Air bladder assembly for seat bottoms of seat assemblies

Information

  • Patent Grant
  • 9661928
  • Patent Number
    9,661,928
  • Date Filed
    Tuesday, September 29, 2015
    9 years ago
  • Date Issued
    Tuesday, May 30, 2017
    7 years ago
Abstract
An air bladder system is provided with a pair of lateral spaced apart air bladder assemblies, each provided with a primary region received in a seat bottom of a seat assembly. The primary region is expandable in a height direction to support a pelvis of an occupant. A secondary region extends from the primary region and is expandable for angular adjustment relative to the primary region to support a femur of the occupant. A plurality of sensors detects a seating position of an occupant. A controller is in electrical communication with the sensors and the air bladder assemblies. The controller is configured to receive data from the plurality of sensors. The data is compared to determine if the occupant is seated evenly. At least one of the air bladder assemblies is adjusted to balance an uneven left-to-right occupant seating position.
Description
TECHNICAL FIELD

Various embodiments relate to adjustable seat assemblies.


BACKGROUND

An adjustable seat assembly is illustrated and described in U.S. Pat. No. 5,758,924, which issued on Jun. 2, 1998 to Lear Corporation.


SUMMARY

According to at least one embodiment, an air bladder assembly is provided with a primary region sized to be received in a seat bottom of a seat assembly. The primary region is expandable in a height direction to support a pelvis of an occupant. A secondary region extends from the primary region and is expandable for angular adjustment relative to the primary region to support a femur of the occupant.


According to at least another embodiment, an air bladder system is provided with a pair of laterally spaced apart air bladder assemblies. Each air bladder assembly is provided with a primary region sized to be received in a seat bottom of a seat assembly. Each primary region is expandable in a height direction to support a pelvis of an occupant. A secondary region extends from each primary region and is expandable for angular adjustment relative to the corresponding primary region to support a femur of the occupant.


According to at least another embodiment, a seat assembly is provided with a seat bottom. An air bladder system is oriented in the seat bottom. The air bladder system is provided with a pair of laterally spaced apart air bladder assemblies. Each air bladder assembly is provided with a primary region sized to be received in a seat bottom of a seat assembly. Each primary region is expandable in a height direction to support a pelvis of an occupant. A secondary region extends from each primary region and is expandable for angular adjustment relative to the corresponding primary region to support a femur of the occupant.


According to at least another embodiment, a seat assembly is provided with a seat bottom. A plurality of sensors is operably connected to the seat bottom to detect a seating position of an occupant. At least two air bladder assemblies are provided in the seat bottom and spaced apart laterally. Each air bladder assembly includes a region that is expandable to provide angular adjustment. A controller is in electrical communication with the plurality of sensors and the at least two air bladder assemblies. The controller is configured to receive data from the plurality of sensors. The data is compared to determine if the occupant is seated evenly. At least one of the at least two air bladder assemblies is adjusted to balance an uneven left-to-right occupant seating position.


According to at least another embodiment, a seat assembly is provided with a a seat bottom. At least two air bladder assemblies are provided in the seat bottom and spaced apart laterally. Each air bladder assembly includes a region expandable to provide angular adjustment. A plurality of sensors is operably connected to the seat bottom to detect a seating position of an occupant. A media device is provided with a graphical user interface. A controller is in electrical communication with the plurality of sensors and the media device. The controller is configured to receive data from the plurality of sensors. The data is compared to determine if the occupant is seated evenly. The media device is operated to inform the occupant of an uneven left-to-right seating position. Input is received that is indicative of manual adjustment from the graphical user interface. At least one of the at least two air bladder assemblies is adjusted in response to the manual adjustment input.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic rear elevation view of an occupant, depicting a seating position;



FIG. 2 is a schematic view of a seating system according to an embodiment;



FIG. 3 is another schematic rear view of the occupant of FIG. 1 seated upon the seating system of FIG. 2, depicting another seating position;



FIG. 4 is a schematic side elevation view of a skeletal occupant seated upon the seating system of FIG. 2;



FIG. 5 is a schematic rear elevation view of the skeletal occupant seated upon the seating system of FIG. 2; and



FIG. 6 is a schematic top view of the skeletal occupant seated upon the seating system of FIG. 2.





