The present disclosure belongs to the field of combustion of internal combustion engines, and in particular relates to an air-assisted jet flame ignition device suitable for an engine with a high EGR rate.
The growing concern for the environment and energy issues and the increasing stringency of related laws and regulations are driving the internal combustion engine to develop in the direction of higher efficiency and lower emissions. EGR technology, which was first used as an effective means for reducing NOx in diesel engines, has now been widely used in all types of automotive engines. The EGR technology can effectively reduce the temperature of mixture in the cylinder by introducing exhaust gas into an intake manifold to dilute the mixture in the cylinder, thus reducing NOx emissions. The experimental results show that the use of 10% EGR rate can reduce NOx emissions by 50-70%. At the same time, the application of EGR technology can also reduce pumping loss under partial load of gasoline engines, which is conducive to improving engine thermal efficiency.
Moreover, the EGR technology is also effective in mitigating engine knocking. The current mainstream view on the engine knocking is that end mixture in the cylinder is compressed by the flame front, the temperature and pressure continue to rise to cause end-gas auto-ignition, thus creating a reciprocal oscillating pressure wave in the cylinder. The EGR technology can reduce the temperature and pressure of the end mixture to avoid the end-gas auto-ignition, especially for supercharged high load conditions.
However, there are some problems in the application of the EGR technology, for example, the over-high EGR rate leads to unstable combustion in the in-cylinder, and the flame propagation speed is decreased, resulting in the increase in the combustion duration. The previous experimental data show that the engine with jet ignition can work stably in lean burn conditions with the excess air coefficient above 2.0. In addition, the flame jets injected by jet ignition not only can stably ignite the lean mixture, but also can accelerate the combustion rate of the mixture. The same effect is achieved for engine combustion in the working condition of a high EGR rate.
In the lean burn condition, the excess air exists in the engine cylinder, thus additional fuel injection is required in the prechamber to maintain an equivalent or rich mixture. But in the working condition of high EGR rate, the original excess air is replaced with exhaust gas, thus both fuel injection and air injection are required in the prechamber to achieve reliable internal ignition. Base on such idea, a fuel-air premixing unit is introduced on the basis of an original prechamber structure, and the engine can stably work in the working condition of high EGR rate through high ignition energy of jet flame.
An objective of the present disclosure is to provide an air-assisted jet flame ignition device capable of realizing reliable ignition of an engine in high EGR rate condition. In accordance with the present disclosure, a fuel-air premixing unit is introduced on the basis of an original prechamber structure to create a good ignition condition in a prechamber, and then a spark plug in a prechamber cavity is used to ignite to inject flame jets into a main combustion chamber, thus achieving stable combustion of the main combustion chamber in the condition of high EGR rate. The technical solution is as follows:
An air-assisted jet flow ignition device comprises a housing, a fuel-air premixing unit, and a prechamber, wherein the fuel-air premixing unit comprises a fuel injector, an air injection valve, a premixing sleeve, a premixing sleeve inner core placed in the premixing sleeve, and a fuel injector fastening bolt,
wherein an inner wall surface of the premixing sleeve and an outer wall surface of the premixing sleeve inner cover form a premixing sleeve inner cavity, an inner wall surface of the premixing sleeve inner core, a lower end surface of a nozzle of the fuel injector and an upper end surface of an air inlet of the air injection valve form a premixing cavity;
the premixing cavity communicates with the premixing sleeve inner cavity via a through hole on the sidewall of the premixing sleeve inner core;
a prechamber nozzle is fixedly connected to the lower part of the housing by a locating pin, the circumference of the lower part of the housing is provided with external threads, the periphery of the prechamber nozzle is provided with external threads, and internal threads in fit with the external threads of the housing are formed in a nozzle compression piece; and the nozzle compression piece presses the prechamber nozzle against the housing to form a precombustion cavity body.
Further, the high-pressure air enters through an air tube, then enters the premixing sleeve inner cavity, and is afterwards injected into the premixing cavity via the through hole on the sidewall of the premixing sleeve inner core to be mixed with the fuel; and the premixed fuel-air mixture is ultimately injected into the prechamber cavity body by the air injection valve.
An ignition method for realizing the ignition device comprises the following steps: defining turn-on time of the fuel injector as fuel injection pulse width, and defining turn-on time of the air injection valve as an air injection width pulse; turning on the fuel injector according to the fuel injection pulse width to inject the fuel; and determining delay time according to the fuel injection amount, wherein such delay time is called air injection delay; and then turning on the air injection valve according to the air injection width pulse after reaching the specified air injection delay, wherein the premixed fuel-air mixture is ultimately injected into the prechamber cavity body by the air injection valve and then is ignited by a spark plug to inject flame jets.
