The present invention is related in general to air circulators, and in particular, to an air circulator with a vein control system to direct and adjust airflow patterns.
The cross-flow tower fan air moving device is well known in the art. Typically, in a vertically oriented cross-flow blower, air is drawn through the blower from one side and directed out through air exits on an adjacent side. Due to the aerodynamic principles that are well known in the art, the exit air is fairly laminar as it exists in a vertically oriented pattern from the fan housing. The laminar flows created by conventional tower fan designs are very effective at directing a steady flow of air in a given direction. However, conventional fan designs do not allow for manipulating the airflow to create a variety of desired air flow patterns.
Based on the foregoing, the present invention provides an improved fan design which can direct channeled air to create a variety of air flow patterns. The present invention overcomes the short coming of the prior art by accomplishing this critical objective.
To minimize the limitations found in the prior art, and to minimize other limitations that will be apparent upon the reading of the specifications, the preferred embodiment of the present invention provides adjustable, vertical veins that are attached to the outlet of a tower fan. According to a preferred embodiment, the veins of the present invention are pivotally mounted in such a way that by turning a knob, the veins can either be directed into a focused air-flow pattern or adjusted to a divergent air-flow pattern, or at any setting in between.
These and other advantages and features of the present invention are described with specificity so as to make the present invention understandable to one of ordinary skill in the art.
Elements in the figures have not necessarily been drawn to scale in order to enhance their clarity and improve understanding of these various elements and embodiments of the invention. Furthermore, elements that are known to be common and well understood to those in the industry are not depicted in order to provide a clear view of the various embodiments of the invention, thus the drawings are generalized in form in the interest of clarity and conciseness.
In the following discussion that addresses a number of embodiments and applications of the present invention, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. It is to be understood that other embodiments may be utilized and changes may be made without departing from the scope of the present invention.
Various inventive features are described below that can each be used independently of one another or in combination with other features. However, any single inventive feature may not address any of the problems discussed above or only address one of the problems discussed above. Further, one or more of the problems discussed above may not be fully addressed by any of the features described below.
As further shown in
According to a further preferred embodiment, the cam lobe 121 may be circular in shape and preferably fitted to contain the sliding mechanism 120 from moving either forward or backwards, and to keep the veins 110a-110d in the desired position. As further shown, the cam lobe 121 is preferably activated by a knob 118 which is attached to the cam lobe 121 via cam stem 117 which aligned with the pivot axis of the cam lobe 121. Accordingly, rotating the knob 118 in either direction will preferably cause the sliding mechanism 120 to move forward or back and thereby move the veins 110a-110d from a divergent position as shown in
With reference now to
According to alternative embodiments, the veins may be designed in various cross-sectional configurations, including aerodynamic air-foil shapes, rectangular shapes, or bent shapes, such as a dogleg bend (as illustrated in the preferred embodiment) or gentle curves. Advantageously, when the veins are configured in a dog-leg (bent) cross section design and moved to the focused position, the upstream dog-leg bend also has the effect of nearly closing off the outer slots, and thus directs more air to the center openings resulting in an even higher air velocity, which is desirable in the focused configuration.
With reference again to
In accordance with alternative preferred embodiments, there may be any number of veins used, from one to several. Further, although four vertically oriented veins are shown in the preferred configuration, other vein orientations may include horizontal or angled veins or a combination of orientations. Additionally, multiple ribs may be used with each rib having a unique shape for aerodynamic reasons. Still further, although the linkage between the veins and the sliding mechanism 120 is shown in the preferred configuration as being accomplished and controlled from the top end of the vein assembly, this linkage and control can be arranged from the bottom of the veins or from any location in-between.
The foregoing description of the preferred embodiment of the present invention has been presented for the purpose of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teachings. It is intended that the scope of the present invention not be limited by this detailed description, but by the claims and the equivalents to the claims appended hereto. The above described embodiments, while including the preferred embodiment and the best mode of the invention known to the inventor at the time of filing, are given as illustrative examples only. It will be readily appreciated that many deviations may be made from the specific embodiments disclosed in this specification without departing from the spirit and scope of the invention. Accordingly, the scope of the invention is to be determined by the claims below rather than being limited to the specifically described embodiments above.
This application is a continuation of U.S. patent application Ser. No. 15/543,669, titled AIR CIRCULATOR WITH VEIN CONTROL SYSTEM, filed Jul. 14, 2017, which application claims priority to PCT Application No. PCT/US2016/020790 filed Mar. 3, 2016, which claims priority to U.S. Provisional Patent Application No. 62/128,890 filed Mar. 5, 2015, all of the above of which are incorporated in their entirety by reference in this application.
Number | Name | Date | Kind |
---|---|---|---|
2224312 | O'day | Dec 1940 | A |
4425840 | Masao | Jan 1984 | A |
5063833 | Hara et al. | Nov 1991 | A |
5080002 | Soethout et al. | Jan 1992 | A |
5092518 | Tomioka et al. | Mar 1992 | A |
5238448 | Komori | Aug 1993 | A |
5324164 | Doering et al. | Jun 1994 | A |
5470276 | Burnell et al. | Nov 1995 | A |
5520579 | Saida | May 1996 | A |
5556334 | Cecotti | Sep 1996 | A |
5690550 | Mikowski | Nov 1997 | A |
6120372 | Riello | Sep 2000 | A |
6800023 | Demerath | Oct 2004 | B2 |
7827810 | Hur et al. | Nov 2010 | B2 |
9758020 | Oe et al. | Sep 2017 | B2 |
9878596 | Ross et al. | Jan 2018 | B2 |
20110294413 | Perella | Dec 2011 | A1 |
20180304725 | Nieto et al. | Oct 2018 | A1 |
20210062825 | Zhong | Mar 2021 | A1 |
Number | Date | Country |
---|---|---|
1727764 | Feb 2006 | CN |
201032246 | Mar 2008 | CN |
202117994 | Jan 2012 | CN |
102713125 | Oct 2012 | CN |
103883543 | Jun 2014 | CN |
108716482 | Oct 2018 | CN |
102004004427 | Sep 2005 | DE |
102005037748 | Feb 2007 | DE |
1867507 | Dec 2007 | EP |
2002293133 | Oct 2002 | JP |
2008209043 | Sep 2008 | JP |
2013167414 | Aug 2013 | JP |
2014020952 | Feb 2014 | WO |
Entry |
---|
Shigley, J. and Charles Mischke. Standard Handbook of Machine Design. McGraw Hill: 1996, p. 39.4 (Year: 1996). |
Chinese First Office Action for corresponding CN 2016800123352 dated May 7, 2019 (Year: 2019). |
Chinese search report for corresponding CN 2016800123352 dated Apr. 26, 2019 (Year: 2019). |
Number | Date | Country | |
---|---|---|---|
20200333029 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
62128890 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15543669 | US | |
Child | 16916010 | US |