GS 15 (BBCH 15)), cabbage, brussels sprouts, broccoli, cauliflower, rye, rapeseed, tulips and peanut.
Examples of non-textured weeds include Abutilon theophrasti, Capsella bursa-pastoris, Datura stramonium, Galium aparine, Ipomoea purpurea, Polygonum lapathifolium, Portulaca oleracea, Senecio vulgaris, Sida spinosa, Sinapis arvensis, Solanum nigrum, Stellaria media, Xanthium orientale, Cyperus rotundus, and Amaranthus retroflexus.
Examples of textured weeds include Cassia obtusifolia, Chenopodium album, Agropyron repens, Alopecurus myosuroides, Apera spica-venti, Avena fatua, Brachiaria plantaginea, Bromus secalinus, Cynodon dactylon, Digitaria sanguinalis, Echinochloa crus-galli, Panicum dichotomiflorum, Poa annua, Setaria faberi and Sorghum halepense.
The invention is illustrated by the following examples.
The method of the preparation of flowable suspension concentrate and suspo-emulsion formulations are known in the art and can be produced by known methods familiar to those skilled in the art. A 2% gel of the xanthan (f) in water and the biocides (f) was prepared with low shear stirring. If present in the recipe, a 50% oil in water emulsion of oil (b) was prepared by adding oil (50%) to water (49%) and Synperonic PE/F127 (1%) in solution (or equivalent surfactant) under high shear mixing (Ultra-Turrax®). The active ingredient (a), non-ionic and anionic dispersants (f), antifoam (f) and other formulants (f) were mixed with the water to form a slurry, first mixed with a high shear rotor-stator mixer (UltraTurrax®) to reduce the particle size D(v,0.9) to approximately 50 microns, then passed through one or more bead mills (Eiger® 250 Mini Motormill) to achieve a particles size D(v,0.9) typically 1 to 15 microns. Then the additives (b) as the 50% emulsion prepared above, (c), (d), (e) and xanthan gel prepared above were added and mixed in with low shear stirring until homogeneous. Finally, the pH is adjusted if needed with acid or base (f).
Flowable formulations containing small levels of emulsified oils can be described as both Suspension Concentrate and Suspo-emulsion formulation types (www.croplife.org, Technical Monograph No: 2, Catalogue of pesticide formulation types and international coding system, Edition: March 2017).
The method of the preparation of flowable suspension concentrate formulations are known in the art and can be produced by known methods familiar to those skilled in the art. A 2% gel of the xanthan (f) in water and the biocides (f) was prepared with low shear stirring. If present in the recipe, a 1-4% of polymer (b) was prepared. The active ingredient (a), non-ionic and anionic dispersants (f), antifoam (f) and other formulants (f) were mixed with the water to form a slurry, first mixed with a high shear rotor-stator mixer (UltraTurrax®) to reduce the particle size D(v,0.9) to approximately 50 microns, then passed through one or more bead mills (Eiger® 250 Mini Motormill) to achieve a particles size D(v,0.9) typically 1 to 15 microns. Then the additives (b) as the polymer solution prepared above, (c), (d), (e) and xanthan gel prepared above were added and mixed in with low shear stirring until homogeneous. Finally, the pH is adjusted if needed with acid or base (f).
The polymer (b) solution is prepared according to the viscosity concentration limit and content required in the recipe. Typical values are: Polyox WSR301 (1-2%), Polyox WSR N60K (1-3%), Polyox WSR N12K (2-4%), AgRho DS2000 (1-2%).
The method of the preparation of EC formulations are known in the art and can be produced by known methods familiar to those skilled in the art. In general, EC formulations are obtained by mixing the active ingredient (a) with the rest of the formulation components in a vessel equipped with a stirring device. In some cases the dissolving or mixing was facilitated by raising the temperature slightly (not exceeding 60° C.). Stirring is continued until a homogeneous mixture has been obtained.
Formulation components are weighed in, homogenized with a high-shear device (e.g. Ultraturrax or colloidal mill) and subsequently milled in a bead mill (e.g. Dispermat SL50, 80% filling, 1.0-1.25 mm glass beads, 4000 rpm, circulation grinding) until a particle size of <10μ is achieved. Alternatively, formulation components are mixed in a bottle followed by addition of approx. 25 vol.-% of 1.0-1.25 mm glass beads. The bottle is then closed, clamped in an agitator apparatus (e.g. Retsch MM301) and treated at 30 Hz for several minutes until a particle size of <10μ is achieved.
The methods of the preparation water dispersible granule formulations are known in the art and can be produced by known methods familiar to those skilled in the art.
For example, to produce a fluid bed granule first a water-based technical concentrate has to be prepared. With low shear stirring all ingredients (a, b and c) like e.g. the active ingredient, surfactants, dispersants, binder, antifoam, anti-drift-agent, and filler are mixed in water and finally pre-milled in a high shear rotor-stator mixer (UltraTurrax®) to reduce the particle size D(v,0.9) to approximately 50 microns, afterwards passed through one or more bead mills (KDL, Bachofen, Dynomill, Bühler, Drais, Lehmann) to achieve a particles size D(v,0.9) typically 1 to 15 microns. This water-based technical concentrate is then spray-dried in a fluid-bed granulation process to form the wettable granules (WG).
The particle size is determined according to CIPAC (CIPAC=Collaborative International Pesticides Analytical Council; www.cipac.org) method MT 187. The particle size distribution is determined by means of laser diffraction. A representative amount of sample is dispersed in degassed water at ambient temperature (self-saturation of the sample), treated with ultrasound (usually 60 s) and then measured in a device from the Malvern Mastersizer series (Malvern Panalytical). The scattered light is measured at various angles using a multi-element detector and the associated numerical values are recorded. With the help of the Fraunhofer model, the proportion of certain size classes is calculated from the scatter data and from this a volume-weighted particle size distribution is calculated. Usually the d50 or d90 value=active ingredient particle size (50 or 90% of all volume particles) is given. The average particle size denotes the d50 value.
