Embodiments of the present disclosure relate to an air cleaner having an improved structure.
An air cleaner is a device to remove contaminants in the air. The air cleaner may remove bacteria, viruses, mold, fine dust, and chemical substances causing foul odors from suctioned air.
The air cleaner may include a filter to purify polluted indoor air. The air suctioned into the air cleaner may pass through the filter such that contaminants are removed from the suctioned air, thus producing purified air. The purified air may be discharged outside from the air cleaner.
The air cleaner may be used in various spaces having different air-contamination levels. When the air cleaner is used in a high-air-contamination space, the air cleaner may operate at a high speed to more quickly purify indoor air. The air cleaner may operate at a low speed in an indoor space in which air contamination level is low and indoor quietness is needed.
The air cleaner may include different kinds of filters to remove various contaminants from the air. A pre-filter configured to filter out relatively large-sized dust in the air may be located at the foremost position of one or more filters.
Dust or contaminants in the air may be collected in each filter provided in the air cleaner. In order to efficiently perform air purification, there is a need to remove the dust or contaminants collected in the filter or replace the filter with a new filter.
It is an object of the present disclosure to provide an air cleaner for changing an operation mode thereof according to the degree of indoor air contamination and an indoor space condition.
It is another object of the present disclosure to provide an air cleaner for easily cleaning a filter.
The objects of the present disclosure can be achieved by an air cleaner including a housing, an inlet located at a lower part of the housing, a filter assembly located above the inlet, a diameter of which is gradually shortened in a direction from an upper part of the filter assembly to a lower part of the filter assembly, an outlet located above the second filter assembly, and a brush unit configured to remove or separate contaminants attached to an outer surface of the filter assembly from the filter assembly.
The filter assembly may include a first filter assembly and a second filter assembly located above the first filter assembly.
The air cleaner may further include a discharge member located above the filter assembly, and formed to have the outlet while movable in a vertical direction.
The discharge member may include a first outlet formed at a side surface of the discharge member, and a second outlet formed at a top surface of the discharge member.
The discharge member may operate in any one of a first discharge mode and a second discharge mode. In the first discharge mode, the first outlet may be inserted into the housing, and air may be discharged outside only through the second outlet. In the second discharge mode, the first outlet may be exposed outside the housing, and air may be discharged outside through the first outlet and the second outlet.
The air cleaner may further include a notification means contained in the housing, and configured to indicate whether air is currently discharged outside through the outlet.
The notification means may be implemented as a light or lamp configured to be movable.
The brush unit may be in contact with an outer surface of the filter assembly, and may be movable along the outer surface of the filter assembly.
The brush unit may include a brush part configured to be in contact with the outer surface of the filter assembly, and a coupling part connected to a driving source.
The air cleaner may further include a propeller rotatably mounted to one end of the filter assembly. The brush unit is connected to the propeller.
A blowing fan may be mounted to one side of the filter assembly so as to suction air, and the propeller may rotate by air current generated by rotation of the blowing fan.
A dust collection space may be formed in a portion of the housing. The filter assembly may be contained in the dust collection space. A portion of the housing in which the dust collection space is formed may be detachably coupled to the remaining portions of the housing.
The filter assembly may include a flow passage, one end of which is formed to communicate with an external part of the filter assembly.
When the filter assembly is contained in the dust collection space, the flow passage may be formed to communicate with the dust collection space, and another end of the flow passage may be configured to be opened or closed by a cap.
The filter assembly may be formed in a manner that a diameter of the filter assembly is gradually shortened in a direction from an upper part of the filter assembly to a lower part of the filter assembly.
In accordance with another aspect of the present disclosure, the air cleaner includes a case, a filter assembly, a second filter assembly, and a vibration generator. An inlet may be located at a lower part of the case, and an outlet may be located at an upper part of the case. The first filter assembly may be contained in the case, and may filter out contaminants from the suctioned air. The second filter assembly may be located above the first filter assembly, and may filter out contaminants from the air having passed through the first filter assembly. The vibration generator may vibrate any one of the first filter assembly and the second filter assembly.
The vibration generator may include a cam. At least a portion of an outer surface of the cam may be formed to protrude, and the cam may be movable.
The first filter assembly or the second filter assembly may include a bearing configured to be in contact with the cam.
