Air collector with functionalized ion exchange membrane for capturing ambient CO2

Information

  • Patent Grant
  • 9205372
  • Patent Number
    9,205,372
  • Date Filed
    Tuesday, July 17, 2012
    12 years ago
  • Date Issued
    Tuesday, December 8, 2015
    9 years ago
Abstract
An apparatus for capture of CO2 from the atmosphere comprising an anion exchange material formed in a matrix exposed to a flow of the air.
Description
BACKGROUND OF THE INVENTION

The present invention in one aspect relates to removal of selected gases from air. The invention has particular utility for the extraction of carbon dioxide (CO2) from air and will be described in connection with such utilities, although other utilities are contemplated, including the sequestration of other gases including NOx and SO2.


There is compelling evidence to suggest that there is a strong correlation between the sharply increasing levels of atmospheric CO2 with a commensurate increase in global surface temperatures. This effect is commonly known as Global Warming. Of the various sources of the CO2 emissions, there are a vast number of small, widely distributed emitters that are impractical to mitigate at the source. Additionally, large scale emitters such as hydrocarbon-fueled power plants are not fully protected from exhausting CO2 into the atmosphere. Combined, these major sources, as well as others, have lead to the creation of a sharply increasing rate of atmospheric CO2 concentration. Until all emitters are corrected at their source, other technologies are required to capture the increasing, albeit relatively low, background levels of atmospheric CO2. Efforts are underway to augment existing emissions reducing technologies as well as the development of new and novel techniques for the direct capture of ambient CO2. These efforts require methodologies to manage the resulting concentrated waste streams of CO2 in such a manner as to prevent its reintroduction to the atmosphere.


The production of CO2 occurs in a variety of industrial applications such as the generation of electricity power plants from coal and in the use of hydrocarbons that are typically the main components of fuels that are combusted in combustion devices, such as engines. Exhaust gas discharged from such combustion devices contains CO2 gas, which at present is simply released to the atmosphere. However, as greenhouse gas concerns mount, CO2 emissions from all sources will have to be curtailed. For mobile sources the best option is likely to be the collection of CO2 directly from the air rather than from the mobile combustion device in a car or an airplane. The advantage of removing CO2 from air is that it eliminates the need for storing CO2 on the mobile device.


Extracting carbon dioxide (CO2) from ambient air would make it possible to use carbon-based fuels and deal with the associated greenhouse gas emissions after the fact. Since CO2 is neither poisonous nor harmful in parts per million quantities, but creates environmental problems simply by accumulating in the atmosphere, it is possible to remove CO2 from air in order to compensate for equally sized emissions elsewhere and at different times.


Various methods and apparatus have been developed for removing CO2 from air. In one prior art method, air is washed with a sorbent such as an alkaline solution in tanks filled with what are referred to as Raschig rings that maximize the mixing of the gas and liquid. The CO2 reacts with and is captured by the sorbent. For the elimination of small amounts of CO2, gel absorbers also have been used. Although these methods are efficient in removing CO2, they have a serious disadvantage in that for them to efficiently remove carbon dioxide from the air; the air must be driven past the sorbent at fairly high pressures. The most daunting challenge for any technology to scrub significant amounts of low concentration CO2 from the air involves processing vast amounts of air and concentrating the CO2 with an energy consumption less than that that originally generated the CO2. Relatively high pressure losses occur during the washing process resulting in a large expense of energy necessary to compress the air. This additional energy used in compressing the air can have an unfavorable effect with regard to the overall carbon dioxide balance of the process, as the energy required for increasing the air pressure may produce its own CO2 that may exceed the amount captured negating the value of the process.


Such prior art methods result in the inefficient capture of CO2 from air because these processes heat or cool the air, or change the pressure of the air by substantial amounts. As a result, the net loss in CO2 is negligible as the cleaning process may introduce CO2 into the atmosphere as a byproduct of the generation of electricity used to power the process.


The present invention in one aspect provides an improvement over prior art systems for removal of CO2 from air by the utilization of solid phase anion exchange membranes for the direct capture of CO2 and other acid gases such as NOX and SO2 from air. Specifically, this invention provides practical physical configurations of the active element, processes for the manufacture of the active element and configurations options of an air collector device to facilitate the direct capture of CO2 and other acid gases from the air based on solid phase, anion exchange materials.


SUMMARY OF THE INVENTION

This invention in one aspect provides practical physical configurations of active air contacting elements, processes for the manufacture of the active elements and configurations options of an air collector device to facilitate the direct capture of CO2 and other acid gases from the air based on solid phase, anion exchange materials.


The air capture device in accordance with the present invention constitutes a front-end component of a larger system designed to capture low concentration ambient CO2, chemically remove the captured CO2 from the air capture device, concentrate the CO2 for subsequent permanent disposal, reconstitute the process chemicals and reactivate the CO2 capture materials in preparation for the next capture cycle.