Likewise, any other spraying process, like e.g. classical spray drying can be used as granulation method.
A further technique to produce water dispersible granules is for example low pressure extrusion. The ingredients of the formulation are mixed in dry from and are subsequently milled, e.g. using air-jet milling to reduce the particle size. Subsequently this dry powder is stirred while water is added to the mixture (approximately 10-30 wt %, dependent on the composition of the formulation). In a further step the mixture is pushed through an extruder (like a dome extruder, double dome extruder, basket extruder, sieve mill, or similar device) with a die size of usually between 0.8 and 1.2 mm to form the extrudates. In a last step the extrudates are post-dried, e.g. in a fluidized bed dryer to reduce the water content of the powder, commonly to a level of 1-3 wt % of residual water.
A custom-built drift chamber approximately 2.8 m wide, 2.8 m long and 1 m in height containing a spray nozzle, a horizontal windflow, and a drift collector screen was used to measure the drift of formulations. The spray nozzle is at a height of 0.5 m above the base of the chamber and a distance of 1.4 m from the collector screen approximately 0.6 m in height across end wall of the spray chamber. The spray liquid collected by the detector screen is weighed and the amount of drift from the spray calculated from the flow rate of the spray liquid and the fraction captured by the detector screen. The velocity of the windflow was 3 m/s. The formulations were diluted in water to the required concentration, sprayed through a TeeJet® TP8002EVS nozzle at a pressure of 2 bar and the amount of drift recorded once a steady state was achieved. This technique provides a comparative measurement of drift between different recipes.
The formulations were diluted in water to the required concentration, sprayed through a TeeJet® TP8002EVS nozzle at a pressure of 3 bar and the droplet size spectra measured with an Oxford Lasers VisiSize P15 which captures images of the spray droplets and measures their size. The spray nozzle was positioned 20 cm above the image capture point slowly moved repeatedly across the image capture window of the VisiSize P15 until 5000 to 10000 droplet images were captured. The droplet size spectra were calculated by the instrument software as volume % less than 100 microns and/or volume % less than 150 microns, which are commonly regarded as the driftable fraction of the spray droplets. The relative amount of driftable droplets was calculated as the % volume <100 microns for the invention recipe/% volume <100 microns for the reference recipe×100(%) and/or as the % volume <150 microns for the invention recipe/% volume <150 microns for the reference recipe×100(%). Accordingly, a value of 60% would demonstrate that the invention recipe has only 60% of the driftable fraction of spray droplets compared to the reference recipe which would have here 100%.
The formulations were diluted in water to the required concentration, sprayed through a TeeJet 11002VS nozzle at a pressure of 3 bar and the droplet size spectra measured with a Malvern SprayTec laser diffraction instrument with a single, long-axis scan across the spray fan at a distance of 350 mm below the nozzle.
The formulations were diluted in water to the required concentration with a small amount of a fluorescent tracer (Tinopal SC), sprayed through a TeeJet 11002E nozzle at a pressure of 2 bar onto filter paper and the droplet size spectra measured using ImageJ.
The filter paper is photographed using a digital camera, with UV light [365 nm] as the illuminating resource. In the pictures of filter paper, droplet deposits which are fluorescently labelled have much higher intensity than the filter paper and other background.
Images are processed in the ImageJ software (www.fiji.com). First, the RGB image is split into Red, Green and Blue channel, only the Green or Blue channel is used for further analysis, depending on the intensity of the original image. Next, the ‘Subtract background’ algorithm is applied to the single channel image to remove background noise, which in turn improve the contrast between the droplet deposits and the background. Afterward, an intensity threshold is generated automatically and applied by the software, resulting in a binary image where droplet deposits are remained with maximum intensity while the background such as the filter paper itself has zero intensity. Finally, the ‘watershed’ algorithm is applied to the binary image, in order to segment droplets that are connected in the image. All remained and segmented objects are detected and labelled with their positions and sizes. The size of each object represents the area of each deposit, is in the unit of um2.
The nozzle used in the spray test has a VMD of 210 um with water. The Volume Median Diameter (VMD) is determined from the cumulative distribution functions (CDFs) of droplet volume V, droplets that have sizes smaller than VMD account for 50% of the total sprayed volume. Since there is no direct correlation between the deposit area obtained from filter paper and the actual droplet size/volume, the VMD of water has been used as a reference to rescale the CDFs of formulation sprays.
From ImageJ analysis, the area (A) of each droplet deposit on filter paper is recorded. The diameter of each deposit dA=(4A/π)1/2, the estimate droplet volume Vestimate=π·dA3/6. The CDF of the basic formulation is plotted using the estimate droplet volume Vestimate, which is calculated from the deposit area on the filter paper, VMD of the basic formulation is also obtained from the CDF curve. With the assumption that the basic formulation has similar droplet size distribution as water, by matching the VMD of the basic formulation to VMD of water, a size factor f=VMDbasic/VMDwater is generated. Given a droplet deposit area A from the filter paper, the actual droplet diameter d=f·(4A/π)1/2, the droplet volume V=π·d3/6.
The cumulative distributions of droplet volume V of different formulations are plotted with bins of logarithmic scale. From each cumulative distribution curve, the percentage of droplets that have diameters less than 150 um is counted. This volume percentage of fine droplets corresponds to the degree of drift potential. Using the percentage of a basic formulation (pbasic) as a reference, the relative difference of the percentage between a formulation with adjuvants (p) and the basic formulation is computed. The relative difference r=p/pbasic·100%. If the relative difference (r) is lower than 100%, the formulation has lower potential for drift compared with a basic formulation, and vice versa.