Further, an excess air coefficient of the prechamber mixture is determined by regulating the fuel injection width pulse and the air injection width pulse, with the principle as follows: increasing the fuel injection pulse width if a rich mixture is needed, and increasing the air injection pulse width if a lean mixture is needed.
Further, an equivalent mixture or a rich mixture with the excessive air coefficient less than 1 is employed to guarantee stable ignition in the prechamber.
Compared with the prior art, the technical solution of the present disclosure brings the beneficial effects as follows:
1. In the condition of high EGR rate, spark ignition cannot stably ignite the mixture. Although the ignition energy of an ordinary jet ignition device is high, in the condition of high EGR rate, a large amount of exhaust gas may exist inside the ignition device, resulting in unstable ignition. In accordance with the present disclosure, the stable ignition inside the prechamber can be achieved by injecting the premixed air-fuel mixture into the prechamber in an air-assisting mode, and then the fuel mixture in the main combustion chamber can be ignited by using high ignition energy of the jet flame.
2. The fuel-air premixing unit of the device of the present disclosure employs a structure of stacked fuel injector and air injection valve, which can effectively reduce a diameter of the device and facilitate the installation on the engine. Moreover, the process of injecting the mixture into the prechamber cavity body is equivalent to the secondary mixing of the fuel and air. Therefore, the mixing effect of the fuel with high viscosity and poor atomization effect can be improved, such as aviation kerosene.
3. The fuel-air premixing unit of the device of the present disclosure injects the air from the sidewall of the premixing sleeve, thus effectively reducing a fuel wall-wetting phenomenon.
Reference numerals: 1—housing; 2—spark plug; 3—locating pin; 4—prechamber nozzle; 5—nozzle compression piece; 6—air injection valve; 7—premixing sleeve inner cover; 8—air tube; 9—premixing sleeve; 10—fuel injector; 11—fuel injector fastening bolt; 12—prechamber cavity body; 13—premixing cavity, 14—premixing sleeve inner cavity.
During installation, the air injection valve 6, the premixing sleeve inner core 7, the premixing sleeve 9 and the fuel injector 10 are sequentially placed in and are jointly pressed against the housing by the fuel injector fastening bolt 11 at the top, then the spark plug 2 is installed; and in the end, the locating pin 3, the prechamber nozzle 4 and the nozzle compression piece 5 are sequentially installed, wherein the locating pin 3 is provided for preventing the nozzle from rotating. The device is entirely installed on a cylinder head by the threads on the nozzle.
Fuel-air premixing unit: the fuel-air premixing unit plays a role in providing a premixed air-fuel mixture for the prechamber. As shown in
Determination of use parameters: the fuel injection pressure can be selected to be 10-20 MPa according to different selected fuels, the pressure of the air tube 8 is the same as that of the premixing cavity, and as the premixed mixture is to be injected into the prechamber cavity body from the premixing cavity, the pressure of the premixing cavity is higher than that of the prechamber cavity body, generally ranging from 0.4 MPa to 1 MPa.
The specific working process is as follows: turning on the fuel injector according to a fuel injection width pulse to inject the fuel, wherein the fuel is mixed with the air within air injection delay time; and then turning on the air injection valve according to an air injection width pulse, wherein the mixture is injected into the prechamber cavity body and then is ignited by the spark plug to inject flame jets.
An excess air coefficient of the prechamber mixture can be determined by regulating the fuel injection width pulse and the air injection width pulse, which is as follows: increasing the fuel injection width pulse if a rich mixture is needed, and increasing the air injection width pulse if a lean mixture is needed. The air can be continuously injected after the premixed mixture is completely injected into the prechamber cavity body to increase the air injection width pulse, thus diluting the mixture in the prechamber. However, in order to guarantee stable ignition in the prechamber, an equivalent mixture or a rich mixture with the excess air coefficient less than 1 is generally employed.
The present disclosure is not limited to the embodiments described above. The above description of specific embodiments is intended to describe and illustrate technical solutions of the present disclosure, and the above specific embodiments are merely illustrative rather than restrictive. Those of ordinary skill in the art, under the inspiration of the present disclosure, may make many specific changes in form without departing from the spirit of the present disclosure and the scope of the protection of the claims, all of which fall within the scope of protection of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
202011621596.9 | Dec 2020 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2021/080385 | 3/12/2021 | WO |