Claims
- 1. A fuel injection system for a combustor of a turbine engine, comprising:
- an air blast tube mounted at an acute angle relative to a wall of said combustor, said air blast tube having a first end in communication with said combustor and a second, enlarged end disposed at an acute angle to an axis of said air blast tube and in communication with a source of compressed air externally of said wall of said combustor, said air blast tube being operable to deliver compressed air from said source into said combustor; and
- fuel supply means including a fuel supply tube for delivering fuel through a fuel supply orifice positioned at a point adjacent said first end of said air blast tube, at least a portion of said fuel supply tube being positioned within and extending through at least a portion of said air blast tube such that said fuel supply tube has a first end defining said fuel supply orifice positioned substantially at said first end of said air blast tube so as to be in communication with said combustor through said fuel supply orifice and said fuel supply tube also having a second end in communication with a source of fuel externally of said wall of said combustor, said fuel supply means thereby extending to a point communicating internally with said air blast tube but adjacent a discharge opening of said air blast tube at said first end thereof.
- 2. The fuel injection system of claim 1 including impingement surface means positioned in the path of fuel discharged from said fuel supply tube to produce a fuel spray directed into the path of compressed air discharged through said discharge opening of said air blast tube at a point internally of said air blast tube to cause said fuel spray and compressed air to interact within said combustor to produce an atomized fuel/air mixture.
- 3. The fuel injection system of claim 1 wherein said discharge opening of said air blast tube lies in a plane disposed generally perpendicular to an axis of said air blast tube and intersecting said wall of said combustor.
- 4. The fuel injection system of claim 1 wherein said air blast tube has a generally cylindrical wall disposed at an acute angle to said wall of said combustor, said air blast tube being secured to said wall of said combustor and having an opening through said generally cylindrical wall thereof, said fuel supply tube extending into said generally cylindrical wall of said air blast tube.
- 5. The fuel injection system of claim 4 wherein said discharge opening of said air blast tube has an outermost point adjacent said wall of said combustor and an innermost point diametrically opposite said outermost point thereof and said opening through said generally cylindrical wall is axially spaced relative to said outermost point of said discharge opening of said air blast tube.
- 6. The fuel injection system of claim 5 wherein said generally cylindrical wall of said air blast tube includes a fuel supply entry tube leading to said opening through said generally cylindrical wall of said air blast tube, said fuel supply entry tube being dimensioned slightly larger than said fuel supply tube to provide an air gap to facilitate insertion of said fuel supply tube into said fuel supply entry tube.
- 7. The fuel injection system of claim 6 wherein said fuel supply tube terminates at said generally cylindrical wall of said air blast tube in closely spaced relation to said outermost point of said discharge opening of said air blast tube and including a finger facing said fuel supply tube to produce a fuel spray directed into the path of compressed air discharged through said discharge opening of said air blast tube.
- 8. The fuel injection system of claim 6 wherein said fuel supply tube terminates at the centerline of said air blast tube at or near said discharge opening of said air blast tube and including a finger facing said fuel supply tube to produce a fuel spray directed into the path of compressed air discharged through said discharge opening of said air blast tube.
- 9. The fuel injection system of claim 8 wherein said fuel supply tube is scarfed at the centerline of said air blast tube, said fuel supply orifice being disposed within said fuel supply tube at a point upstream of the point where said fuel supply tube is scarfed, said fuel supply tube being scarfed to form a terminal end generally coinciding with the centerline of said air blast tube.
- 10. The fuel injection system of claim 8 wherein said first end of said air blast tube at said discharge opening has a wake reducing constriction in said generally cylindrical wall at a position inwardly of said combustor and said second end of said air blast tube has a compressed air receiving outward flare in said generally cylindrical wall at a position outwardly of said combustor.
- 11. The fuel injection system of claim 5 wherein said generally cylindrical wall of said air blast tube includes a fuel supply entry tube leading through said opening in said generally cylindrical wall of said air blast tube, said fuel supply entry tube being dimensioned slightly larger than said fuel supply tube to provide an air gap to facilitate insertion of said fuel supply tube into said fuel supply entry tube.
- 12. The fuel injection system of claim 11 wherein said fuel supply entry tube terminates at or near the centerline of said air blast tube at or near said discharge opening of said air blast tube and including a finger formed integrally with said fuel entry supply tube to face said fuel supply tube to produce a fuel spray directed into the path of compressed air discharged through said air blast tube.
- 13. The fuel injection system of claim 1 wherein said turbine engine includes a combustor case spaced from said wall of said combustor, and including at least one locating boss secured to said wall of said combustor adjacent said air blast tube, and further including a pin extending from said locating boss and secured to said combustor case for connecting said combustor case to said wall of said combustor.
