Air assist fuel injection system with compressor intake throttle control

Information

  • Patent Grant
  • 6505613
  • Patent Number
    6,505,613
  • Date Filed
    Monday, August 27, 2001
    23 years ago
  • Date Issued
    Tuesday, January 14, 2003
    21 years ago
Abstract
An air-assisted fuel injection system for an engine includes an air compressor to be driven by the engine and having an air inlet and an air outlet connected with air-assisted fuel injectors for the engine. An air pressure regulator is also connected with the compressor outlet for controlling air pressure by exhausting excess air delivered by the compressor to the outlet. A throttle valve in the compressor inlet is operated by a controller to variably restrict inlet air flow to the compressor. An air flow sensor, responsive to an indicator of the flow of excess air exhausted by the air pressure regulator, is connected with the controller for variably closing the throttle in response to increasing excess air flow, thereby reducing the amount of excess air delivered by the compressor and limiting parasitic losses from pumping of excess air by the compressor.
Description




TECHNICAL FIELD




This invention relates to air assist fuel injection systems and more particularly to throttle control of the compressor air intake in such systems.




BACKGROUND OF THE INVENTION




It is known in the art to provide direct injection of fuel to the cylinders of an internal combustion engine using air-assisted fuel injection wherein compressed air is provided to assist in the injection of fuel into the cylinders. A compressor for providing compressed air for such a system may be directly driven by the engine so that the compressor speed varies directly with that of the engine. However, the output flow of the engine-driven compressor is not linear with the engine speed related requirement for proper fuel delivery. Accordingly, the air compressor displacement is sized for the greatest flow demand in the engine speed/load matrix plus a factor for expected deterioration of the system over time.




Because of this over capacity, an air pressure regulator is utilized to control the system pressure at a nominal pressure level and to exhaust excess air flow supplied by the compressor. The result is that the compressor operates most of the time with considerable excess air flow which is parasitic in that it consumes excess energy in pumping air not needed for operation of the engine. Accordingly, an improved system for reducing the parasitic losses caused by excess air flow of the compressor with a minimum of additional cost is desired.




SUMMARY OF THE INVENTION




The present invention provides an improved air-assisted fuel injection system wherein the compressor air inlet includes an inlet flow regulating device, such as a throttle, wherein the throttle is controlled in response to the exhaust air flow from the air pressure regulator. The system operates to provide a low nominal exhaust air flow from the air pressure regulator by controlling the throttle position in the intake of the air compressor. An air flow indicator associated with the air pressure regulator connects through a feedback system with a controller for variably closing or opening the throttle in response to increasing or decreasing excess air flow from the pressure regulator.




If the air pressure regulator exhaust flow is too high, the feedback system and controller operate to restrict the input air flow to the compressor by moving the throttle in a closing direction. If the regulator exhaust flow is too low, the feedback system operates with the controller to open the throttle and increase air flow to the compressor. In this way, equilibrium at a prescribed low nominal regulator exhaust flow is reached quickly, within a few compressor cycles.




Various forms of air flow sensors or indicators could be used. Some examples are an air flow meter measuring exhaust flow from the pressure regulator and a position transducer measuring movement of a pressure responsive diaphragm valve or other member in the pressure regulator.




These and other features and advantages of the invention will be more fully understood from the following description of certain specific embodiments of the invention taken together with the accompanying drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a diagrammatic view of an air-assisted fuel injection system according to the invention including a first embodiment of air flow indicator; and





FIG. 2

is a view similar to

FIG. 1

but showing a second embodiment of an air-assisted fuel injection system including an alternative air flow indicator.











DESCRIPTION OF THE PREFERRED EMBODIMENT




Referring now to the drawings in detail, numeral


10


generally indicates a first embodiment of an air-assisted fuel injection system according to the invention. System


10


includes an air compressor


12


having an air inlet


14


and an air outlet


16


. Air outlet


16


connects through an air supply line


18


with multiple injectors


20


that are supplied with fuel by a fuel supply line


22


and receive compressed air from the air supply line


18


.




The air supply line


18


also connects with an air pressure regulator


24


. The regulator controls the air pressure in the air supply line


18


by exhausting excess air, not used by the injectors, through an exhaust port


26


. Any suitable form of air pressure regulator may be used; however, the drawings indicate a diaphragm valve


28


, biased closed by a spring


30


and openable in response to pressure within a housing


32


forming a chamber below the diaphragm. As the excess air pressure in the housing


32


is increased, the diaphragm is raised to open the diaphragm valve


28


to exhaust increasing amounts of air so that the pressure in the air supply line


18


remains relatively constant in spite of varying compressor speeds and varying air demands by the injectors.