Selected crops were grown under greenhouse conditions in plastic pots containing “peat soil T”. At appropriate crop stage, plants were prepared for the treatments, e.g. by infestation with target pest approximately 2 days prior to treatment (s. table below).
Spray solutions were prepared with different doses of active ingredient directly by dilution of formulations with tap water and addition of appropriate amount of additives in tank mix, where required.
The application was conducted with a tracksprayer onto the upperside of leaves with 300 l/ha or 10 l/ha application volume. Nozzles used: TeeJet TP8003E (for 300 l/ha) and Lechler's 652.246 together with a pulse-width-module (PWM) (for 10 l/ha). For each single dose applied, usually 2 to 5 replicates were simultaneously treated.
After treatment, plants were artificially infested, if needed, and kept during test duration in a greenhouse or climate chamber. The efficacy of the treatments was rated after evaluation of mortality (in general, given in %) and/or plant protection (calculated e.g. from feeding damage in comparison to corresponding controls) at different points of time. Only mean values are reported.
Nezara
viridula
Myzus
persicae
Selected crops were grown under greenhouse conditions in plastic pots containing “peat soil T”. At appropriate crop stage, plants were prepared for the treatments, e.g. by infestation with target pest approximately 2 days prior to treatment (table M3).
Spray solutions were prepared with different doses of active ingredient directly by dilution of formulations with tap water and addition of appropriate amount of additives in tank mix, where required.
The application was conducted with tracksprayer onto upperside of leaves with 300 l/ha or 10 l/ha application volume. Nozzles used: TeeJet TP8003E (for 300 l/ha) and Lechler's 652.246 together with a pulse-width-module (PWM) (for 10 l/ha). For each single dose applied, usually 2 to 5 replicates were simultaneously treated.
After treatment, plants were artificially infested, if needed, and kept during test duration in a greenhouse or climate chamber. The efficacy of the treatments was rated after evaluation of mortality (in general, given in %) and/or plant protection (calculated e.g. from feeding damage in comparison to corresponding controls) at different points of time. Only mean values are reported.
Seeds of crops and monocotyledonous and dicotyledonous harmful plants are laid out in sandy loam in plastic pots, covered with soil and cultivated in a greenhouse under optimum growth conditions. Two to three weeks after sowing, the test plants are treated at the one- to two-leaf stage. The test herbicide formulations are prepared with different concentrations and sprayed onto the surface of the green parts of the plants using different water application rates: 200 l/ha as a standard conventional rate and 10 l/ha as an ultra-low-volume (ULV) application rate. The nozzle type used for all applications is TeeJet DG 95015 EVS. The ULV application rate is achieved by using a pulse-width-modulation (PWM)—system that gets attached to the nozzle and the track sprayer device. After application, the test plants were left to stand in the greenhouse for 3 to 4 weeks under optimum growth conditions. Then, the activity of the herbicide formulation is scored visually (for example: 100% activity=the whole plant material is dead, 0% activity=plants are similar to the non-treated control plants).
Setaria viridis
Echinochloa crus-galli
Alopecurus myosuroides
Hordeum murinum
Avena fatua
Lolium rigidum
Matricaria inodora
Veronica persica
Abutilon theophrasti
Pharbitis purpurea
Polygonum convolvulus
Amaranthus retroflexus
Stellaria media
Zea mays
Triticum aestivum
Brassica napus
Seeds were laid out in “peat soil T” in plastic pots, covered with soil and cultivated in a greenhouse under optimum growth conditions. Two to three weeks after sowing, the test plants were treated at the one- to two-leaf stage. The test fungicide formulations were prepared with different concentrations and sprayed onto the surface of the plants using different water application rates: 200 l/ha as a standard conventional rate and 10 l/ha as an ultra-low-volume (ULV) application rate. The nozzle type used for all applications was TeeJet TP 8002E, used with 2 bar and 500-600 mm height above plant level. Cereal plants were put in an 45° angle as this reflected best the spray conditions in the field for cereals. The ULV application rate was achieved by using a pulse-width-modulation (PWM) system attached to the nozzle and the track sprayer device at 30 Hz, opening 8%-100% (10 l/ha-200 l/ha spray volume).
In a protective treatment the test plants were inoculated 1 day after the spray application with the respective disease and left to stand in the greenhouse for 1 to 2 weeks under optimum growth conditions. Then, the activity of the fungicide formulation was assessed visually.
In curative conditions plants were first inoculated with the disease and treated 1-3 days later with the fungicide formulations. Visual assessment of the disease was done 3-6 days after application of formulations (dat).
The practices for inoculation are well known to those skilled in the art.
Phakopsora
pachyrhizi
Puccinia recondita
Pyrenophora teres
Blumeria graminis
Phytophtora
infestans
The cuticle penetration test is a further developed and adapted version of the test method SOFU (simulation of foliar uptake) originally described by Schönherr and Baur (Schönherr, J., Baur, P. (1996), Effects of temperature, surfactants and other adjuvants on rates of uptake of organic compounds. In: The plant cuticle—an integrated functional approach, 134-155. Kerstiens, G. (ed.), BIOS Scientific publisher, Oxford); it is well suited for systematic and mechanistic studies on the effects of formulations, adjuvants and solvents on the penetration of agrochemicals.