A diameter of at least one of the first filter assembly and the second filter assembly may be gradually shortened in a downward direction.
In accordance with another aspect of the present disclosure, the air cleaner includes an inlet and an outlet. The inlet may be located at a lower part of the air cleaner, and the outlet may be located at an upper part of the air cleaner. The air cleaner includes a housing, a filter assembly, a brush unit, and a discharge member. A diameter of the filter assembly may be gradually shortened in a downward direction. The brush unit rotates at the outside of the filter assembly, and at the same time removes contaminants from the outer circumference of the filter assembly. The outlet may be formed in the discharge member. The discharge member may be located at an upper part of the housing, and may be movable in a vertical direction. The outlet may include a first outlet formed at a side surface of the discharge member so as to omnidirectinally discharge the air, and a second outlet formed at a top surface of the discharge member.
As is apparent from the above description, the air cleaner according to the embodiments of the present disclosure may operate at a proper operation mode according to surroundings of an indoor space and the degree of indoor air contamination, such that the air cleaner can be easily used by users, resulting in greater convenience of use.
In addition, one or more filters can be easily and conveniently cleaned, such that efficiency deterioration of the air cleaner is prevented.
Reference will now be made in detail to the embodiments of the present disclosure, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout. An air cleaner according to the following embodiments of the present disclosure will hereinafter be described with reference to the attached drawings.
Referring to
The filter assemblies 2 and 5 may include a first filter assembly 2 and a second filter assembly 5 located above the first filter assembly 2. The first filter assembly 2 may filter out relatively heavy contaminants in the air. The second filter assembly 5 may filter out relatively light contaminants in the air. For example, air including dust having a diameter of about 10 μm may pass through the filter assembly 2, such that the first filter assembly 2 may filter out the dust having a diameter of about 10 82 m. In addition, the air including dust having a diameter of about 2.5 μm may pass through the second filter assembly 5 such that the second filter assembly 5 may filter out the dust having a diameter of about 2.5 μm.
Each housing 10a or 10b may be formed in a substantially cylindrical shape. The housings 10a and 10b may include the first housing 10a to surround the first filter assembly 2 and a blowing fan 6, and the second housing 10b located above the first housing 10a. The first housing 10a may include a lower housing 102 and an upper housing 103 located over the lower housing 102. The lower housing 102 may include the first filter assembly 2, and the upper housing 103 may include the first blowing fan 6. The lower housing 102 including the first filter assembly 2 may be detachably coupled to the air cleaner 1. The user may separate the lower housing 102 from the air cleaner 1, such that the user may replace the first filter assembly 2 contained in the lower housing 102 with another filter assembly or may clean the first filter assembly 2.
A grille member 8 may be disposed between the first housing 10a and the second housing 10b. Outdoor air may be introduced into the air cleaner 1 through the grille member 8, such that relatively large dust or contaminants in the air may be filtered out. The air introduced into the air cleaner 1 through the grille member 7 may pass through the second filter assembly 5.
The air cleaner 1 may further include a base 11 seated on the ground. The first filter assembly 2 may be disposed over the base 11. An inlet 110 may be formed in the base 11. The air introduced into the air cleaner 1 through the inlet 110 may pass through the first filter assembly 2 so that contaminants in the introduced air can be filtered out.
The first blowing fan 6 may be disposed over the first filter assembly 2. The second filter assembly 5 may be disposed over the first blowing fan 6. A second blowing fan 7 may be disposed over the second filter assembly 5.
By rotation of the first blowing fan 6, the air may be introduced into the first filter assembly 2 through the inlet 110. By rotation of the second blowing fan 7, the air having passed through the first filter assembly 2 may be introduced into the second filter assembly 5, and may also be introduced into the second filter assembly 5 through the grille member 8. The first blowing fan 6 and the second blowing fan 7 may simultaneously operate, or only one of the first blowing fan 6 and the second blowing fan 7 may operate as necessary.
A discharge member 9 provided with outlets 900 and 910 may be disposed over the second housing 10b in a manner that purified air having no contaminants can be discharged outside through the outlets 900 and 910. The discharge member 9 may include a body 90, a first outlet 900 formed at a side surface of the body 90, and a second outlet 910 formed at a top surface 91 of the body 90.