DETAILED DESCRIPTION

As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.



FIG. 1 illustrates an unevenly seated occupant 10. The occupant 10 is depicted seated unevenly. Such uneven seating may be the result of poor posture. Uneven seating as depicted may also result from an undersized hemipelvis B, when compared to hemipelvis A. The uneven seating scenarios may cause a curvature of the spine 12. Such curvature to the spine may contribute to scoliosis or other health risks. Beyond health risks, such uneven seating may also be uncomfortable.



FIG. 2 illustrates an adjustable seat system 14 according to an embodiment. The seat system 14 includes a seat assembly 16, which is illustrated with a cover and cushioning removed for revealing underlying components. The seat assembly 16 may be utilized as a vehicle seat assembly 16 for seating in a vehicle, such as an automobile, an aircraft, a watercraft, or the like. Of course, the seat assembly 16 may be utilized in any seating environment that may benefit from an adjustable seat assembly 16 or system 14.


The seat assembly 16 includes a seat bottom 18, which may be adapted to be mounted for motor-driven adjustable translation in a fore and aft direction and in an up and down direction of a vehicle. The seat assembly 16 includes a seat back 20, which may be pivotally connected to the seat bottom 18 to extend generally upright relative to the seat bottom 18 for motor-driven pivotal adjustment relative to the seat bottom 18. A head restraint (not shown) is mounted for motor-driven adjustable translation to the seat back 20.


A compressor 22 provides a source of air to the seat assembly 16. A memory control seat module (MCSM) and valve bank are provided on the seat back 20 and identified generally as a controller 24. The controller 24 regulates compressed air into and out of the seat assembly 16. The seat bottom 18 includes a pair of air bladder assemblies 26, 28. The controller 24 communicates with a gateway module 30 through a CANbus connection. The gateway module 30 may be installed in or under the seat, or anywhere in the vehicle.


The gateway module 30 communicates with an interface 32 via a wireless communication. The interface 32 may be integrated into the vehicle, such as an instrument panel display that is in suitable wired or wireless communication with the controller 24. The interface 32 may be remote, such as a smart device including phones, tablets and the like. The interface 32 is depicted as a smart device application. The remote interface 32 may permit a user to transport settings to each vehicle, such as personal passenger vehicles, airline seating, rental cars, and the like. The smart device application is further described in Pereny et al. U.S. patent application Ser. No. 14/560,487 filed on Dec. 4, 2014, which is incorporated in its entirety by reference herein.



FIG. 2 illustrates two display images 34, 36 from the interface 32. Each of the air bladder assemblies 26, 28 may include at least one pressure sensor to detect air pressure in the respective air bladder assembly 26, 28. Any pressure sensor is contemplated, such as a pneumatic pressure sensor at the outlet valve of each respective air bladder assembly 26, 28. Pressure can also be sensed by contact pressure sensors disposed in front of or behind some or all of the respective air bladder assemblies 26, 28, including on a front or rear surface thereof. The contact pressure sensors may include pressure-sensing mats, such as those available by Tekscan®, Inc. of 307 West First Street, South Boston, Mass., 02127-1309, USA. Display image 34 depicts the vehicle seat assembly 16 with zones ranging in color to depict a distribution of pressure upon the seat assembly 16. This visualization may assist an occupant in positioning upon the seat assembly 16 with live visual feedback.


The seat system 14 improves posture by providing a power pneumatic hemipelvis support in the seat bottom 18 which provides support to the pelvis in a seated position to allow the occupant to correct conditions of functional Scoliosis caused by a small hemipelvis. The system supports 26, 28 are specifically shaped to provide Ischia lift for the right hand (B in FIGS. 1 and 3) or left hand (A in FIGS. 1 and 3) pelvis to compensate for a small hemipelvis and to help reduce Scoliosis (a sideways curve in the spine 12). FIG. 3 illustrates a corrected seating position with a straightened spine 12 in contrast to the seating position of FIG. 1.


