Claims
- 1. An air assisted spray nozzle assembly comprising:a nozzle body having at least one air passage for connection to a pressurized air supply and a liquid passage for connection to a pressurized liquid supply, said liquid passage extending axially through said body and having a discharge end through which pressurized liquid from said liquid supply is directed, an air cap disposed at a downstream end of said body, said air cap defining an impingement surface disposed in spaced relation to the discharge end of said liquid passage transversly to liquid directed through said liquid passage for deflecting liquid impinging thereon in a radially outward direction 360° with respect to the impingement surface to preliminarily break down said liquid flow stream into liquid particles, said air cap defining an annular expansion chamber about said impingement surface for receiving the liquid particles directed radially outwardly from said impingement surface, said at least one air passage being effective for directing pressurized air about said impingement surface for further breaking down and atomizing liquid deflected radially from said impingement surface, said air cap being formed with a plurality of axial flow passages disposed in circumferentially spaced relation about said impinging surface, said air cap flow passages each having a flow axis parallel to said axial liquid passage, said air cap flow passages each defining a flat deflection surface at a downstream end thereof, and said air cap flow passages each having a respective discharge orifice adjacent the deflection surface thereof for discharging a plurality of atomized liquid flow streams from the air cap in an outwardly expanding conical spray pattern.
- 2. The air assisted spray nozzle assembly of claim 1 in which said discharge orifices each extend in part through the flat deflection surface defined by the axial flow passage.
- 3. The air assisted nozzle of claim 1 in which said discharge orifices each extend in part through the deflection surface defined by the axial flow passage and in part through an outer side wall of the axial flow passage.
- 4. The air assisted spray nozzle assembly of claim 3 in which said expansion chamber has an annular configuration, and said at least one air passage directs pressurized air into said expansion chamber for further breaking up and atomizing liquid radially directed from said impingement surface.
- 5. The air assisted spray nozzle assembly of claim 1 in which said discharge orifices each are defined by an angled cut intersecting each said axial flow passage of said air cap.
- 6. The air assisted spray nozzle assembly of claim 1 in which each said orifice defining angled cut is defined by an inner cylindrical side wall parallel to the axis of said flow passages and an outer conical side wall extending radially outwardly in a downstream direction.
- 7. The air assisted spray nozzle assembly of claim 6 in which said cylindrical and conical side walls define an angle of about 60°.
- 8. The air assisted spray nozzle assembly of claim 6 in which the inner side wall of each discharge orifice terminates with an angled surface that extends radially inwardly in the downstream direction.
- 9. The air assisted spray nozzle assembly of claim 5 in which said angular cut is a circular cut that defines a channel in the end of said air cap that intersects each of said axial flow passages.
- 10. The air assisted spray nozzle assembly of claim 1 in which said liquid passage is defined by a separate liquid guide mounted within said body, and said air passage is defined at least in part between said liquid guide and a concentrically disposed air guide mounted within said body.
- 11. An air assisted spray nozzle assembly comprising:a nozzle body having at least one air passage for connection to a pressurized air supply and a liquid passage for connection to a pressurized liquid supply, said liquid passage extending axially through said body and having a discharge end through which pressurized liquid from said liquid supply is directed, an air cap disposed at a downstream end of said body, said air cap defining an impingement surface in spaced relation to the discharge end of the liquid passage and an expansion chamber surrounding the impingement surface, said impingement surface being disposed in transverse relation to liquid directed through the discharge end of said liquid passage against which the liquid impinges and is directed radially outwardly 360° with respect to the impingement surface into the surrounding expansion chamber, said at least one air passage being effective for directing pressurized air about said impingement surface for further breaking down and atomizing liquid directed radially outwardly from said impingement surface into said expansion chamber, said air cap being formed with a plurality of axial flow passages disposed in circumferentially spaced relation about said impinging surface, said air cap flow passages each having a flow axis parallel to said axial liquid passage, and said air cap flow passages each having a respective discharge orifice defined by an angled opening for discharging a plurality of atomized liquid flow streams from the air cap in an outwardly expanding conical spray pattern.
