The present invention relates generally to agricultural equipment, and, more particularly, to an agricultural product delivery system on an application implement, such as a planter or fertilizer application equipment, for applying particulate material such as seed, fertilizer, herbicide or insecticide in a field, either as a surface application or deposited in the soil to improve soil quality.
Agricultural product delivery systems are known to utilize various mechanisms, including mechanical and pneumatic systems, i.e., a flow of air, to assist in the delivery and movement of particulate material or product such as fertilizer, seed, insecticide or herbicide from a product supply chamber through an interior passage provided by a series of elongate tubes which extend from the product supply chamber to a product applicator that places the product on or in growing medium, such as soil. Such agricultural product delivery systems are commonly employed in planters, air drills, fertilizer and pesticide applicators and a variety of other agricultural implements.
Agricultural implements that employ an agricultural product delivery system are known to have a particulate material supply source such as one or more tanks that are loaded with the particulate material or materials to be applied. The tanks have or are associated with a metering device, which typically consists of a rotating element, which meters the particulate materials from the tanks into a set of distribution channels, such as conduits, hoses, etc., for application to the farm field. In most systems, a pneumatic source such as a fan or blower provides air to convey and distribute material through the distribution channels. Once the metering of particulates is done and the mix of air and particulates is in the distribution channels, the solid concentration should remain nearly constant and in dilute phase.
Systems as described have provided certain advantages and have worked acceptably in some aspects, but are not without disadvantages, inefficiencies or inconveniences. For example, it often occurs in the material supply source, such as a tank, that the material to be distributed via the system becomes agglomerated within the tank, such as by forming bridges across the tank, that prevent the material from being distributed.
In order to alleviate the problems associated with the agglomeration of the material within the tank, many types of mechanical agitators have been developed. These agitator are positioned within the tank and can be operated to agitate the material and break up any agglomeration or bridges of the material that have formed within the tank. However, as the placement of the mechanical agitators within the tank limits their ability to agitate material that is not immediately adjacent the agitator, in certain situations all agglomerations and bridges cannot be broken up effectively, or to distribute material that has an uneven horizontal profile due to previous sectional control.
Further, when the material within the tank drops below a certain level, it is often difficult to move the remaining material within the tank into a position where the material can exit the tank, which requires that the tank be manually cleaned and/or emptied at the end of a run. The mechanical agitators are unable to assist with this task as the remaining material rest outside of the operational volume that can be affected by the agitators, and may hinder the process by obstructing areas where the remaining material is positioned within the tank.
What is needed in the art is an agricultural product including an agitation system for the tanks of the application that addresses these issues to improve efficiency and convenience of the applicator without further complicating its construction, such as the mechanical drives of and associated physical interference of prior art rotary agitators.
According to one aspect of the present disclosure, an applicator includes an agricultural product conveying system which transfers particulate material from one or more source containers to application equipment on demand, and meters the material at the application equipment. The pneumatic or mechanical conveying system employs longitudinal tubes or conduits that operate pneumatically with a pressurized air flow and/or mechanically with mechanical devices to move and mix the particulate material from one of the source containers or tanks along the conveying system. In the conveying system, the different types of particulate materials are blended, such as within a rotary distributor, and delivered to the distribution nozzles for discharge from the applicator. The conveying system has a simplified construction and operation in comparison to prior art systems.
The conveying system includes a pneumatic agitation system operably connected to the tanks of the applicator to agitate the particulate material disposed within the tanks in order to reduce the formation of agglomerations and/or bridges of particles within the tanks or to distribute the material during sectional control. The pneumatic agitation system includes a number of nozzles connected to each tank that are in turn connected to a pressurized air source and a controller. The controller is operable to selectively cause pressurized air to flow into the tanks through the nozzles to agitate the particulate material positioned therein, thereby breaking up any agglomerations of material within the tanks. The positioning of the nozzles enables the air flows from the nozzles to reach all internal areas of the tank in order to access material across the entire interior of the tank. Due to the configuration of the nozzles, the pneumatic agitation system can be operated at the end of a run in order to effectively clean out the particulate material remaining within the tank after the run has been completed.