The discharge member 9 may be formed in a shape corresponding to the shape of an inner surface of the second housing 10b. The first outlet 900 may be formed along a side surface of the discharge member 9 such that the air is discharged outside in a lateral or side direction. The air discharged through the first outlet 900 may form a distributed air flow of 360°.
The discharge member 9 may move upward and downward. When the discharge member 9 moves down, the first outlet 900 formed at the side surface of the body 90 may be inserted into the second housing 10b, and the air may be discharged outside through the second outlet 910 formed at the top surface 91. When the discharge member 9 moves upward, the first outlet 900 may be exposed outside, and the air may be discharged outside through the first outlet 900 and the second outlet 910.
When the contamination level of indoor air is low or the air cleaner 1 is set to a sleep mode, the discharge member 9 may be inserted into the second housing 10b and the air may be discharged outside only through the second outlet 910. When the air is discharged outside only through the second outlet 910, the speed of air purification may be reduced, resulting in reduction in noise caused by air discharge.
In this case, the first blowing fan 6 may not operate, and the second blowing fan 7 may operate. When the first blowing fan 6 operates, most indoor air may be introduced into the second filter assembly 5 through the grille member 8, such that the indoor air may be purified by the second filter assembly 5 and the purified air may be discharged outside through the second outlet 910. When necessary, the first blowing fan 6 may operate, and the second blowing fan 7 may not operate. In addition, the first blowing fan 6 and the second blowing fan 7 may simultaneously operate, and the air purified by the filter assemblies 2 and 5 may be intensively discharged in a vertical direction through the second outlet 910.
If the air cleaner 1 is set to a strong mode because the contamination level of indoor air is high or the indoor air needs to be quickly purified, the discharge member 9 may protrude from the second housing 10b, and the air may be rapidly discharged through the first outlet 900 and the second outlet 910. In this case, since the air is discharged through the first outlet 900 and the second outlet 910, noise caused by air discharge may unavoidably increase, but the air can be quickly purified within a short period of time.
In this case, the first blowing fan 6 and the second blowing fan 7 may simultaneously operate. The indoor air may be introduced into the air cleaner through the inlet 110 and the grille member 8, and may be purified by the first filter assembly 2 and the second filter assembly 5, such that the purified air may be discharged outside through the first outlet 900 and the second outlet 910. When necessary, it may also be possible to operate only one of the first blowing fan 6 and the second blowing fan 7.
The air cleaner 1 may operate in a plurality of operation modes. The operation mode of the air cleaner 1 may be automatically changed according to the contamination level of indoor air or the like, and the air cleaner 1 may also operate in a specific mode according to user setting information. Various embodiments of the operation modes of the air cleaner 1 will hereinafter be described in detail.
For example, the air cleaner 1 may operate in a first mode in which the second blowing fan 7 located at a higher position may operate at a low speed. The second blowing fan 7 may operate at a constant low speed. In this case, the discharge member 9 may be inserted into the second housing 10b, such that the purified air may be discharged only through the second outlet 910. The air may be discharged outside at a low speed through the second outlet 910, such that gentle flow of air having less noise may be discharged outside. The first mode may be mainly used at night or during bedtime.
The air cleaner 1 may operate in a second mode in which the second blowing fan 7 is automatically driven according to the contamination level of indoor air. When the second blowing fan 7 rotates at a low speed, the discharge member 9 may remain inserted into the second housing 10b, and the purified air may be discharged outside through the second outlet 910. When the rotation speed of the second blowing fan 7 gradually increases, the discharge member 9 may protrude outward from the second housing 10b, such that the purified air may be rapidly discharged through the first outlet 900 and the second outlet 910. In order to discharge the purified air through the second outlet 910 irrespective of the operation speed of the second blowing fan 7, the discharge member 9 may also remain inserted into the second housing 10b.
For example, the air cleaner 1 may mainly operate in the second mode in daytime in which most people are actively moving.
In order to rapidly purify the indoor air using the air cleaner 1, the air cleaner 1 may operate in a third mode in which the first blowing fan 6 and the second blowing fan 7 are simultaneously driven. In this case, the discharge member 9 may protrude outward from the second housing 10b, and the purified air may be rapidly discharged outside through the first outlet 900 and the second outlet 910. When the contamination level of indoor air is very high or when many people are present in a limited-sized space, the air cleaner 1 may operate in the third mode. In the third mode, the air cleaner 1 may rapidly purify the indoor air at a maximum air speed and a maximum air volume.