The seat system 14 also provides support to the femurs from the air bladder assemblies 26, 28. The seat system 14 can detect differences in air pressure (LH/RH) at the controller 24 and graphically display the pressure distribution on the display image 34. Corrections can be made to the air pressures RH/LH in the air bladder assemblies 26, 28 via an algorithm in the controller 24. Alternatively individual adjustment can be input by the occupant or user at display image 36 of the interface 32. Each hemipelvis support 26, 28 can be adjusted individually to achieve an optimum support condition for a variety of Scoliosis/posture issues and conditions. The manual and automatic adjustment may both be offered by the seating system 14 under different seat settings which may be selected at the interface 32.



FIGS. 4-6 depict the seat assembly 16 with a seat frame, cover and trim removed to illustrate the air bladder assemblies 26, 28 in greater detail. The air bladder assemblies 26, 28 are illustrated in cooperation with a skeletal occupant 38 for discussion of mechanical orientations of relevant biomechanical features of occupants. The air bladder assemblies 26, 28 are spaced apart laterally for supporting opposite lateral sides of the occupant 38 with independent adjustment of each lateral side.


The air bladder assemblies 26, 28 each include a primary region 40 oriented to support an ischium 42, 44 of a hemipelvis 46, 48. Each primary region 40 provides support in a seating plane. Each primary region 40 is expandable in at least a height direction to adjust the height of each hemipelvis 46, 48 independently. Each air bladder assembly 26, 28 also includes a secondary region 50 extending forward away from the primary region 40 for supporting one of the femurs 52, 54 of the occupant 38.


Each secondary region 50 is inclined away from the primary region 40 providing an obtuse angle between the respective seating surfaces. The secondary region 50 may include a bellows about its periphery such that inflation of the secondary region 50 results in greater expansion away from the primary region 40 to adjust an angle of the corresponding femur 52, 54, by pivoting the femur 52, 54 upward. Likewise, the angle between the support surfaces of the primary and secondary regions 40, 50 is decreased during inflation and increased during deflation.


The secondary regions 50 may be independently controlled relative to the primary regions 40 for further adjustment options of the hemipelvises 46, 48 and femurs 52, 54 for correcting alignment of the spine 12.


While various embodiments are described above, it is not intended that these embodiments describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the invention.