- 12. The air assisted spray nozzle assembly of claim 11 in which said expansion chamber has an annular configuration, and said at least one air passage directs pressurized air into said expansion chamber for further breaking up and atomizing liquid radially directed from said impingement surface.
- 13. The air assisted spray nozzle assembly of claim 11 in which each said orifice defining angled cut is defined by an inner cylindrical side wall parallel to the axis of said flow passages and an outer conical side wall extending radially outwardly in a downstream direction.
- 14. The air assisted spray nozzle assembly of claim 13 in which the inner side wall of each discharge orifice terminates with an angled surface that extends radially inwardly in the downstream direction.
- 15. An air assisted spray nozzle assembly comprising:a nozzle body having at least one air passage for connection to a pressurized air supply and a liquid passage for connection to a pressurized liquid supply, said nozzle body defining a mixing and expansion chamber into which pressurized liquid and air directed from said liquid passage and at least one air passage intermix causing breakdown and atomization of the liquid, an air cap disposed downstream of said body, said air cap having a plurality of circumferentially spaced axial flow passages having a flow axis parallel to a central axis of said air cap, said air cap flow passages each defining a flat deflection surface perpendicular to the flow axis at a downstream end thereof against which at least a portion of the atomized liquid impacts as it is directed through said flow passage, and said air cap flow passages each having a discharge orifice adjacent the deflection surface for discharging an atomized liquid flow stream in a direction radially outwardly with respect to the flow axis whereby said plurality of discharge orifices discharge a plurality of atomized liquid flow streams from said air cap in an outwardly expanding full cone spray pattern with liquid particles distributed throughout the spray pattern.
- 16. The air assisted spray nozzle assembly of claim 15 in which said air cap is formed with a plurality of axial flow passages each communicating with a respective one of said discharge orifices.
- 17. The air assisted spray nozzle assembly of claim 16 in which said axial flow passages each define a flat deflection surface at a downstream end thereof for deflecting and further breaking down liquid particles prior to direction through said discharge orifices.
- 18. The air assisted spray nozzle assembly of claim 15 in which said discharge orifices each are defined by an angled cut intersecting each said axial flow passage of said air cap.
- 19. The air assisted spray nozzle assembly of claim 18 in which each said orifice defining angled cut is defined by an inner cylindrical side wall parallel to an axis of said air cap and an outer conical side wall extending radially outwardly in a downstream direction.
- 20. The air assisted spray nozzle assembly of claim 19 in which said angular cut is a circular cut that defines a channel in the end of said air cap that intersects each of said axial flow passages.
- 21. The air assisted spray nozzle assembly of claim 19 in which said cylindrical and conical side walls define an angle of about 60°.
- 22. The air assisted spray nozzle assembly of claim 19 in which the inner side wall of each discharge orifice terminates with an angled surface that extends radially inwardly in the downstream direction.
- 23. An air assisted spray nozzle assembly comprising:a nozzle body having at least one air passage for connection to a pressurized air supply and a liquid passage for connection to a pressurized liquid supply, said nozzle body defining a mixing and expansion chamber into which pressurized liquid and air directed from said liquid passage and at least one air passage intermix causing breakdown and atomization of the liquid, an air cap disposed downstream of said body, said air cap having a plurality of circumferentially spaced discharge orifices each angularly oriented with respect to a central axis, said discharge orifices each having a half moon configuration defined by a first inner curved side wall and a second outer curved side wall having a radius of curvature smaller than the curvature of said first side wall, and said discharge orifices being effective for directing a plurality of atomized liquid flow streams from said air cap in an outwardly expanding full cone spray pattern with liquid particles distributed throughout the spray pattern.
- 24. The air assisted spray nozzle assembly of claim 23 which each said discharge orifice is defined by an inner cylindrical side wall parallel to an axis of said air cap and an outer conical side wall extending radially outwardly in a downstream direction.
- 25. The air assisted spray nozzle assembly of claim 24 in which the inner side wall of each discharge orifice terminates with an angled surface that extends radially inwardly in the downstream direction.