According to another aspect of the invention, an agricultural product delivery system includes at least one particulate material supply compartment, at least one particle delivery unit for applying particulate material from the supply compartment, a conveying system providing a flow of particulate material from the at least one particulate material supply compartment to the at least one particle delivery unit and a pneumatic agitation system operably connected to the at least one compartment.
According to another aspect of the invention, pneumatic agitation system for use with an agricultural product delivery system, the pneumatic agitation system includes a compressor, a number of nozzles adapted to be engaged with at least one particulate material supply compartment of the agricultural product delivery system and operably connected to the compressor and a controller operably connected to the compressor and the number of nozzles.
According to a further aspect of the present invention, a method of agitating a particulate material within at least one compartment containing the particulate material for applying the particulate material in a field includes providing a pneumatic agitation system operably connected to the at least one compartment, the pneumatic agitation system including a compressor and a number of nozzles disposed on the at least one compartment and operably connected to the compressor and operating the pneumatic agitation system to agitate the particulate material within the at least one compartment.
Numerous additional objects, aspects and advantages of the present invention will be made apparent from the following detailed description taken together with the drawing figures.
The drawings illustrate the best mode of practicing the present disclosure.
In the drawings:
Referring now to the drawings, and more particularly to
Fertilizer applicator 10 is illustrative of the types of equipment for which the conveying system 100 can be used; however, it should be understood that the conveying system 100 may, of course, be employed in conjunction with other agricultural equipment such as tillage, seeding or planting devices, and is useful in distributing particulate material other than fertilizer.
Looking now at
To collect and drive the particulate material along the lines 102, in the illustrated embodiment one or more fans 110 are operably connected to the plenum 104 opposite the lines 102. The air flow from the fans 110 is directed from the fans 110 through the plenum 104 and into the respective lines 102 as a result of the structure of the plenum 104. After the air flow passes through the one or more plenums 104 connected to the one or more fans 110 and collects entrains the particulate material from the compartments 64-70 in a manner to be described, the air flow continues to flow along each of the four (4) large diameter lines 102 that make approximately a 90° turn to connect to the booms 14, 16.
In order to spread the particulate material/product over/onto the center section over which the machine 10 passes, a large line 102 must move product to the rear nozzles 50-58 where there is no interference by the machine 10 on the spread pattern. To accomplish this a line 102 carrying only air is added on the side of the machine 10 and has a forward section 105 that extends from the plenum 104 to the front of the machine 10. At the front of the machine 10, one line 102 turns 180° and has a rearward section 109 that passes beneath the compartments 64-70 where the line 102 collects the particulate material/product and transports the product to the nozzles 50-58 at the rear of the machine 10.
In an alternative exemplary embodiment, it is contemplated that the conveying system 100 can be formed with one or more mechanical conveyors (not shown) take the form of one or more augers (not shown) that are disposed within the lines 102 and encircle the auger(s) along their length. The augers are each operably connected to a motor (not shown) that causes the augers to rotate within the respective lines 102, moving the particulate material in conjunction with the air flow through the lines 102. The operation of the motor can be controlled to control the speed of rotation of the augers, either collectively or independently from one another, such that the speed of the conveying system 100 can be varied as desired but not to meter the product(s).