The air cleaner 1 may operate in a fourth mode in which the first blowing fan 6 and the second blowing fan 7 operate at different speeds. For example, the first blowing fan 6 may rotate at a higher speed, and the second blowing fan 7 may rotate at a lower speed than the first blowing fan 6. The discharge member 9 may remain inserted into the second housing 10b, and the purified air may be discharged outside through the second outlet 910. In the fourth mode, the air cleaner 1 may mainly operate for circulation or deodorization of the indoor air.
The scope or spirit of the operation mode of the air cleaner 1 is not limited to the above-mentioned first to fourth modes.
The air cleaner 1 shown in
In addition, the rotation speed of the light may be changeable with the rotation speed of each blowing fan 6 or 7. When each of the blowing fans 6 and 7 rotates at a low speed, the light may rotate at a low speed. When each of the blowing fans 6 and 7 rotates at a high speed, the light may also rotate at a high speed.
In addition, color of the light may also be changed according to the contamination level of indoor air. The contamination level of indoor air may be measured by a sensor located in the air cleaner 1. When the contamination level of indoor air is very high, the light blinks in red. As the contamination level of indoor air is gradually reduced, the light sequentially blinks in the order of orange • yellow • green • blue • purple.
Referring to
As described above, the first filter assembly 2 is formed to have a conical shape or a circular truncated conical shape, such that the first filter assembly 2 formed either in the conical shape or in the circular truncated conical shape may have a larger surface area than the other filter assembly formed in a cylindrical shape on the assumption that the first filter assembly 2 and the other first filter assembly are formed to have the same diameter. Therefore, the air suctioned through the inlet 110 may more easily pass through the first filter assembly 2 having a larger surface area, resulting in improved air purification efficiency.
In comparison with the other filter assembly formed in a plate shape on the assumption that the same diameter is used, the first filter assembly 2 formed either in a conical shape or in a circular truncated conical shape may have a larger surface area. As described above, the first filter assembly 2 may be formed to have a larger surface area, resulting in higher air purification efficiency.
The first filter assembly 2 may include a pre-filter 21 and a High Efficiency Particulate Air (HEPA) filter 22. The pre-filter 21 may be formed in conical shape or in a circular truncated conical shape. The HEPA filter 22 may be formed in a shape corresponding to the inner surface of the pre-filter 21, and may be included in the pre-filter 21.
A brush unit 3 may be provided at the side of the first filter assembly 2. The brush unit 3 may be in contact with the outer surface of the pre-filter 21. The brush unit 3 may rotate around the pre-filter 21 such that contaminants attached to the surface of the pre-filter 21 can be separated from the pre-filter 21.
The brush unit 3 may include a brush part 30 and a coupling part 31. The brush part 30 may be in contact with the outer surface of the pre-filter 21 so that contaminants attached to the surface of the pre-filter 21 can be dropped or separated from the pre-filter 21. The coupling part 31 may be connected to the brush part 30 such that the coupling part 31 may receive driving power from a driver 33. In this case, the driver 33 may be implemented as a motor.
The brush part 30 may rotate while in contact with the surface of the pre-filter 21, such that contaminants attached to the surface of the pre-filter 21 can be dropped or separated. The coupling part 31 may rotate the brush part 30 upon receiving driving power from the driver 33. One end of the coupling part 31 may be connected to the brush part 30, and the other end of the coupling part 31 may be connected to the driver 33.
The coupling part 31 may be connected to the driver 33 through a transfer member 34. The transfer member 34 may include a rotation plate 340 connected to a rotation shaft 33 contained in the driver 33, and a first interference protrusion 341 protruding from one surface of the rotation plate 340. The first interference protrusion 341 may be located to be eccentric from the rotation shaft 330 such that the first interference protrusion 341 is not located at the same shaft as the rotation shaft 330. A second interference protrusion 32 interfered with by the first interference protrusion 341 may be provided to one side of the coupling part 31. The second interference protrusion 32 may not be located at the same shaft as the rotation shaft 330.
If the rotation plate 340 is rotated by the driver 33, the first interference protrusion 341 may rotate around the rotation shaft 330. When the first interference protrusion 341 touches the second interference protrusion 32, the first interference protrusion 341 may rotate together with the second interference protrusion 32. As a result, the coupling part 31 and the brush part 30 connected to the coupling part 31 may simultaneously rotate.
