1. Technical Field
The present invention relates to a vehicle occupant protection apparatus and, in particular, to an air bag module including a flap that deploys with an inflating air bag to help protect the vehicle occupant.
2. Description of the Prior Art
It is known to inflate an air bag to help protect a vehicle occupant in the event of a vehicle collision. To help protect a front seat passenger of a vehicle, an air bag is typically mounted in the instrument panel of the vehicle, together with an inflator, at a location forward of the occupant's seat. A deployment opening in the instrument panel is covered by a movable deployment door. The inflator is actuated in the event of a vehicle collision to inflate the air bag through the deployment opening. The deployment door pivots open under the force of the inflating air bag, to enable inflation of the air bag into a position to help protect the vehicle occupant.
If an occupant is in close proximity to the instrument panel when the inflator is actuated, the air bag might inflate against the occupant's head and neck, perhaps while moving in an upward direction. This can undesirably increase the loads on the occupant's head and neck.
The present invention is an apparatus for helping to protect a vehicle occupant. The apparatus comprises an inflatable vehicle occupant protection device having a stored, deflated condition and an inflated condition for helping to protect a vehicle occupant. An inflator provides inflation fluid to inflate the protection device. The apparatus also includes a flap made of fabric material. The flap is stored with the protection device. In the case of the occupant being in close proximity to the instrument panel, the flap is deployed by inflation of the protection device into a position engaging and covering a head of a vehicle occupant for guiding deployment of the protection device over the head of the vehicle occupant.
The foregoing and other features of the present invention will become apparent to one skilled in the art to which the present invention relates upon consideration of the following description of the invention with reference to the accompanying drawings, wherein:
The present invention relates to a vehicle protection apparatus for protecting an occupant of a vehicle in the event of a vehicle collision. The present invention is applicable to various vehicle protection apparatus constructions. As representative of the present invention,
The air bag module 10 is located on the front passenger side of a vehicle 12. A forward direction of travel of the vehicle 12 is indicated by the arrow 14 and the rearward direction of travel is indicated by the arrow 16. A vertically upward direction in the vehicle 12 is indicated by the arrow 18.
The vehicle 12 includes an instrument panel 20, only portions of which are shown. A windshield 22 of the vehicle extends upward and rearward from the forward edge of the instrument panel 20. The instrument panel 20 includes an upper or front portion 24 that slopes downward and rearward from the base of the windshield 22. A lower or rear portion 26 of the instrument panel 20 extends downward and forward from the rear edge of the front portion 24. The instrument panel 20 can be made from a metal substrate and an overlying plastic material covering, but may alternatively be made in any known manner.
The vehicle includes a seat 30 having a seat bottom cushion 32 and a seat back 34. In
The vehicle protection apparatus 10 includes a reaction canister or housing 40 (
The upper portion 24 of the instrument panel 20 has upper and lower edge surfaces 50 and 52, respectively, and side edge surfaces (not shown) that define a deployment opening 60 in the instrument panel 20. In the embodiment shown in
The air bag module 10 includes a single door panel 70 that covers substantially the entire deployment opening 60. It should be understood that the module 10 could, alternatively, include more than one door for covering the deployment opening 60. The door panel 70 may be made from a plastic material similar to the covering of the instrument panel 20. The door panel 70 has a forward or upper edge portion 72 disposed closer to the vehicle windshield 22 and a lower or rear edge portion 74 disposed farther from the windshield, that is, closer to the vehicle occupant. The lower edge portion 74 of the door panel 70 is releasably connected with the lower edge surface 52 on the instrument panel 20 by a rupturable portion or tear seam 76.
The air bag module 10 also includes a flap 80 (FIGS. 2 and 3). The flap 80 is a structure that is located between the air bag 44 and the head 38 of the occupant 36, when the air bag is inflated, as described below. The flap 80 engages and extends over the head 38 of the occupant 36, particularly if the occupant is leaning forward as shown in FIG. 3. The flap prevents the air bag 44 itself from engaging the head of the occupant. The flap 80 acts as a guide to guide the air bag 44 to inflate past the head 38 of the occupant 36 without actually engaging the head of the occupant.
The flap 80 is preferably made from a fabric material, which may be the same material from which the air bag 44 is made. One suitable material is woven nylon, a material that is commonly used to make air bags.
