Exemplary embodiments pertain to the art of air bearings and, more particularly, to an air bearing shaft for a ram air fan.
Ram air fans operate when ram airflow may not be sufficient to provide adequate airflow over air-to-air heat exchangers. In many cases, ram air fans are employed in environmental control systems employed in aircraft. Conventional ram air systems include fan rotor arranged downstream of the air-to-air heat exchanger. The second fan rotor is supported by air bearings. Air bearings include an internal flow path through which passes a cooling fluid. The cooling fluid passes in a heat exchange relationship with the air bearing to absorb and dissipate heat.
Disclosed is an air bearing for a ram air fan including a shaft having a first end portion that defines a cap end, a second end portion that defines a thrust shaft receiving end, and an intermediate portion extending between the first and second end portions. The cap end includes a cap pilot bore and the thrust shaft receiving end includes a thrust shaft pilot section. The thrust shaft pilot section has an outer diameter of between about 1.6032-inches (about 40.7212 mm) and about 1.6002-inches (about 40.6450 mm).
The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:
A detailed description of one or more embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures.
An air bearing for a ram air fan in accordance with an exemplary embodiment is indicated generally at 2 in
Second end portion 16 defines a thrust shaft receiving end 34 that supports a thrust shaft 37. Thrust shaft 37 supports a fan member 39 that generates an air flow when air bearing 2 is rotated. In accordance with the exemplary embodiment, thrust shaft receiving end 34 includes a thrust shaft pilot section 42 having an outer diameter 44. As will also be detailed more fully below, outer diameter 44 is sized so as to provide an interference fit with thrust shaft 37 over a wide range of operating conditions and temperatures.
Intermediate portion 18 includes a motor section 49 and a cooling fluid inlet section 50 that are separated by a stepped section 51. With this arrangement, motor section 49 supports a rotor 55. Rotor 55 revolves in response to a magnetic field induced, at least in part, by a stator (not shown). Intermediate portion 18 is further shown to include a central passage 58 that extends from first end portion 14 to second end portion 16. A finned heat exchanger 61 is arranged within central passage 58 at motor portion 49. Finned heat exchanger 61 removes heat inside central passage 58 generated by operation of rotor 55.
Cooling fluid inlet 65 includes a plurality of cooling fluid inlet slots, one of which is shown at 72, which are arrayed about cooling fluid inlet portion 50. As best shown in
In accordance with an exemplary embodiment, inner diameter 28 has a dimension of between about 1.5655-inches (about 39.7637 mm) and about 1.5645-inches (about 39.7383 mm). In accordance with another aspect of the exemplary embodiment, inner diameter 28 includes a dimension of between about 1.56525-inches (about 39.75735 mm) and about 1.56475-inches (about 39.74465 mm). In accordance with still another aspect of the exemplary embodiment, inner diameter 28 includes a dimension of about 1.5650-inches (about 39.9751 mm). As noted above, the particular dimension of inner diameter 28 provides an interference fit with shaft cap 24 over a wide range of operating conditions and temperatures.
In further accordance with an aspect of an exemplary embodiment, outer diameter 44 includes a dimension of between about 1.6032-inches (about 40.7212 mm) and about 1.6002-inches (about 40.6450 mm). In accordance with another aspect of the exemplary embodiment, outer diameter 44 includes a dimension of between about 1.60295-inches (about 40.71493 mm) and about 1.60245-inches (about 40.70223 mm). In accordance with yet another aspect of the exemplary embodiment, outer diameter 44 includes a dimension of about 1.6027-inches (about 40.7085 mm). As also discussed above, the particular dimension of outer diameter 44 provides an interference fit with thrust shaft 37 over a wide range of operating conditions and temperatures.
In accordance with still another aspect of an exemplary embodiment, axial dimension 74 is between about 0.77-inches (about 19.558 mm) and about 0.75-inches (about 19.0500 mm), and a circumferential dimension 75 is between about 0.28-inches (about 7.112 mm) and about 0.26-inches (about 6.604 mm). In accordance with another aspect of the exemplary embodiment, axial dimension 74 is between about 0.765-inches (about 19.431mm) and about 0.755-inches (about 19.177 mm), and a circumferential dimension 75 is between about 0.275-inches (about 6.985 mm) and about 0.271-inches (about 6.883 mm). In accordance with another aspect of the exemplary embodiment, axial dimension 74 is about 0.76-inches (about 19.30 mm) and circumferential dimension 75 is about 0.270-inches (about 6.86 mm). The particular size of axial dimension 74 and circumferential dimension 75 provides an opening that allows for a desirable intake of cooling fluid.
While the invention has been described with reference to an exemplary embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
1953540 | Ogden | Apr 1934 | A |
2215945 | Vincent | Sep 1940 | A |
2371872 | Martin et al. | Mar 1945 | A |
5564903 | Eccles et al. | Oct 1996 | A |
6681592 | Lents et al. | Jan 2004 | B1 |
7342332 | McAuliffe et al. | Mar 2008 | B2 |
7394175 | McAuliffe et al. | Jul 2008 | B2 |
7419357 | Nohr et al. | Sep 2008 | B2 |
7648279 | Struziak et al. | Jan 2010 | B2 |
7732953 | Telakowski | Jun 2010 | B2 |
7748208 | Jewess et al. | Jul 2010 | B2 |
7757502 | Merritt et al. | Jul 2010 | B2 |
20060061222 | McAuliffe et al. | Mar 2006 | A1 |
20120014784 | Hipsky et al. | Jan 2012 | A1 |
Entry |
---|
McNichols Tube Dimension Table [online] retrieved Aug. 15, 2013 at http://mcnichols.com. |
Oxford Dictionary, Definiton for “ram air,” Oxford University Press, 2013 [online], [retrieved on Oct. 18, 2013]. Retrieved from the Internet <URL:www.oxforddictionaries.com.>. |
Number | Date | Country | |
---|---|---|---|
20130274022 A1 | Oct 2013 | US |