An outer side of the first filter assembly 2 may be surrounded by an inner wall 100. A dust collection space 101 formed by the inner wall 100 may be formed in the lower housing 102, and the first filter assembly 2 may be included in the dust collection space 101. The inner wall 100 may be integrally formed with the lower housing 102. The inner wall 100 may be formed in a cylindrical shape. Therefore, a diameter D3 between the first filter assembly 2 and the inner wall 100 may gradually increase in length in a downward direction of the first filter assembly 2.
The dust collection space 101 may be disposed between the inner wall 100 and the first filter assembly 2, such that dust or contaminants filtered out by the pre-filter 21 may drop from the surface of the pre-filter 21 and be collected in the dust collection space 101. The dust or contaminants separated from the surface of the pre-filter 21 may be collected in the dust collection space 101 by the brush part 30.
The brush unit 3 may be controlled to periodically clean the pre-filter 21. For example, when the air cleaner 1 is turned on, the air cleaner 1 may perform air purification after removing contaminants from the pre-filter 21 via the brush unit 3. Even in the air purification operation, when the amount of contaminants filtered out by the pre-filter 21 is equal to or larger than a preset reference amount of contaminants, or whenever a predetermined time elapses after starting the air cleaner 1, contaminants attached to the pre-filter 21 may be removed from the pre-filter 21 by the brush unit 3.
Contaminants may be removed from the pre-filter 21 by the brush unit 3, such that suction force of the air can be prevented from being reduced. In addition, air purification efficiency of indoor air can also be prevented from being degraded.
The lower housing 102 may be detachably coupled to the first filter assembly 2, such that the lower housing 102 may be separated from the first filter assembly 2 as necessary. As a result, the user may separate the lower housing 102 from the first filter assembly 2, and may then discard the dust or contaminants collected in the dust collection space 101, such that the air cleaner 1 can be sanitarily managed by the user.
Referring to
As illustrated in
The brush unit 3a may include a brush part 30a connected to the propeller 35. The brush part 30a may remain in contact with the outer wall of the first filter assembly 2 (i.e., the outer wall of the pre-filter 21). One end of the brush unit 3a may be connected to the propeller 35. The brush unit 3a may rotate together with the propeller 35. By rotation of the brush unit 3a, contaminants attached to the outer wall of the pre-filter 21 may be removed by the brush part 30a. Contaminants removed from the pre-filter 21 by the brush part 30a may be collected in the dust collection space 101 shown in
The propeller 35 may be installed to rotate only when the first blowing fan 6 rotates at a preset rotation speed or higher. Therefore, the propeller 35 rotates such that contaminants attached to the pre-filter 21 can be removed by the brush part 30a only when the first blowing fan 6 rotates at a high speed (for example, when indoor air needs to be rapidly purified or when the contamination level of indoor air is very high).
If the rotation speed of the first blowing fan 6 is high, it is expected that the amount of air, that is scheduled to pass through the pre-filter 21 per unit time, increases and the amount of contaminants filtered out by the pre-filter 21 also increases in proportion to the amount of air. The air cleaner 1 according to this embodiment is configured to remove contaminants attached to the pre-filter 21 using the brush part 30a, such that the air cleaner 1 can be easily and efficiently managed by the user.
In addition, when the brush unit 3a is installed to rotate together with the propeller 35, the brush unit 3a can rotate without power such that the amount of power consumed by the air cleaner 1 can be greatly reduced.
Although the above-mentioned embodiment has disclosed the exemplary case in which the brush unit 3a is mounted to the propeller 35 that is capable of rotating without power for convenience of description and better understanding of the present disclosure, the scope or spirit of the present disclosure is not limited thereto, and it should be noted that the brush unit 3a may also rotate while coupled to the first blowing fan 6 as necessary. In this case, a gear ratio of a gear by which the brush unit 3a is connected to the first blowing fan 6 may be controlled or adjusted in a manner that the brush unit 3a rotates at a lower speed than the first blowing fan 6. In addition, the brush unit 3a may also be connected to a torque limiter in a manner that the brush unit 3a can be prevented from rotating at a predetermined speed or higher. The scope or spirit of such connection between the brush unit 3a and the first blowing fan 6 is not limited to the above-mentioned structure.