Apple leaf cuticles were isolated from leaves taken from trees growing in an orchard as described by Schönherr and Riederer (Schönherr, J., Riederer, M. (1986), Plant cuticles sorb lipophilic compounds during enzymatic isolation. Plant Cell Environ. 9, 459-466). Only the astomatous cuticular membranes of the upper leaf surface lacking stomatal pores were obtained. Discs having diameters of 18 mm were punched out of the leaves and infiltrated with an enzymatic solution of pectinase and cellulase. The cuticular membranes were separated from the digested leaf cell broth, cleaned by gently washing with water and dried. After storage for about four weeks the permeability of the cuticles reaches a constant level and the cuticular membranes are ready for the use in the penetration test.
The cuticular membranes were applied to diffusion vessels. The correct orientation is important: the inner surface of the cuticle should face to the inner side of the diffusion vessel. A spray was applied in a spray chamber to the outer surface of the cuticle. The diffusion vessel was turned around and carefully filled with acceptor solution. Aqueous mixture buffered to pH 5.5 was used as acceptor medium to simulate the apoplast as natural desorption medium at the inner surface of the cuticle.
The diffusion vessels filled with acceptor and stirrer were transferred to a temperature-controlled stainless steel block which ensures not only a well-defined temperature but also a constant humidity at the cuticle surface with the spray deposit. The temperature at the beginning of experiments was 25° C., 30° C. or 35° C. and kept constant or changed to 35° C. 24 h after application at constantly 60% relative humidity.
An autosampler took aliquots of the acceptor in regular intervals and the content of active ingredient is determined by HPLC (DAD or MS). All data points were finally processed to obtain a penetration kinetic. As the variation in the penetration barrier of the cuticles is high, five to ten repetitions of each penetration kinetic were made.
A disc from an apple cuticle was fixed with the outside surface facing upwards to a glass microscope slide with a thin layer of medium viscosity silicone oil. To this 0.9 μl drops of the different formulations diluted at the spray dilution in deionised water containing 5% CIPAC C water were applied with a micropipette and left to dry for 1 hour. Each deposit was examined in an optical transmission microscope fitted with crossed polarising filters and an image recorded. The slide containing the cuticle with the dried droplets of the formulations was held under gently running deionised water (flow rate approximately 300 ml/minute at a height 10 cm below the tap outlet) for 15s. The glass slide was allowed to dry and the deposits were re-examined in the microscope and compared to the original images. The amount of active ingredient washed off was visually estimated and recorded in steps of 10%. Three replicates were measured and the mean value recorded.
Apple or corn leaf sections were attached to a glass microscope slide. To this 0.9 to 1.4 μl drops of the different formulations diluted at the spray dilution in deionised water containing 5% CIPAC C water and a small amount of fluorescent tracer (Tinopal OB as a micron sized aqueous suspension) were applied with a micropipette and left to dry for 1 hour. Under UV illumination (365 nm) the leaf deposits were imaged by a digital camera. The leaf sections were then held under gently running deionised water (flow rate approximately 300 ml/minute at a height 10 cm below the tap outlet) for 15s. The leaf sections were allowed to dry and the deposits were re-imaged and compared to the original images. The amount of active ingredient washed off was visually estimated between 5 with most remaining and 1 with most removed. Three or more replicates were measured and the mean value recorded.
Greenhouse plants in the development stage as indicated in Tables M1a & M1b were used for these experiments. Single leaves were cut just before the spraying experiment, placed into petri dishes and attached by tape at both tips at 0° (horizontally) or at 60° (so that 50% of leaf area can be sprayed). The leaves were carried with caution to avoid damage of the wax surface. These horizontally orientated leaves were either a) placed into a spay chamber where the spray liquid was applied via a hydraulic nozzle.
A small amount of UV dye was added to the spray liquid to visualize the spray deposits under UV light. The concentration of the dye has been chosen such that it does not influence the surface properties of the spray liquid and does not contribute to spreading itself. Tinopal OB as a colloidal suspension was used for all flowable and solid formulation such as WG, SC, OD and SE. Tinopal CBS-X or Blankophor SOL were used for formulations where active ingredient is dissolved such as EC, EW and SL. The Tinopal CBS-X was dissolved in the aqueous phase and the Blankophor SOL dissolved in the oil phase.
After evaporation of the spray liquid, the leaves were placed into a Camag, Reprostar 3 UV chamber where pictures of spray deposits were taken under visual light and under UV light at 366 nm. A Canon EOS 700D digital camera was attached to the UV chamber and used to acquire images the leaves. Pictures taken under visual light were used to subtract the leaf shape from the background. ImageJ software was used to calculate either a) the percentage coverage of the applied spray for sprayed leaves or b) spread area for pipetted drops in mm2.
Greenhouse plants in the development stage as indicated in Tables M1a & M1b were used for these experiments. A 1.4 μl drop of spray liquid containing a small amount of fluorescent tracer (Tinopal OB as a micron sized aqueous suspension) was pipetted on top without touching the leaf surface and left to dry. Under UV illumination (365 nm) the leaf deposits were imaged by a digital camera and the area of the deposits measured using ImageJ software (www.fiji.com).
The persistent foam was determined according to CIPAC Method MT 47.1 with the conditions of using the recipe dose rate and spray volumes indicated in each example and the foam recorded after 1 minute and 3 minutes (www.cipac.org).
The method of preparation used was according to Method 1.
The results show that recipe FN1.2 illustrative of the invention shows higher efficacy at both 10 and 200 l/ha spray volume than the reference recipe FN1.1.
The wash-off was determined according to method 15.
The results show that recipe FN1.2 illustrative of the invention shows a higher amount of applied formulation remaining at 10 L/ha spray volume compared to the reference recipe FN1.1 and a higher amount of applied formulation remaining at 10 and 200 l/ha compared to recipe FN1.3 containing drift reducing additive (b), spreading additive (c) and uptake enhancing additive (d) but without rainfast additive (e).