The flap 80 has first and second end portions, or ends, 82 and 84. The flap 80 has first and second opposite major side surfaces 90 and 92 (FIG. 3). In the embodiment illustrated in
The length of the flap 80 is selected so that it extends over (past the top of) the head 38 of a forward seated occupant 36 when the flap is fully deployed. In one embodiment, the flap 80 is a rectangular piece of material having a width (transversely across the deployment opening 90) of about 300 millimeters, and a length (extending out from the deployment opening) of about 400 millimeters.
The first end portion 82 of the flap 80 is attached to the air bag module 10. In the embodiment illustrated in
The air bag 44 is folded and/or rolled, and packed into the housing 40. The flap 80, as shown in
In the event of a vehicle collision for which it is desired to inflate the air bag 44, the inflator 46 is actuated in a known manner by a collision sensor (not shown). The inflator 46 directs inflation fluid into the air bag 44. The inflating air bag 44 presses outwardly against the door panel 70 and causes the tear seam 76 to rupture. The door panel 70 pivots about its upper edge portion 72, relative to the instrument panel 20, from the closed condition shown in
The air bag 44 inflates into the inflated condition shown in FIG. 3. When the air bag 44 is inflated, the air bag has a rearward-facing outer surface portion 96 that is presented toward, and is closest to, the vehicle occupant 36.
As the air bag 44 inflates, the air bag pushes the flap 80 out of the housing 40, from its stored condition shown in
The second end portion 84 of the flap 80 is outermost, that is, located farthest from the housing 40. The first major side surface 90 of the flap 80 faces forward, and engages the outer surface portion 96 of the air bag 44. The second major side surface 92 of the flap 80 faces rearward, and is engageable by the occupant 36.
In
The flap 80 helps to minimize such forces. Specifically, the flap 80 engages the head 38 of the vehicle occupant 36. The inflating air bag 44, as it inflates upward and rearward, slides along the first major side surface 90 of the flap 80. The inflating air bag 44 does not contact the occupant's head 38. The first major side surface 90 of the flap 80 presents a relatively smooth and unobstructed surface to the air bag 44. Thus, the flap 80 does not resist the upward movement of the air bag 44 so much as it would be resisted by contact with the vehicle occupant 36. As a result, any force tending to push the head 38 of the occupant 36 up is minimized.
As noted above, the flap 80 is pushed outward and rearward by the inflating air bag 44. If the vehicle occupant 36 is leaning back against the seat back 34 when the air bag 44 inflates, the flap 80 is pushed downward against the lower part 26 of the instrument panel 20, not contacting the occupant 36 at all. If the occupant 36 is neither leaning back against the seat back 34 nor forward against the instrument panel 20 when the air bag 44 inflates, the flap 80 may or may not contact the occupant 36. In any event, the flap 80 does not wave loosely through the air but instead is always pushed by the inflating air bag 44.
In a second embodiment of the invention that is illustrated in
In a third embodiment as illustrated in
In a fourth embodiment as illustrated in
In a fifth embodiment of the invention illustrated in
Any one of the embodiments can include a coated flap as in FIG. 8. When the flap 80d is deployed, for example as in
From the above description of the invention, those skilled in the art will perceive improvements, changes and modifications in the invention. For example, the invention is not limited to a passenger side air bag module, but could also be used with any air bag module including a driver side air bag module or a side impact or rollover module, for example. Such improvements, changes and modifications within the skill of the art are intended to be covered by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2834606 | Bertrand | May 1958 | A |
3753576 | Gorman | Aug 1973 | A |
4772045 | Kawaguchi et al. | Sep 1988 | A |
4842300 | Ziomek et al. | Jun 1989 | A |
4911471 | Hirabayashi | Mar 1990 | A |
4964654 | Bishop et al. | Oct 1990 | A |
5348343 | Hawthorn | Sep 1994 | A |
5429385 | Kamiji et al. | Jul 1995 | A |
5560648 | Rhule et al. | Oct 1996 | A |
5588674 | Yoshimura et al. | Dec 1996 | A |
5603523 | Rhule et al. | Feb 1997 | A |
5630614 | Conlee et al. | May 1997 | A |
5823566 | Manire | Oct 1998 | A |
6164685 | Fischer et al. | Dec 2000 | A |
6474686 | Higuchi et al. | Nov 2002 | B1 |
6572137 | Bossecker et al. | Jun 2003 | B2 |
Number | Date | Country | |
---|---|---|---|
20030122356 A1 | Jul 2003 | US |