- 26. A spray apparatus comprising a liquid manifold pipe coupled to a pressurized liquid supply, an air manifold pipe mounted in concentric relation about said liquid manifold pipe for defining an annular air passage therebetween for connection to a pressurized air supply, a spray nozzle assembly comprising a nozzle body including an adapter having a first portion mounted in said liquid manifold pipe and being formed with a liquid passage in communication with said liquid manifold pipe, said adapter having a second portion mounted in said air manifold pipe and being formed with at least one air flow passageway in communication with said annular air passage, said nozzle body defining a mixing and expansion chamber into which pressurized liquid and air directed from said liquid passage and at least one air flow passage intermix causing breakdown and atomization of the liquid, an air cap disposed downstream of said body, said air cap having a plurality of circumferentially spaced discharge orifices each angularly oriented with respect to a central axis of said air cap for discharging a plurality of atomized liquid flow streams from said air cap in an outwardly expanding full cone spray pattern with liquid particles distributed throughout the spray pattern.
- 27. The air assisted spray nozzle assembly of claim 26 in which said air cap is formed with a plurality of axial flow passages each communicating with a respective one of said discharge orifices.
- 28. The air assisted spray nozzle assembly of claim 27 in which said axial flow passages each define a flat deflection surface at a downstream end thereof for deflecting and further breaking down liquid particles prior to direction through said discharge orifices.
- 29. The air assisted spray nozzle assembly of claim 26 in which each said orifice is defined by an inner cylindrical side wall parallel to an axis of said air cap and an outer conical side wall extending radially outwardly in a downstream direction.
- 30. An air assisted spray nozzle assembly comprising:a nozzle body having at least one air passage for connection to a pressurized air supply and a liquid passage for connection to a pressurized liquid supply, said liquid passage extending axially through said body and having a discharge end through which pressurized liquid from said liquid supply is directed, an air cap disposed at a downstream end of said body, said air cap defining an impingement surface disposed transversly to liquid directed through said liquid passage for deflecting liquid impinging thereon in a radially outward direction, said at least one air passage being effective for directing pressurized air about said impingement surface for further breaking down and atomizing liquid deflected radially therefrom, said air cap being formed with a plurality of axial flow passages disposed in circumferentially spaced relation about said impinging surface, said air cap flow passages each having a flow axis parallel to said axial liquid passage, said air cap flow passages each defining a flat deflection surface at a downstream end thereof, said air cap flow passages each having a respective discharge orifice adjacent the deflection surface thereof for discharging a plurality of atomized liquid flow streams from the air cap in an outwardly expanding conical spray pattern, and said discharge orifices each having a half moon configuration defined by a curved inner side wall and an outer side wall having a radius of curvature smaller than the first side wall.
- 31. An air assisted spray nozzle assembly comprising:a nozzle body having at least one air passage for connection to a pressurized air supply and a liquid passage for connection to a pressurized liquid supply, said liquid passage extending through said body and having a discharge end through which pressurized liquid from said liquid supply is directed, an air cap disposed at a downstream end of said body, said air cap defining an impingement surface in spaced relation to the discharge end of the liquid passage and an expansion chamber surrounding the impingement surface, said impingement surface being disposed in perpendicular relation to liquid directed through the discharge end of said liquid passage against which the liquid impinges and is radially directed into said expansion chamber, said at least one air passage being effective for directing pressurized air about said impingement surface for further breaking down and atomizing liquid directed radially outwardly from said impingement surface into said expansion chamber, said air cap being formed with a plurality of flow passages disposed in circumferentially spaced relation about said impinging surface, said flow passages each having a flow axis parallel to a central axis of said air cap, said flow passages each defining a flat deflection surface perpendicular to the flow axis at a downstream end thereof, and said air cap flow passages having a respective discharge orifice adjacent the deflection surface thereof for discharging a plurality of atomized liquid flow streams from the air cap in an outwardly expanding full cone spray pattern with liquid particles distributed throughout the spray pattern.
RELATED APPLICATION
This application is a continuation-in-part of application Ser. No. 09/330,746 filed Jun. 11, 1999, now U.S. Pat. No. 6,161,778.
US Referenced Citations (14)
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
09/330746 |
Jun 1999 |
US |
Child |
09/586229 |
|
US |