The drift was determined according to method 6.
The results show that recipe FN2.2 illustrative of the invention shows a lower drift at 10, 20, 40 and 200 l/ha spray volume compared to the reference recipe FN2.1 without spreading agent (c), uptake agent (d) and rainfast agent (e) and a greater reduction in drift compared to the reference recipe FN2.4 containing spreading agent (c), uptake agent (d) and rainfast agent (e).
The results show that recipe FN2.3 illustrative of the invention shows a lower drift at 40 l/ha spray volume compared to the reference recipe FN2.4 containing spreading agent (c), uptake agent (d) and rainfast agent (e).
The drift was determined according to method 7.
The results show that recipes FN2.2 and FN2.3 illustrative of the invention shows a lower drift at 10, 20, 40 and 200 l/ha spray volume compared to the reference recipe FN2.4 containing spreading agent (c), uptake agent (d) and rainfast agent (e).
The penetration through apple leaf cuticles was determined according to cuticle penetration test method 13.
The results show that recipes FN2.2 and 2.3 illustrative of the invention have a higher cuticle penetration than the reference recipe FN2.1 at both 10 l/ha and 200 l/ha. Furthermore, recipes FN2.2 and 2.3 have higher or comparable penetration at 10 l/ha compared to 200 l/ha.
The wash-off was determined according to method 15.
The results show that recipes FN2.2 and FN2.3 illustrative of the invention shows a higher amount of applied formulation remaining at 20 L/ha spray volume compared to the reference recipe FN2.1.
The leaf deposit size was determined according to method 17.
The results show that recipe FN3.2 illustrative of the invention shows greater deposit sizes compared to the reference recipe FN3.1 without spreading agent (c) at 20 L/ha spray volume. The increase in spreading is greater on textured soybean and rice leaves than untextured apple leaves.
The wash-off was determined according to method 15.
The results show that recipe FN3.2 illustrative of the invention shows a higher amount of applied formulation remaining at 20 L/ha spray volume compared to the reference recipes FN3.1 and FN3.4 containing drift reducing additive (b), spreading additive (c) and uptake enhancing additive (d) but without rainfast additive (e)
The drift was determined according to method 7.
The results show that recipes FN4.3, FN4.4 and FN4.5 illustrative of the inventive dose of drift reducing oil (b) show a lower amount of driftable fraction of spray droplets less than 100 microns and less than 150 microns at 20 l/ha spray volume compared to the reference recipe FN4.1 without drift reducing oil (b). Furthermore, the low amount of drift reducing oil in recipes FN4.4 and FN4.5 achieves the same level of reduction in the amount of the driftable fraction of spray droplets less than 100 microns and less than 150 microns compared to recipes FN4.6 and FN4.7 which contain significantly higher amounts of drift reducing oil (b).
The leaf deposit size was determined according to method 17.
The results show that recipe FN5.2 illustrative of the invention shows greater deposit sizes at 20 L/ha spray volume compared to the reference recipe FN5.1. The recipe FN5.4 not according to the invention shows similar deposit areas to the invention recipe FN5.2 but has significantly higher wash-off (see table FN5.4) demonstrating the benefit of recipes including a rainfast agent (e).
The wash-off was determined according to method 15.
The results show that recipe FN5.2 illustrative of the invention shows a higher amount of applied formulation remaining at 20 L/ha spray volume compared to the reference recipes FN5.1 and FN5.4.
The foam was determined according to method 18.
The results show that the recipe FN5.2 illustrative of the invention shows a lower foam at 20 and 200 l/ha spray volume compared to the reference recipe FN5.3 without the drift reducing agent rapeseed oil methyl ester (b). Furthermore, the reduction of foam is greater at low spray volumes where the increased concentration of high spreading agent (c) and uptake enhancing agent (d) would normally increase foam.
The drift was determined according to method 6.
The results show that recipe FN5.2 illustrative of the invention shows a lower drift at 10, 20, 40 and 200 l/ha spray volume compared to the reference recipe FN5.3 containing spreading agent (c), uptake agent (d) and rainfast agent (e).
The drift was determined according to method 8.
The results show that recipes FN6.2 and FN6.3 illustrative of the invention show a lower driftable droplet fraction (below 100 microns in this test) at both 50 and 200 l/ha spray volume compared to the reference recipe FN6.1 with drift reducing oil (b). It is especially surprising that such a low amount of oil corresponding to only 5 and 10 g/ha has the ability to reduce the driftable fraction of spray droplets.
The penetration through apple leaf cuticles was determined according to cuticle penetration test method 13.
The results show that recipe FN7.2 illustrative of the invention has a higher cuticle penetration than the reference recipe FN7.1 at both 10 l/ha and 200 l/ha. Furthermore, recipe FN7.2 has a higher penetration at 10 l/ha compared to 200 l/ha. In addition, recipe FN7.3 which contains a low amount of oil based drift reducing agent (Crodamol® OP) has comparable cuticle penetration to the reference recipe FN7.1 without any oil based drift reducing agent, demonstrating that the small amount of oil does not enhance the cuticle penetration and is not present at a level that affects the biodelivery of the active ingredient.
The wash-off was determined according to method 15.
The results show that recipe FN7.2 illustrative of the invention shows an equal or higher amount of applied formulation remaining at 10 and 200 l/ha spray volume compared to the reference recipes FN7.1 without added features, FN7.2 with spreading agent (c) and FN7.3 with uptake enhancing agent (d).
The drift was determined according to method 6.
The results show that recipe FN8.2 illustrative of the invention shows a lower drift at 20, 40 and 200 l/ha spray volume compared to the reference recipe FN8.4 containing spreading agent (c), uptake agent (d) and rainfast agent (e).