- 14. The fuel injection system of claim 13 wherein said pin is formed to have a fuel passageway comprising said fuel supply tube, said air blast tube having a generally cylindrical wall disposed at an acute angle to said wall of said combustor and having an opening therethrough, said locating boss surrounding said opening in said generally cylindrical wall of said air blast tube and said pin extending through said locating boss.
- 15. The fuel injection system of claim 14 wherein said generally cylindrical wall of said air blast tube includes a fuel supply entry tube leading through said opening in said generally cylindrical wall of said air blast tube, said fuel supply entry tube terminating at or near the centerline of said air blast tube at or near said outermost point of said discharge opening of said air blast tube.
- 16. The fuel injection system of claim 15 wherein said pin includes said fuel supply tube defining said fuel passageway therewithin and extending from said pin to extend into said fuel supply entry tube, and including a finger formed integrally with said fuel supply entry tube to face said fuel supply tube to produce a fuel spray directed into the path of compressed air discharged through said air blast tube.
- 17. The fuel injection system of claim 1 wherein said turbine engine includes a combustor case spaced from said wall of said combustor, said fuel supply tube defining a fuel supply passage and having said fuel supply orifice therein, said fuel supply tube extending to said point internally of said air blast tube but adjacent said discharge opening thereof.
- 18. The fuel injection system of claim 17 wherein said combustor case includes means for securing said fuel supply tube thereto, said fuel supply tube extending from said combustor case into said air blast tube generally axially of said air blast tube to a point adjacent said discharge opening thereof, said air blast tube including means for supporting said fuel supply tube at an axially remote location from said combustor case.
- 19. The fuel injection system of claim 18 wherein said axially remote supporting means includes a centering tube supported by a strut along the centerline of said air blast tube, said fuel supply tube being disposed within said centering tube in sliding relationship thereto, and including means for maximizing the distance between said centering tube and said securing means to minimize stress on said fuel supply tube.
- 20. The fuel injection system of claim 19 wherein said distance maximizing means includes a recess in said combustor case axially of said air blast tube, said securing means being associated with said recess in said combustor case axially remote from said air blast tube, said centering tube being disposed within said air blast tube axially remote from said securing means associated with said recess in said combustor case.
- 21. The fuel injection system of claim 17 wherein said fuel supply tube extends into said air blast tube generally axially of said air blast tube to a point adjacent said discharge opening thereof, and including impingement surface means positioned in the path of fuel discharged from said fuel supply tube to produce a fuel spray directed into the path of compressed air discharged through said discharge opening of said air blast tube.
- 22. The fuel injection system of claim 21 wherein said fuel supply tube terminates on the centerline of said air blast tube at a point at or near said discharge opening of said air blast tube and said impingement surface means includes a finger facing said fuel supply tube to produce a fuel spray directed into the path of compressed air at an acute angle up to approximately 90 degrees.
- 23. The fuel injection system of claim 18 wherein said supporting means includes a centering tube supported by a strut along the centerline of said air blast tube, said fuel supply tube being disposed within said centering tube in sliding relationship thereto, and including a finger formed integrally with said centering tube to face said fuel supply tube to produce a fuel spray directed into the path of compressed air.
- 24. A fuel injection system for a combustor of a turbine engine, comprising:
- an air blast tube mounted at an acute angle relative to a wall of said combustor, said air blast tube having a first end in communication with said combustor and a second, enlarged end disposed at an acute angle to an axis of said air blast tube and in communication with a source of compressed air externally of said wall of said combustor, said air blast tube being operable to deliver compressed air from said source into said combustor;
- fuel supply means including a fuel supply tube for delivering fuel through a fuel supply orifice positioned at a point adjacent said first end of said air blast tube, at least a portion of said fuel supply tube being positioned within and extending through at last a portion of said air blast tube such that said fuel supply tube has a first end defining said fuel supply orifice positioned substantially at said first end of said air blast tube so as to be in communication with said combustor through said fuel supply orifice and said fuel supply tube also having a second end in communication with a source of fuel externally of said wall of said combustor, said fuel supply tube thereby extending to a point communicating first end thereof;
- said discharge opening of said air blast tube lying in a plane disposed generally perpendicular to an axis of said air blast tube and intersecting said wall of said combustor, said fuel supply means including a fuel supply passage defined by said fuel supply tube having said fuel supply orifice therein;
- said air blast tube having a generally cylindrical wall disposed at said acute angle to said wall of said combustor, said air blast tue being secured to said wall of said combustor and having an opening through said generally cylindrical wall thereof, said fuel supply tube extending at least into said generally cylindrical wall of said air blast tube; and
- impingement surface means positioned in the path of fuel discharged from said fuel supply means to produce a fuel spray directed into the path of compressed air discharged through said discharge opening of said air blast tube at a point internally of said air blast tube to cause said fuel spray and compressed air to interact within said combustor to produce an atomized fuel/air mixture.