Referring to
A shaft 23 extended downward may be provided to the first filter assembly 2, and a ring-shaped bearing 37 may be mounted to the shaft 23. The bearing 37 may be in contact with a cam 36 connected to the driving source 33a. The cam 36 may be connected to the driving source 33a through the rotation shaft 31.
Uneven parts may be formed in at least a portion of the outer surface of the cam 36. At least a portion of the outer surface of the cam 36 may be formed in an irregular shape, or a cross-sectional view of the cam 36 may not be formed in a smooth circular shape. For example, the cross-sectional view of the cam 36 may be formed in an oval shape. The scope or spirit of the shape of the cam 36 is not limited thereto, and the cam 36 may also be formed in an irregular shape.
If the cam 36 rotates by driving power of the driving source 33a, the bearing 37 is pushed laterally and then moves back to an original position thereof due to the shape of the cam 36. In this case, the first filter assembly 2 may move together with the bearing 37. When the cam 36 continues to rotate, the bearing 37 and the first filter assembly 2 are pushed laterally and then move back to original positions thereof such that such pushing and backward movement of the first filter assembly 2 may be repeatedly performed, resulting in vibration of the first filter assembly 2. When the first filter assembly 2 vibrates, contaminants attached to the pre-filter 21 may be dropped or removed from the pre-filter 21. The contaminants removed from the pre-filter 21 may be collected in the dust collection space 101.
The cam 36 may be installed to periodically rotate. After the air cleaner 1 is turned on, when the amount of contaminants filtered out by the pre-filter 21 is equal to or larger than a preset reference amount of contaminants, or whenever a predetermined time elapses during operation of the air cleaner 1, the cam 36 may rotate for a predetermined time. Contaminants attached to the pre-filter 21 may be periodically removed by periodic rotation of the cam 37, such that air suction force can be prevented from being deteriorated.
Referring to
The flow passage 24 may be formed in a pipe shape having a predetermined length, such that the flow passage 24 may be extended in a vertical direction within the inner space of the first filter assembly 2. One end of the flow passage 24 may be located in the first filter assembly 2, and the other end of the flow passage 24 may communicate with the dust collection space 101 indicating the outer space of the first filter assembly 2. During operation of the air cleaner 1, the end part of the flow passage 24 may be blocked by the cap 25 in a manner that the air suctioned into the first filter assembly 2 is prevented from flowing through an inner space 240 of the flow passage 24.
When contaminants collected in the dust collection space 101 are removed, the user may open the cap 25 and may connect a connection pipe P of a vacuum cleaner (not shown) to the flow passage 24. When the vacuum cleaner is driven on the condition that the connection pipe P is connected to the flow passage 24, contaminants collected in the dust collection space 101 may be suctioned into the vacuum cleaner. As a result, the user may easily and conveniently remove contaminants collected in the dust collection space 101.
Referring to
The filter frame 51 and the HEPA filter 52 may be installed in a manner that the diameters of the filter frame 51 and the HEPA filter 52 are located at an upper part of the second filter assembly 5. A carbon filter 53 may be located over the HEPA filter 52. The carbon filter 53 may be formed to have a flat surface, such that the carbon filter 53 may be seated on the filter frame 51.
The air suctioned through the inlet 110 may pass through the first filter assembly 2, and may then pass through the second filter assembly 5. In addition, the air introduced through the grille member 8 may also pass through the second filter assembly 5. In this case, the grille member 8 may be used as a pre-filter. That is, the air from which relatively large dust or contaminants are filtered out by the grille member 8 may pass through the second filter assembly 5. Contaminants are removed from the air having passed through the second filter assembly 5, such that purified air having no contaminants may be discharged through the outlets 900 and 910.
Although the above-mentioned example has disclosed the embodiment in which the first filter assembly and the second filter assembly are different in structure from each other for convenience of description and better understanding of the present disclosure, the scope or spirit of the present disclosure is not limited thereto, and the second filter assembly may also be formed to have the same structure as the first filter assembly. In addition, the second filter assembly may also include a brush unit or a structure for vibrating the second filter assembly as necessary.
Number | Date | Country | Kind |
---|---|---|---|
10-2016-0105358 | Aug 2016 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2017/006460 | 6/20/2017 | WO | 00 |