The drift was determined according to method 7.
The results show that recipe FN8.3 illustrative of the invention shows a lower drift at 10, 20, 40 and 200 l/ha spray volume compared to the reference recipe FN8.4 containing spreading agent (c), uptake agent (d) and rainfast agent (e). The drift reduction effect is greatest at lower spray volumes.
The penetration through apple leaf cuticles was determined according to cuticle penetration test method 13.
The results show that recipes FN8.2 and FN8.3 illustrative of the invention have a higher cuticle penetration than the reference recipe FN8.1 at both 10 l/ha and 200 l/ha. Furthermore, recipes FN8.2 and FN8.3 have a comparable penetration at 10 l/ha compared to 200 l/ha.
The leaf deposit size was determined according to method 17.
The results show that recipe FN9.2 illustrative of the invention shows greater deposit sizes at 20 L/ha spray volume compared to the reference recipe FN9.1. Furthermore, recipe FN9.4 containing high-spread agents (c) and uptake enhancing agents (d) but without rainfast agents (e) shows greater deposit sizes but higher wash-off (Table FN9.4).
The wash-off was determined according to method 15.
The results show that recipe FN9.2 illustrative of the invention shows a higher amount of applied formulation remaining at 20 L/ha spray volume compared to the reference recipes FN9.1 and FN9.4.
The leaf deposit size was determined according to method 17.
The results show that recipe FN10.2 illustrative of the invention shows greater deposit sizes at 10 l/ha spray volume than at 200 l/ha and also compared to the reference recipe FN10.1.
The penetration through apple leaf cuticles was determined according to cuticle penetration test method 13.
The results show that recipe FN10.2 illustrative of the invention has a higher cuticle penetration than the reference recipe FN10.1 at both 10 l/ha and 200 l/ha. Furthermore, recipe FN10.2 has a higher penetration at 10 l/ha compared to 200 l/ha.
The wash-off was determined according to method 15.
The results show that recipe FN10.2 illustrative of the invention shows an equal higher amount of applied formulation remaining at 10 l/ha spray volume compared to the reference recipes FN10.1 without added features, FN10.3 with spreading agent (c) and FN10.4 with uptake enhancing agent (d).
The results show that recipe FN10.6 illustrative of the invention shows higher efficacy at both 10 and 200 l/ha spray volume than the reference recipe FN10.5. Furthermore, recipe FN10.6 shows higher efficacy at 10 l/ha compared to 200 l/ha.
The leaf deposit size was determined according to method 17.
The results show that recipe FN11.2 illustrative of the invention shows greater deposit sizes at 10 l/ha spray volume than at 200 l/ha and also compared to the reference recipe FN11.1.
The results show that recipe FN11.2 illustrative of the invention shows higher efficacy at both 10 and 200 l/ha spray volume than the reference recipe FN10.1. Furthermore, recipe FN11.2 shows higher efficacy at 10 l/ha compared to 200 l/ha.
The leaf deposit size was determined according to method 17.
The results show that recipe FN12.2 illustrative of the invention shows greater deposit sizes at 10 L/ha spray volume than at 200 L/ha and also compared to the reference recipe FN12.1.
The results show that recipe FN12.2 illustrative of the invention shows higher efficacy at both 10 and 200 l/ha spray volume than the reference recipe FN12.1. Furthermore, recipe FN12.2 shows higher efficacy at 10 l/ha compared to 200 l/ha.
The wash-off was determined according to method 15.
The results show that recipe FN12.2 illustrative of the invention shows a higher amount of applied formulation remaining at 10 L/ha spray volume compared to the reference recipes FN12.1 and FN12.3 containing drift reducing additive (b), spreading additive (c) and uptake enhancing additive (d) but without rainfast additive (e).
The drift was determined according to method 7.
The results show that recipes FN12.2 illustrative of the invention shows a lower amount of driftable fraction of spray droplets less than 100 microns and less than 150 microns at 20 l/ha spray volume compared to the reference recipe FN12.4 without drift reducing oil (b).
The leaf deposit size was determined according to method 17.
The results show that recipe FN13.2 illustrative of the invention shows greater deposit sizes at 10 l/ha spray volume than at 200 l/ha and also compared to the reference recipe FN31.1.
The results show that recipe FN13.2 illustrative of the invention shows higher efficacy at both 10 and 200 l/ha spray volume than the reference recipe FN13.1. Furthermore, recipe FN13.2 shows higher efficacy at 10 l/ha compared to 200 l/ha.
Wheat plants at a height of 15-25 cm were sprayed with a TeeJet® TP8002E nozzle at a pressure of 2 bar. A PWM device was used to achieve the spray volume of 10 l/ha. A small amount of a fluorescent marker was added to the spray liquid and the % coverage was determined under UV illumination (365 nm) visually.
The results show that recipe FN13.2 illustrative of the invention shows greater leaf coverage compared to the reference recipe FN13.1 at both 10 l/ha and 200 l/ha spray volumes.
Images of the leaf deposits on sprayed wheat plants are shown in
The wash-off was determined according to method 15.
The results show that recipe FN13.2 illustrative of the invention shows a higher amount of applied formulation remaining at both 10 and 200 l/ha spray volume compared to the reference recipe FN13.1 and a higher amount than the reference recipe FN13.3 at 10 l/ha containing drift reducing additive (b), spreading additive (c) and uptake enhancing additive (d) but without rainfast additive (e).
The drift was determined according to method 9.
The results show that recipe FN14.2 illustrative of the invention shows a lower driftable droplet fraction at 10 L/ha spray volume compared to the reference recipes FN14.1 and FN14.3.
