The present invention is related to the field of flow control. More particularly, the present invention is related to devices and methods for controlling air flow for use in air cells.
Air cells are a battery technology capable of providing a high capacity-to-volume ratio in miniature batteries. An air cell provides electricity using ambient air to provide molecules for a chemical reaction that creates an electric potential. Several chemical species of such batteries are in development or are already commercially available.
One commercially available air cell battery is shown in
Air cell batteries are typically packaged and sealed to prevent drying out of the reactive chemical prior to use. A tab seal provided over the air hole is considered to be relatively important as is preserves air cell fuel until the tab is removed and use begins. Once unsealed, performance can degrade quickly, particularly in humid or hot conditions. For some chemical species of air cells, high humidity is believed to infuse moisture that impedes the chemical reaction, while high heat is believed to dry out the cell, reducing output and accelerating degradation of capacity.
The present invention, in an illustrative embodiment, includes a battery comprising an air cell having an anode, a cathode, a substance reactive to air, an opening allowing for introduction of air to react with the substance, and a flow control device coupled to the opening and having an adjustable flow impedance for controlling air flow into the air cell. The illustrative flow control device comprises an opening, a first electrode, a flexible member, and a second electrode disposed on the flexible member, wherein the flexible member is configured to have a first position and a second position, the first position being a default position, the electrodes are placed such that a voltage applied between the electrodes can cause the flexible member to assume the second position due to an electrostatic force, and the first position and the second position create different flow impedances in the flow control device.
Another illustrative embodiment includes an air flow modification device comprising an outer casing having a plurality of outer openings therethrough, flexible membranes corresponding to each of the outer openings, each flexible membrane including a first electrode, and a plurality of second electrodes each corresponding to a first electrode. For this illustrative embodiment, the flexible membranes and second electrodes are disposed with respect to one another such that, for a given flexible membrane having a first electrode and a corresponding second electrode, the flexible membrane is moveable with respect to a corresponding outer opening to change the flow impedance through the corresponding outer opening in response to a voltage applied between the corresponding first and second electrodes. In a further embodiment, the outer casing is in the form of an outer cylinder, the device further comprising an inner cylinder to which the second electrodes and the flexible membranes are attached.
Yet another illustrative embodiment includes an air flow modification device comprising a first wall defining an opening, a second wall opposite the first wall, a flexible membrane secured to the first wall and disposed relative the opening, the flexible membrane being moveable to modify flow impedance through the opening, the flexible membrane including a first electrode, and a second electrode disposed relative the second wall. For this illustrative embodiment, the second electrode is disposed relative the flexible membrane such that application of a voltage between the first and second electrodes creates an electrostatic force modifying the flow impedance through the opening.
Another illustrative embodiment includes a method of modifying air flow comprising providing a chamber having a first wall having an opening and a second wall having a membrane secured thereto, the membrane including a first electrode and the second wall further having a second electrode, and selectively applying a voltage between the first and second electrodes to move the membrane using an electrostatic force to change the flow impedance through the opening.
Another illustrative method embodiment is adapted for controlling an air cell battery, the air cell battery having an inlet allowing for infusion of air, with the method comprising providing an air flow modification device coupled to the inlet, and modulating air flow through the inlet by adjusting air flow impedance through the air flow modification device. The air flow modification device may take the form of any of the several device embodiments discussed herein and further explained below.
The following detailed description should be read with reference to the drawings. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention.
As noted above, high humidity and/or heat can degrade the performance of an air cell battery. Several of the following embodiments are illustrated in the context of controlling air flow into an air cell to reduce effects of high humidity and/or heat on performance. While this field of use provides a context for illustrating the present invention, it should be understood that the present invention may find applications in a variety of other fields where devices adapted to modify flow impedance are useful.
Anode: Zn+2OH→ZnO+H2O+2e−
Cathode: O2+2H2O+4e−b →4OH
Overall: 2Zn+O2→2ZnO
As noted in U.S. Pat. No. 4,177,327, the disclosure of which is incorporated herein by reference, most often the metal used in the metal-air cells of metal-air batteries is zinc, but cadmium, iron or other metals may also be used. For the purposes of convenience, the present disclosure discusses primarily zinc-air cells, however, it should be understood that the present invention is not limited to use with this particular chemical species of air cell battery.
As shown in
The flexible member 12 may be, for example, a thin plastic film formed of Kapton® or Mylar®, with a thin electrode formed of aluminum sprayed, printed or otherwise placed thereon, with a dielectric coating provided thereover. If desired, the flexible member 12 may be provided with perforations or openings to allow fluid flow therethrough, though in several embodiments herein the flexible member 12 is fluid impermeable and not perforated. Any suitable construction for a flexible membrane including an electrode component may be used to create a flexible member adapted to actuate under electrostatic forces.
Rather than having all four of the openings 34 opened or blocked together, each individual opening may be separately addressable by providing separate electrical connections to each. In another embodiment, several sets of openings may be stacked, as shown in
In the configuration illustrated in
The associated air flow modification device includes a chamber wall 84 and flexible members 86, 90. Openings 88 extend through the chamber wall 84 at locations corresponding to the flexible members 86, 90. The flexible members 86, 90 are secured to the chamber wall 84 such that a bubble or ripple is created. The ripple extends out from the chamber wall 84 and crosses most of the chamber at select locations.
In
Turning to
The air flow modification device illustrated in
Sensors for temperature and/or humidity may be included in further embodiments, and coupled for controlling the actuation of the flexible members shown above. In some examples, a controller may be used. If desired, and for lower power consumption, logic or even direct control may be used instead.
For example,
The comparator C may be coupled in any suitable manner; for example, if the sensor S provides an output which goes down as either humidity or temperature increases, the comparator C may be configured to provide a high output causing actuation once the sensor output S drops below the threshold voltage Vt. When the comparator C provides a high output to the electrode 106, the flexible member 104 will actuate and shift over to block one of the openings 102, modifying the flow impedance going into the air cell battery. If desired, multiple sensors S may be used, and/or a number of threshold voltages Vt may be provided to allow for actuation of a number of flexible members 104 in series or parallel. It will be clear to those skilled in the art that a number of configurations are possible, and that shown in
Those skilled in the art will recognize that the present invention may be manifested in a variety of forms other than the specific embodiments described and contemplated herein. Accordingly, departures in form and detail may be made without departing from the scope and spirit of the present invention as described in the appended claims.