- 25. The fuel injection system of claim 24 wherein said discharge opening of said air blast tube has an outermost point adjacent said wall of said combustor and an innermost point diametrically opposite said outermost point thereof and said opening through said generally cylindrical wall is axially spaced relative to said outermost point of said discharge opening of said air blast tube.
- 26. The fuel injection system of claim 25 wherein said generally cylindrical wall of said air blast tube includes a fuel supply entry tube leading to said opening through said generally cylindrical wall of said air blast tube, said fuel supply entry tube being dimensioned slightly larger than said fuel supply tube to provide an air gap to facilitate insertion of said fuel supply tube into said fuel supply entry tube.
- 27. The fuel injection system of claim 26 wherein said fuel supply tube terminates at said generally cylindrical wall of said air blast tube in closely spaced relation to said outermost point of said discharge opening of said air blast tube and including a finger facing said fuel supply tube to produce a fuel spray directed into the path of compressed air discharged through said discharge opening of said air blast tube.
- 28. The fuel injection system of claim 26 wherein said fuel supply tube terminates at the centerline of said air blast tube at or near said outermost point of said discharge opening of said air blast tube and including a finger facing said fuel supply tube to produce a fuel spray directed into the path of compressed air discharged through said discharge opening of said air blast tube.
- 29. The fuel injection system of claim 28 wherein said fuel supply tube is scarfed at the centerline of said air blast tube, said fuel supply orifice being disposed within said fuel supply tube at a point upstream of the point where said fuel supply tube is scarfed, said fuel supply tube being scarfed to form a terminal end generally coinciding with the centerline of said air blast tube.
- 30. The fuel injection system of claim 28 wherein said first end of said air blast tube at said discharge opening has a wake reducing constriction in said generally cylindrical wall at a position inwardly of said combustor and said second end of said air blast tube has a compressed air receiving outward flare in said generally cylindrical wall at a position outwardly of said combustor.
- 31. The fuel injection system of claim 25 wherein said generally cylindrical wall of said air blast tube includes a fuel supply entry tube leading through said opening in said generally cylindrical wall of said air blast tube, said fuel supply entry tube being dimensioned slightly larger than said fuel supply tube to provide an air gap to facilitate insertion of said fuel supply tube into said fuel supply entry tube.
- 32. The fuel injection system of claim 31 wherein said fuel supply entry tube terminates at or near the centerline of said air blast tube at or near said outermost point of said discharge opening of said air blast tube and including a finger formed integrally with said fuel supply entry tube to face said fuel supply tube to produce a fuel spray directed into the path of compressed air discharged through said air blast tube.
- 33. A fuel injection system for a combustor of a turbine engine, comprising:
- an air blast tube mounted at an acute angle relative to a wall of said combustor, said air blast tube having a first end in communication with said combustor and a second, enlarged end disposed at an acute angle to an axis of said air blast tube and in communication with a source of compressed air externally of said wall of said combustor, said air blast tube being operable to deliver compressed air from said source into said combustor; and
- fuel supply means including a fuel supply tube for delivering fuel through a fuel supply orifice positioned adjacent said first end of said air blast tube, at least a portion of said fuel supply tue being positioned within and extending through at least a portion of said air blast tube such that said fuel supply tube has a first end defining said fuel supply orifice positioned substantially at said first end of said air blast tube so as to be in communication with said combustor through said fuel supply orifice and said fuel supply tube also having a second end in communication with a source of fuel externally of said wall of said combustor, said fuel supply tube thereby extending to a point communicating internally with said air blast tube but adjacent or near a discharge opening of said air blast tube;
- said air blast tube having a generally cylindrical wall disposed at said acute angle to said wall of said combustor, said air blast tue being secured to said wall of said combustor and having an opening through said generally cylindrical wall thereof, said fuel supply tube extending at least into said generally cylindrical wall of said air blast tube; and
- said turbine engine having a combustor case spaced from said wall of said combustor together with at least one locating boss secured to said wall of said combustor adjacent said air blast tube, said turbine engine further including a pin extending from said locating boss and secured to said combustor case for connecting said combustor case to said wall of said combustor, said pin being formed to have a fuel passageway comprising said fuel supply tube, said locating boss surrounding said opening in said generally cylindrical wall of said air blast tue and said pin extending through said locating boss.