Claims
  • 1. A seat assembly comprising: a seat bottom;a plurality of sensors operably connected to the seat bottom to detect a seating position of an occupant;at least two air bladder assemblies provided in the seat bottom and spaced apart laterally, each air bladder assembly comprising a region expandable to provide angular adjustment; anda controller in electrical communication with the plurality of sensors and the at least two air bladder assemblies, the controller being configured to: receive data from the plurality of sensors,compare the data to determine if the occupant is seated evenly, andadjust at least one of the at least two air bladder assemblies to balance an uneven left-to-right occupant seating position.
  • 2. The seat assembly of claim 1 wherein each of the at least two air bladder assemblies further comprises: a primary region expandable in a height direction to support a pelvis of an occupant; anda secondary region extending from the primary region and expandable for angular adjustment relative to the primary region to support a femur of the occupant.
  • 3. The seat assembly of claim 2 wherein the secondary region of each of the at least two air bladder assemblies comprises a bellows chamber to permit greater expansion spaced apart from the primary region than expansion that is permitted adjacent to the primary region.
  • 4. The seat assembly of claim 2 wherein each primary region of the at least two air bladder assemblies provides a support surface that is perpendicular to the height direction; and wherein each secondary region of the at least two air bladder assemblies provides a support surface that is generally inclined away from the primary region.
  • 5. The seat assembly of claim 4 wherein an angle between each primary region support surface of the at least two air bladder assemblies and the corresponding secondary region support surface decreases during inflation.
  • 6. The seat assembly of claim 5 wherein the angle between each primary region support surface of the at least two air bladder assemblies and the corresponding secondary region support surface defines an obtuse angle at maximum inflation.
  • 7. The seat assembly of claim 5 wherein the angle between each primary region support surface of the at least two air bladder assemblies and the corresponding secondary region support surface defines an obtuse angle at minimum inflation.
  • 8. A seat assembly comprising: a seat bottom;at least two air bladder assemblies provided in the seat bottom and spaced apart laterally, each air bladder assembly comprising a region expandable to provide angular adjustment;a plurality of sensors operably connected to the seat bottom to detect a seating position of an occupant;a media device with a graphical user interface; anda controller in electrical communication with the plurality of sensors and the media device, the controller being configured to: receive data from the plurality of sensors,compare the data to determine if the occupant is seated evenly,operate the media device to inform the occupant of an uneven left-to-right seating position,receive input indicative of manual adjustment from the graphical user interface, andadjust at least one of the at least two air bladder assemblies in response to the manual adjustment input.
  • 9. The seat assembly of claim 8 wherein each of the at least two air bladder assemblies further comprises: a primary region expandable in a height direction to support a pelvis of an occupant; anda secondary region extending from the primary region and expandable for angular adjustment relative to the primary region to support a femur of the occupant.
  • 10. The seat assembly of claim 9 wherein the secondary region of each of the at least two air bladder assemblies comprises a bellows chamber to permit greater expansion spaced apart from the primary region than expansion that is permitted adjacent to the primary region.
  • 11. The seat assembly of claim 9 wherein each primary region of the at least two air bladder assemblies provides a support surface that is perpendicular to the height direction; and wherein each secondary region of the at least two air bladder assemblies provides a support surface that is generally inclined away from the primary region.