Tomato plants at the 4 leaf growth stage (BBCH 14) were sprayed with a TeeJet® TP8002E nozzle at a pressure of 2 bar. A PWM device was used to achieve the spray volume of 15 l/ha. A small amount of a fluorescent marker was added to the spray liquid and the % coverage was determined under UV illumination (365 nm) visually.
The results show that recipe FN14.2 illustrative of the invention shows greater leaf coverage compared to the reference recipe FN14.1 at both 15 l/ha and 200 l/ha spray volumes.
The results show that the reference recipe FN14.1 shows a large decrease in efficacy on reducing the spray volume from 200 l/ha to 15 l/ha. The recipe FN14.2 illustrative of the invention maintains a markedly better efficacy as the spray volume is decreased from 200 l/ha to 15 l/ha. Furthermore, recipe FN14.2 shows higher efficacy at both 15 and 200 l/ha spray volume compared to the reference recipe FN14.1.
Tomato plants at the 4 leaf growth stage (BBCH 14) were sprayed with a TeeJet® TP8002E nozzle at a pressure of 2 bar. A PWM device was used to achieve the spray volume of 15 l/ha. A small amount of a fluorescent marker was added to the spray liquid and the % coverage was determined under UV illumination (365 nm) visually.
The results show that recipe FN15.2 illustrative of the invention shows greater leaf coverage compared to the reference recipe FN15.1 at both 15 l/ha and 200 l/ha spray volumes.
The results show that the recipe FN15.2 illustrative of the invention demonstrates a better efficacy compared to the reference recipe FN15.1 at both 200 l/ha and 15 l/ha. Furthermore, the efficacy of recipe FN15.2 is surprisingly high at 15 l/ha for the lower coverage observed (Table FN15.3) compared to 200 l/ha.
The physical aspect with regard to viscosity was assessed visually.
The results show that recipe FN15.4 is too viscous for use by customers and illustrates that there is an upper concentration limit for how much polymer can be incorporated in an SC recipe. For the drift reducing polymer AgRho DR2000 this is approximately 10 g/1.
The physical aspect with regard to viscosity was assessed visually.
The results show that the polymer Polyox® WSR301 can be incorporated into SC recipes over the concentration range of 0.3 to 1.2 g/L.
The spray droplet size was determined according to method 9.
The results show that the polymer Polyox® WSR301 can reduce the driftable fraction of spray droplets <100 microns and <150 microns over the concentration range of 0.6 to 1.2 g/L (for a recipe used at 0.5 l/ha in a spray volume of 15 l/ha).
The physical aspect with regard to viscosity was assessed visually.
The results show that the polymer Polyox® WSR N12K can be incorporated into SC recipes over the concentration range of 0.6 to 2.4 g/L.
The spray droplet size was determined according to method 9.
The results show that the polymer Polyox® WSR N12K can reduce the driftable fraction of spray droplets <100 microns and <150 microns over the concentration range of 0.6 to 2.4 g/L (for a recipe used at 0.5 l/ha in a spray volume of 15 l/ha). Furthermore, these results demonstrate that the reduction of the driftable fraction is also observed with spreading agents (c) and uptake enhancing agents (d).
The drift was determined according to method 7.
The results show that recipe FN18.2 illustrative of the invention show a lower driftable droplet fraction at 20 l/ha spray volume compared to the reference recipe FN18.3 without drift reducing oil (b).
The leaf deposit size was determined according to method 17.
The results show that recipe FN18.2 illustrative of the invention shows greater deposit sizes at 20 l/ha spray volume than at 200 l/ha and also compared to the reference recipe FN18.1.
The drift was determined according to method 7.
The results show that recipe FN19.2 illustrative of the invention show a lower driftable droplet fraction at 20 l/ha spray volume compared to the reference recipe FN19.3 without drift reducing polymer (b).
The leaf deposit size was determined according to method 17.
The results show that recipe FN19.2 illustrative of the invention shows greater deposit sizes at 20 l/ha spray volume than at 200 l/ha and also compared to the reference recipe FN19.1.
The leaf deposit size was determined according to method 17.
The results show that recipe IN12 illustrative of the invention shows greater deposit sizes at 8 and 15 L/ha spray volume than at 100 L/ha and also compared to the reference recipe IN11.
The penetration through apple leaf cuticles was determined according to cuticle penetration test method 13.
The results show that recipe IN12 illustrative of the invention has a higher cuticle penetration than the reference recipe IN11 at both 10 l/ha and 200 l/ha. Furthermore, recipe IN12 has a higher penetration at 10 l/ha compared to 200 l/ha.
The wash-off was determined according to method 15, but with a wash off rate of 600 mL/min
The results show that recipe IN12 illustrative of the invention shows a higher amount of applied formulation remaining at 10 L/ha & 200 L/ha spray volume compared to the reference recipe IN11.
The leaf deposit size was determined according to method 17.
The results show that recipe IN82 illustrative of the invention shows greater deposit sizes at 8 and 15 L/ha spray volume on rice than at 100 L/ha and also compared to the reference recipe IN21.
The wash-off was determined according to method 15, but with a wash off rate of 600 mL/min
The results show that recipes IN22, and IN82 illustrative of the invention show a higher amount of applied formulation remaining at 10 L/ha spray volume compared to the reference recipe IN21.
The leaf deposit size was determined according to method 17.
The results show that recipe IN32 illustrative of the invention shows greater deposit sizes at 8 and 15 L/ha spray volume than at 100 L/ha and also compared to the reference recipe IN31.
The penetration through apple leaf cuticles was determined according to cuticle penetration test method 13.
The results show that recipe IN32 illustrative of the invention has a higher cuticle penetration than the reference recipe IN31 at both 10 l/ha and 200 l/ha. Furthermore, recipe IN32 has a higher penetration at 10 l/ha compared to 200 l/ha.