- 34. The fuel injection system of claim 33 wherein said discharge opening of said air blast tube lies in a plane disposed generally perpendicular to an axis of said air blast tube and intersecting said wall of said combustor, said fuel supply tube defining a fuel supply passage and having said fuel supply orifice therein, said fuel supply tube extending to said point communicating internally with said air blast tube but adjacent or near said discharge opening thereof.
- 35. The fuel injection system of claim 33 including impingement surface means positioned in the path of fuel discharged through said fuel supply orifice to produce a fuel spray directed into the path of compressed air discharged through said discharge opening of said air blast tube at a point internally of said air blast tube to cause said fuel spray and compressed air to interact within said combustor to produce an atomized fuel/air mixture.
- 36. The fuel injection system of claim 33 wherein said generally cylindrical wall of said air blast tube includes a fuel supply entry tube leading through said opening in said generally cylindrical wall of said air blast tube, said fuel supply entry tube terminating at or near the centerline of said air blast tube at or near said outermost point of said discharge opening of said air blast tube.
- 37. The fuel injection system of claim 36 wherein said pin includes said fuel supply tube defining said fuel passageway therewithin and extending from said pin to extend into said fuel supply entry tube, and including a finger formed integrally with said fuel supply entry tube to face said fuel supply tube to produce a fuel spray directed into the path of compressed air discharged through said air blast tube.
- 38. A fuel injection system for a combustor of a turbine engine, comprising:
- an air blast tube mounted at an acute angle relative to a wall of said combustor, said air blast tube having a first end in communication with said combustor and a second, enlarged end disposed at an acute angle to an axis of said air blast tube and in communication with a source of compressed air externally of said wall of said combustor, said air blast tube being operable to deliver compressed air from said source into said combustor; and
- fuel supply means including a fuel supply tube for delivering fuel through a fuel supply orifice positioned adjacent said first end of said air blast tube, at least a portion of said fuel supply tube being positioned within and extending through at least a portion of said air blast tube such that said fuel supply tube has a first end in communication with said combustor through said fuel supply orifice and said fuel supply tube also having a second end in communication with a source of fuel externally of said wall of said combustor, said fuel supply tube thereby extending to a point communicating internally with said air blast tube but adjacent or near a discharge opening of said air blast tube;
- said air blast tube having a generally cylindrical wall disposed at said acute angle to said wall of said combustor and being secured to said wall of said combustor;
- said turbine engine having a combustor case spaced from said wall of said combustor and said fuel supply tube having a fuel supply passage, said fuel supply tube also extending to said point communicating internally with said air blast tube but adjacent or near said discharge opening thereof;
- said combustor case including means for securing said fuel supply tube thereto, said fuel supply tube extending from said combustor case into said air blast tube generally axially of said air blast tube to a point adjacent said discharge opening thereof, said air blast tube including means for supporting said fuel supply tube at an axially remote location from said combustor case.
- 39. The fuel injection system of claim 38 wherein said supporting means includes a centering tube supported by a strut along the centerline of said air blast tube, said fuel supply tube being disposed within said centering tube in sliding relationship thereto, and including means for maximizing the distance between said centering tube and said securing means to minimize stress on said fuel supply tube.
- 40. The fuel injection system of claim 39 wherein said distance maximizing means includes a recess in said combustor case axially of said air blast tube, said securing means being disposed within said recess in said combustor case axially remote from said air blast tube, said centering tube being disposed within said air blast tube axially remote from said securing means and said recess in said combustor case.
- 41. The fuel injection system of claim 38 wherein said fuel supply tube extends into said air blast tube generally axially of said air blast tube to a point adjacent said discharge opening thereof, and including impingement surface means positioned in the path of fuel discharged from said fuel supply tube to produce a fuel spray directed into the path of compressed air discharged through said discharge opening of said air blast tube.
- 42. The fuel injection system of claim 41 wherein said fuel supply tube terminates on the centerline of said air blast tube at a point at or near said discharge opening of said air blast tube and said impingement surface means includes a finger facing said fuel supply tube to produce a fuel spray directed into the path of compressed air at an acute angle up to approximately 90 degrees.
- 43. The fuel injection system of claim 38 wherein said supporting means includes a centering tube supported by a strut along the centerline of said air blast tube, said fuel supply tube being disposed within said centering tube in sliding relationship thereto, and including a finger formed integrally with said centering tube to face said fuel supply tube to produce a fuel spray directed into the path of compressed air.
Parent Case Info
This application is a continuation of application Ser. No. 542,733, filed Jun. 22, 1990, now abandoned.
US Referenced Citations (5)
Foreign Referenced Citations (2)
Number |
Date |
Country |
2203023 |
May 1974 |
FRX |
WO8905903 |
Jun 1989 |
WOX |
Continuations (1)
|
Number |
Date |
Country |
Parent |
542733 |
Jun 1990 |
|