  • 12. The seat assembly of claim 11 wherein an angle between each primary region support surface of the at least two air bladder assemblies and the corresponding secondary region support surface decreases during inflation.
US Referenced Citations (81)
Number Name Date Kind
4634179 Hashimoto Jan 1987 A
4679855 Hattori et al. Jul 1987 A
5707109 Massara et al. Jan 1998 A
5967608 Van Sickle Oct 1999 A
5975633 Walk et al. Nov 1999 A
6088642 Finkelstein et al. Jul 2000 A
6088643 Long et al. Jul 2000 A
6129419 Neale Oct 2000 A
6203105 Rhodes, Jr. Mar 2001 B1
6220667 Wagner Apr 2001 B1
6273810 Rhodes, Jr. et al. Aug 2001 B1
6289538 Fidge Sep 2001 B1
6392550 Najor May 2002 B1
6398303 Herrmann et al. Jun 2002 B1
6578916 Longhi et al. Jun 2003 B2
6682059 Daniels et al. Jan 2004 B1
7131697 Beermann et al. Nov 2006 B2
7152920 Sugiyama Dec 2006 B2
7797771 Bossen et al. Sep 2010 B1
7917264 Hozumi et al. Mar 2011 B2
7967379 Walters et al. Jun 2011 B2
8251447 Fujita et al. Aug 2012 B2
8348339 Onuma et al. Jan 2013 B2
8596716 Caruso Dec 2013 B1
8616654 Zenk et al. Dec 2013 B2
8678500 Lem Mar 2014 B2
8775018 Uenuma et al. Jul 2014 B2
8958955 Hotary Feb 2015 B2
9381840 Tobata et al. Jul 2016 B2
20020056709 Burt May 2002 A1
20020089220 Achleitner et al. Jul 2002 A1
20020096915 Haupt et al. Jul 2002 A1
20020167486 Tan et al. Nov 2002 A1
20030023363 Katz et al. Jan 2003 A1
20030080699 Rumney May 2003 A1
20050067868 Kern et al. Mar 2005 A1
20060061315 Schmidt et al. Mar 2006 A1
20060290175 Hartwich Dec 2006 A1
20080009989 Kim et al. Jan 2008 A1
20080116730 Connolly et al. May 2008 A1
20080255731 Mita et al. Oct 2008 A1
20080267460 Aoki et al. Oct 2008 A1
20080277985 Petzel Nov 2008 A1
20090026821 Macht et al. Jan 2009 A1
20090030578 Periot et al. Jan 2009 A1
20090058661 Gleckler et al. Mar 2009 A1
20090099490 Durt et al. Apr 2009 A1
20090107258 Saitoh et al. Apr 2009 A1
20100031449 Cheng Feb 2010 A1
20100045087 Pyun et al. Feb 2010 A1
20100244504 Colja et al. Sep 2010 A1
20100276973 Zenk et al. Nov 2010 A1
20100283299 Onuma et al. Nov 2010 A1
20110031788 Kosik et al. Feb 2011 A1
20110112449 Hopf et al. May 2011 A1
20110210590 Mori et al. Sep 2011 A1
20120053794 Alcazar et al. Mar 2012 A1
20120086249 Hotary et al. Apr 2012 A1
20120096960 Galbreath et al. Apr 2012 A1
20120259248 Receveur Oct 2012 A1
20120283929 Wakita et al. Nov 2012 A1
20130009761 Horseman Jan 2013 A1
20130090816 Huber Apr 2013 A1
20130166078 Heger et al. Jun 2013 A1
20130175838 Oshima et al. Jul 2013 A1
20130251216 Smowton et al. Sep 2013 A1
20130313871 Shalaby et al. Nov 2013 A1
20140163333 Horseman Jun 2014 A1
20140167463 Sakata et al. Jun 2014 A1
20140319895 Lange-Mao et al. Oct 2014 A1
20140361590 Line et al. Dec 2014 A1
20150008710 Young et al. Jan 2015 A1
20150084985 Baudu Mar 2015 A1
20150097400 Heys Apr 2015 A1
20150099245 Bouchard et al. Apr 2015 A1
20150136146 Hood et al. May 2015 A1
20150351692 Pereny et al. Dec 2015 A1
20150352979 O'Bannon et al. Dec 2015 A1
20150352990 Zouzal et al. Dec 2015 A1
20150367751 Lamesch et al. Dec 2015 A1
20160101710 Bonk et al. Apr 2016 A1
Foreign Referenced Citations (29)
Number Date Country
201329822 Oct 2009 CN
201646470 Nov 2010 CN
104252615 Dec 2014 CN
19908655 Aug 2000 DE
10331624 Apr 2005 DE
10353020 Jun 2005 DE
102005034069 Jan 2007 DE
102005038289 Mar 2007 DE
102006036532 Feb 2008 DE
102009021532 Nov 2010 DE
102011010210 Dec 2011 DE
102010056568 Jul 2012 DE
102012216869 Mar 2014 DE
102012216178 May 2014 DE
0489310 Jun 1992 EP
2353928 Aug 2011 EP
2353928 Sep 2014 EP
2988051 Sep 2013 FR
2988654 Oct 2013 FR
2994073 Feb 2014 FR
2370222 Jun 2002 GB
477405 May 2014 TW
2005074754 Aug 2005 WO
2011144280 Nov 2011 WO
2012159688 Nov 2012 WO
2013144498 Oct 2013 WO
2013170335 Nov 2013 WO
2014066493 May 2014 WO
2014085302 Jun 2014 WO
Non-Patent Literature Citations (3)
Entry
U.S. Appl. No. 14/987,026, entitled “Seat Assemblies With Adjustable Side Bolster Actuators”, filed Jan. 4, 2016, 15 pages.
U.S. Appl. No. 14/716,197, entitled “Adjustable Seat Assembly”, filed May 19, 2015, 22 pages.
U.S. Appl. No. 14/716,191, entitled “Adjustable Seat Assembly”, filed May 19, 2015, 24 pages.
Related Publications (1)
Number Date Country
20170086588 A1 Mar 2017 US