Looking now at
Referring now to
In the exemplary embodiment of
In addition, in the illustrated exemplary embodiment of
Looking now at
The air nozzles 118 can be positioned on various surfaces of the compartments 64-70 in order to maximize the agitation provided by the pneumatic agitation system 116. As shown in the exemplary embodiment of
In addition to the placement of the air nozzles 118 at various locations and levels on the compartments 64-70, the operation of the air nozzles 118 can be varied in order to direct air flow at the particulate material within the compartments 64-70 from different directions by operating different air nozzles 118 at different times. Further, the air nozzles 118, either in conjunction with or separately from the selective operation of the various air nozzles 118 can be operated to pulse the air flow from the same or different air nozzles 118 into the compartments 64-70 thus providing enhanced agitation capabilities to the pneumatic agitating system 116. Also, either with the operation of different air nozzles 118 and/or pulsing of the air flow from the air nozzles 118, the pressure of the air flow directed into the compartments 64-70 can be done at a constant pressure or varied to increase or decrease the pressure from one or more air nozzles 118 depending upon the agitation requirements for the pneumatic agitation system 116. In one exemplary embodiment, the burst of air into the compartments 64, 66, 68 and/or 70 can have a duration of between 0.25 seconds and 2.0 seconds, or 0.50 seconds, with a pressure of approximately 100 psi, with intervening periods of no air flow of 0.1 seconds to 0.5 seconds when the system 116 is in an agitation mode. The short burst of air avoid an excessive increase in the air pressure into and/or within the compartments 64-70, which can already be pressurized. This is due to the ability of the small pressurized air quantity contained within the air bursts to leaks out of the compartments 64-70 through the metering devices 112. In addition, the pneumatic agitation system 116 can be employed with or without any other agitation mechanisms, such as a mechanical agitation system (not shown).
Referring now to
Alternatively, if agitation is required, using the information from the sensors 156, the controller 140 will determine in block 159 the compartments 64-70 that require agitation. In addition, in decision block 160 the controller 140 through an operable connection (not shown) to the control systems (not shown) of the applicator 10 will ascertain whether the applicator 10 is operating under sectional control, i.e., if one or more of the compartments 64-70 are not currently being utilized to distribute the particulate material(s) contained therein.
If the controller 140 determines in block 162 that no sectional control is in effect, and that all particulate materials are being metered from all compartments 64-70, the controller 140 proceeds to decision block 164 to determine, e.g., via the sensors 156, whether the level of particulate material in one or more of the compartments 64-70 is below the critical level where the particulate material is at significant risk for bridging within the compartment 64-70. If so, the controller 140 proceeds to activate all of the air nozzles 118 associated with the compartments 64-70 having critical or below critical particulate material levels in block 166 to break up any already-formed bridges of the material and/or to prevent any bridges from forming. The controller 140 then proceeds to block 168 to determine if any of the metering devices 112 are actively metering the materials from the compartments 64-70, such as by utilizing a sensor 165 (
If no metering devices 112 are determined to be active on any compartment 64-70 in block 168, such that the applicator 10 is no longer distributing any particulate materials, the controller 140 proceed to block 170 and performs an automated tank clean out function where the air nozzles 118 in each compartment 64-70 are activated to move all remaining materials within the compartments 64-70 into a position where the materials can be removed entirely from the compartments 64-70. This function, as illustrated in an exemplary embodiment, in block 172 involves the operation of the air nozzles 118 in each compartment 64-70 for longer durations, with increased pressures and/or increased frequencies of the bursts in order to create a highly turbulent environment within the compartments 64-70 to dislodge and remove the materials from the compartments 64-70. Additionally, a bypass gate (not shown) positioned on the compartments) 64-70 can be opened during this clean out function to avoid having to operate the metering devices 112. Upon completion of the tank clean out function, the controller 140 returns to block 154 to determine the next instance when operation of the pneumatic agitation system 116 is required to agitate particulate material(s) disposed within the compartments) 64-70.