The air inlet


14


connects with a throttle valve


34


that is closeable to restrict air flow to the compressor inlet


14


. Any suitable form of a throttle valve may be utilized; however, the drawings indicate an electrically-actuated plunger valve having a reciprocating valve element


36


driven by an electric actuator, such as a motor


38


. The motor is controlled by an electrical control unit


40


under the control of, or forming a portion of, the electrical control module (ECM) of a vehicle.




In the pressure regulator


24


, a position transducer


42


monitors movement of the diaphragm valve and forms an indicator of air flow out of the valve which varies in response to the opening and closing of the diaphragm valve. The transducer is connected by a feedback line


44


with the electrical control unit


40


to comprise an air flow sensor feeding an air flow signal to the electrical control unit for use in determining the positioning of the inlet throttle valve


34


by actuation of the valve element


36


by the actuator


38


.




In operation, the air compressor draws outside air in through the open throttle valve


34


and supplies compressed air through supply line


18


to the injectors


20


. The air pressure regulator is actuated open by the pressure of excess air not used by the injectors which enters the housing


32


. The presence of an adequate control pressure in the housing opens the diaphragm valve


28


to exhaust excess air through the exhaust port


26


.




If the flow of excess air is more than a nominal amount which is needed for flow control, the diaphragm valve will open further to exhaust the additional excess air through the port


26


. The transducer


42


will then send a feedback signal to the electrical control unit


40


indicating that the compressor is supplying more air than necessary. The electrical control unit will then energize the actuator to partially close the throttle valve


34


to restrict air flow through the inlet


14


of the compressor. This will reduce the amount of air flow handled by the compressor and reduce the excess air delivered to the air pressure regulator, resulting in a return of the diaphragm to the original position to provide the desired nominal amount of excess air flow.




Subsequently, as the amount of air used by the injectors varies and as the speed of the compressor varies with engine speed, increases and decreases in the amount of excess air delivered to the air pressure regulator will be converted, through the feedback and action of the electrical control unit, to closing or opening motions of the throttle valve


34


. These valve motions vary the compressor outlet air flow as necessary to maintain exhaust air flow from the air pressure regulator at approximately the desired nominal amount. The partial closing of the compressor throttle valve


34


effectively reduces the load on the compressor so as to both reduce the excess air flow delivered by the compressor and to reduce the energy required by operation of the compressor, thereby providing more efficient operation of the system at a relatively low cost.




Referring now to

FIG. 2

of the drawings, there is shown an alternative embodiment of an air-assisted fuel injection system generally indicated by numeral


46


. System


46


is in most respects similar to that of system


10


described above wherein like numerals indicate like parts. The system


46


differs in that the air pressure regulator


48


omits the position transducer of the prior embodiment and instead provides an air flow meter


50


in an exhaust passage connected with exhaust port


26


from the pressure regulator. Air flow meter


50


comprises the air flow indicator and sensor and is connected by a feedback line


54


to the electrical control unit


40


. The control unit acts in the same fashion as the first embodiment to control the throttle valve


34


by moving the valve in a closing direction upon increased excess air flow and moving the valve in an opening direction upon reduction of excess flow to maintain a nominal amount of excess air flow as desired.




While the invention has been described by reference to certain preferred embodiments, it should be understood that numerous changes could be made within the spirit and scope of the inventive concepts described. Accordingly, it is intended that the invention not be limited to the disclosed embodiments, but that it have the full scope permitted by the language of the following claims.



Claims
  • 1. An air-assisted fuel injection system for an engine, the system including an air compressor adapted to be driven by the engine and having an air inlet and an air outlet, the outlet connected with air-assisted fuel injectors for the engine, and an air pressure regulator connected with the compressor air outlet for controlling air pressure in the outlet by exhausting excess air delivered by the compressor to the outlet, wherein the system further comprises:a throttle valve in the compressor inlet and operable by a controller to variably restrict inlet air flow to the compressor; and an air flow sensor responsive to an indicator of the flow of excess air exhausted by the air pressure regulator, the sensor being connected with the controller for variably closing or opening the throttle in response to increasing or decreasing excess air flow, thereby controlling the amount of excess air delivered by the compressor and limiting parasitic losses from pumping of excess air by the compressor.
  • 2. A system as in claim 1 wherein the controller responds to the sensor to substantially maintain a nominal flow of excess air from the pressure regulator over the range of air flow usage required by the fuel injectors.
  • 3. A system as in claim 1 wherein the air flow sensor is a transducer monitoring the position of a pressure responsive member of the air pressure regulator.
  • 4. A system as in claim 3 wherein the pressure responsive member is a diaphragm.
  • 5. A system as in claim 1 wherein the air flow sensor is an air flow meter connected in an exhaust passage from the air pressure regulator.
US Referenced Citations (5)
Number Name Date Kind
4899714 Schechter et al. Feb 1990 A
5156133 Sugimoto et al. Oct 1992 A
6123510 Greer et al. Sep 2000 A
6286469 Cobb, Jr. Sep 2001 B1
6357422 Doane et al. Mar 2002 B1