The results show that recipe IN32 illustrative of the invention has a higher cuticle penetration than the reference recipe IN31 at both 10 l/ha and 200 l/ha. Furthermore, recipe IN32 has a higher penetration at 10 l/ha compared to 200 l/ha.
The wash-off was determined according to method 15, but with a wash off rate of 600 mL/min
The results show that recipe IN32 illustrative of the invention shows a higher amount of applied formulation remaining at 10 L/ha & 200 L/ha spray volume compared to the reference recipe IN31.
The leaf deposit size was determined according to method 17.
The results show that recipe IN42 illustrative of the invention shows greater deposit sizes at 8 & 15 L/ha spray volume than at 100 L/ha and also compared to the reference recipe IN41.
The leaf deposit size was determined according to method 17.
The results show that recipe IN52 illustrative of the invention shows greater deposit sizes at 8 and 15 L/ha spray volume than at 100 L/ha and also compared to the reference recipe IN51.
The wash-off was determined according to method 15, but with a wash off rate of 600 mL/min
The leaf deposit size was determined according to method 17.
The results show that recipe IN62 illustrative of the invention shows greater deposit sizes at 8&15 L/ha spray volume on rice than at 100 L/ha and also compared to the reference recipe IN61.
The wash-off was determined according to method 15, but with a wash off rate of 600 mL/min
The results show that recipe IN62 illustrative of the invention shows a higher amount of applied formulation remaining at 10 L/ha & 200 L/ha spray volume compared to the reference recipe IN61.
The leaf deposit size was determined according to method 17.
The results show that recipe IN72 illustrative of the invention shows greater deposit sizes at 8 & 15 L/ha spray volume than at 100 L/ha and also compared to the reference recipe IN71.
The wash-off was determined according to method 15, but with a wash off rate of 600 mL/min
The results show that recipe IN72 illustrative of the invention shows a higher amount of applied formulation remaining at 10 L/ha & 200 L/ha spray volume compared to the reference recipe IN71.
The drift was determined according to method 7.
The results show that recipes HB1.2 illustrative of the invention shows a lower amount of driftable fraction of spray droplets less than 100 microns and less than 150 microns at 10 l/ha spray volume compared to the reference recipe HB1.3 without drift reducing additive (b).
The results show that recipes HB1.2 illustrative of the invention shows a lower amount of driftable fraction of spray droplets less than 100 microns and less than 150 microns at 20 l/ha spray volume compared to the reference recipe HB1.3 without drift reducing additive (b).
The leaf deposit size was determined according to method 17.
The results show that recipe HB1.2 illustrative of the invention shows greater deposit sizes at 10 L/ha spray volume than at 200 L/ha and also compared to the reference recipe HB1.1.
The results show that recipe HB1.2 illustrative of the invention shows greater deposit sizes at 10 L/ha spray volume than at 200 L/ha and also compared to the reference recipe HB1.1.
The penetration through apple leaf cuticles was determined according to cuticle penetration test method 13.
The results show that recipe HB1.2 illustrative of the invention has a higher cuticle penetration than the reference recipe HB1.1 at both 10 l/ha and 200 l/ha. Furthermore, recipe HB1.2 has a higher penetration at 10 l/ha compared to 200 l/ha.
The results show that recipe HB1.2 illustrative of the invention shows a higher amount of applied formulation remaining at 10 L/ha and 200 L/ha spray volume compared to the reference recipes HB1.1.
The drift was determined according to method 7.
The results show that recipes HB2.2 illustrative of the invention shows a lower amount of driftable fraction of spray droplets less than 150 microns at 20 l/ha spray volume compared to the reference recipe HB2.3 without drift reducing oil (b).
The leaf deposit size was determined according to method 17.
The results show that recipe HB2.2 illustrative of the invention shows greater deposit sizes at 10 L/ha spray volume than at 200 L/ha and also compared to the reference recipe HB2.1.
The results show that recipe HB2.2 illustrative of the invention shows greater deposit sizes at 10 L/ha spray volume than at 200 L/ha and also compared to the reference recipe HB2.1.
The penetration through apple leaf cuticles was determined according to cuticle penetration test method 13.
The results show that recipe HB2.2 illustrative of the invention has a higher cuticle penetration than the reference recipe HB2.1 at both 10 l/ha and 200 l/ha. Furthermore, recipe HB2.1 has a higher penetration at 10 l/ha compared to 200 l/ha.
The results show that recipe HB2.2 illustrative of the invention shows a higher amount of applied formulation remaining at 10 L/ha and 200 L/ha spray volume compared to the reference recipes HB2.1.
The drift was determined according to method 7.
The results show that recipes HB3.2 illustrative of the invention shows a lower amount of driftable fraction of spray droplets less than 150 microns at 20 l/ha spray volume compared to the reference recipe HB3.3 without drift reducing oil (b).
The leaf deposit size was determined according to method 17.
The results show that recipe HB3.2 illustrative of the invention shows greater deposit sizes at 10 L/ha spray volume than at 200 L/ha and also compared to the reference recipe HB3.1.
The results show that recipe HB3.2 illustrative of the invention shows greater deposit sizes at 10 L/ha spray volume than at 200 L/ha and also compared to the reference recipe HB3.1.
The wash-off was determined according to method 13.
The results show that recipe HB3.2 illustrative of the invention shows a higher amount of applied formulation remaining at 10 L/ha spray and 200 L/ha volume compared to the reference recipes HB3.1.
Number | Date | Country | Kind |
---|---|---|---|
20206336.8 | Nov 2020 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2021/080846 | 11/5/2021 | WO |