However, if at least some of the metering device 112 are active, such that the applicator 10 is still dispensing particulate material(s), the controller 140 returns to block 164. In block 164, whether from block 162 or from block 168, if the controller 140, via the sensors 156, does not find any critical particulate material levels in the compartments 64-70, the controller 140 proceeds to block 174 and identifies which compartments 64-70 have inactive metering devices 112, as is the case when the applicator 10 is operated under sectional control, as determined in block 160. The controller 140 then moves to block 176 to operate the air nozzles 118 associated with each of the compartments 64-70 to emit short bursts of pressurized air into the compartments 64-70, thereby agitating the particulate material within the compartments 64-70. Additionally, the air nozzles 118 can be operated in any suitable or desired manner to agitate the particulate material(s), using higher or lower pressure air busts, longer or shorter bursts, and/or alternating or stagger bursts of air from different air nozzles 118 for an individual compartment 64-70. However, in block 178 for any compartments 64-70 with a non-operating metering device 112, the controller 140 operates the top level air nozzles 118, or all of the nozzles 118 on each level.
After operating the air nozzles 118 in blocks 176 and 178, the controller 140 moves back to decision block 164 in order to provide continuous monitoring and agitation of the particulate materials within the compartments 64-70 until operation of all of the metering devices 112 is ceased.
While the conveying system 100 including the pneumatic agitation system 116 disclosed so far herein have been primarily with respect to pneumatic and/or mechanical fertilizer application equipment or applicator commonly referred to as a “floater”, it should be understood that the advantages from the conveying system 100 including the pneumatic agitation system 116 disclosed herein can be obtained on other types of equipment for applying particulate materials in a field. Planters of various types are known to include an applicator unit, such as a drill or seeder, and may include an air cart having one or more bulk tanks carrying fertilizer and/or seeds to be planted. The conveying system 100 including the pneumatic agitation system 116 disclosed herein can be provided on the planter, and one or more air/seed inductors on the air cart. If the air cart is then used with a planter of a different type, or with another type of particle application equipment, adjustments to the conveying system 100 including the pneumatic agitation system 116 can be made without the need to adjust the air/seed inductor assembly on the air cart. Accordingly, switching from one crop to another crop or from one planter to another planter does not require major adjustment of the air/seed inductor assembly on the air cart.
In using a conveying system 100 as disclosed herein, a variety of materials can be applied by a variety of different implements. The particulate material to be applied is contained in one or more compartments. The particulate material or materials are supplied from the tanks to the conveying system 100 wherein the material or materials are conveyed to one or more particle injectors while being intermixed with one another. At the particle injector the conveyed product or products are provided in a metered flow and transferred to one or more particle delivery unit, which can be a broadcast spreader, seeder for depositing seeds or other materials across the surface of soil, a row opener unit for depositing seeds or other material in rows, or the like.
Various other alternatives are contemplated as being within the scope of the following claims particularly pointing out and distinctly claiming the subject matter regarded as the invention.
Number | Name | Date | Kind |
---|---|---|---|
2609185 | Eisner | Sep 1952 | A |
2723838 | Peters | Nov 1955 | A |
3339899 | Kauffman | Sep 1967 | A |
3350070 | Dostrup | Oct 1967 | A |
3647188 | Solt | Mar 1972 | A |
3713564 | Cottrell | Jan 1973 | A |
4172539 | Botkin | Oct 1979 | A |
4693394 | Martin, Jr. et al. | Sep 1987 | A |
4943163 | Steele | Jul 1990 | A |
4944598 | Steele | Jul 1990 | A |
5279045 | Odashima | Jan 1994 | A |
5855456 | Mueller | Jan 1999 | A |
6588684 | Staples et al. | Jul 2003 | B1 |
6623233 | Reveling | Sep 2003 | B2 |
8646664 | Hamel et al. | Feb 2014 | B2 |
9266688 | Hu et al. | Feb 2016 | B2 |
9446362 | Stander | Sep 2016 | B2 |
20050013193 | Murphy | Jan 2005 | A1 |
20070090676 | White | Apr 2007 | A1 |
20070210112 | Storci et al. | Sep 2007 | A1 |
20080131235 | Laidig et al. | Jun 2008 | A1 |
Number | Date | Country |
---|---|---|
1693316 | Aug 2006 | EP |
Number | Date | Country | |
---|---|---|---|
20190021221 A1 | Jan 2019 | US |