The air capture device utilizes a functionalized anion exchange polymer that is formed to provide a relatively large surface area which allows for air flow with minimum resistance. In one embodiment the anion exchange polymer takes the form of an open matrix or unordered mesh of “noodle-like” strands, e.g. similar to those found in evaporative or humidifier pads. Alternatively, the anion exchange polymer is formed into cells or coated on surfaces of a support material formed into cells that provides certain critical capture performance requirements.


In our co-pending PCT Application Serial No. PCT/US06/029238, filed Jul. 28, 2006, we describe specific requirements for the chemical performance of the solid phase ion exchange material. This application in one aspect addresses mechanical configurations and air-side performance enhancements to ensure that the low energy needs of the overall system are met while ensuring a robust design with repeatable air capture performance. In another aspect, this application describes an integrated system for reforming CO2 into other molecules that will permanently prevent the reintroduction of the captured CO2 into the atmosphere.





BRIEF DESCRIPTION OF THE DRAWINGS

Further features and advantages of the present invention will be seen from the following detailed description, taken in conjunction with the accompanying drawings, wherein



FIG. 1 a flow diagram illustrating a capture of CO2 from the air;



FIGS. 2
a-2f are cross-sectional views schematically illustrating various configurations of air capture media in accordance with the present invention;



FIGS. 2
g and 2h are perspective views illustrating “noodle-like” air capture media in accordance with the present invention;



FIGS. 3
a, 3b and 4 are perspective views illustrating various embodiments of air capture media in accordance with the present invention;



FIG. 5 schematically illustrates air capture media installed in a cooling tower in accordance with the present invention:



FIG. 6 is a schematic view showing air capture media installed in an exhaust system in accordance with the present invention; and



FIG. 7 is a schematic view illustrating CO2 capture from the air followed by sequestration in accordance with a preferred embodiment of the invention.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

One goal of the air capture device of the present invention is to present a maximum amount of surface area of the solid phase ion exchange material per unit volume to a high volume flow rate, low pressure air stream while minimizing air pressure drop across the device.


Preferably, the air capture device also is configured to ensure as complete as possible penetration and thorough liquid contact of all surfaces with a sorbent chemical to remove the captured CO2 and to reactivate the membrane surfaces.


In operation, the air capture device will be exposed to a stream of air for a given period of time until, through known performance characterization, it will be necessary to remove the captured carbon-bearing molecules and reactivate the solid phase anion exchange materials. The solid phase anion exchange materials will then be treated, for example with a sorbent chemical, e.g. through liquid bath immersion or spray, to remove the carbon-bearing molecules and reactivate the solid phase anion exchange materials. Once drained, the air capture device can be reintroduced to the air stream.


Preferably, the air capture device is oriented to the air stream with its major feature or face substantially perpendicular to the air stream flow path. The face is penetrated by a matrix of passages that are parallel with the principal axis of the air stream and that pass completely through the bulk of the air capture device.


As stated previously, the amount of energy expended by the air capture and cleaning process to capture and concentrate atmospheric CO2 must be minimized. To be viable, the process should introduce less CO2 into the atmosphere as a byproduct of the generation of electricity used to power the process than that amount of CO2 that is captured. This impacts the configuration of the air capture device, specifically its aerodynamic impedance to the incoming process air stream.


The ideal arrangement of the device will be to utilize available wind driven airflow without fan assistance; however, the case for fan assisted airflow must also be considered. Given that a known amount of air must be processed to extract a known amount of CO2 (on the order of 10,000 units of air to every unit of CO2) and that the impedance presented by the air capture device will have a direct influence on the fan input power, it is necessary to minimize air-side pressure drop through the device. This may be achieved through the design of low pressure drop features that communicate air from inlet to the outlet faces of the air capture device with low flow resistance.


In competition with the above requirement, another critical criterion requires the maximization of the specific active surface area of the device. Expressed as the unit active area per unit volume of the bulk mass of the device, one goal of the present invention is to limit the overall physical size of the air capture device. The concern arises from experimentally derived CO2 capture flux values for the ion exchange material under consideration. Although relative to other CO2 capture methodologies, it performs very well, and flux values are quite low. Specifically, we have demonstrated average capture fluxes from 2 to 6E-5 moles CO2/m2/sec. This has a significant impact on the amount of surface area of active material necessary to achieve practical capture quantities. For example, at 2E-5 moles CO2/m2/sec with the goal of capturing 1 tonne of CO2/day, the device would be required to expose 13,150 m2 of membrane to the air stream. Thus, the device needs to be configured with a high specific active surface area matrix to achieve a practical device without severe limitations on its location owing to the collector size.


A third criterion is the ability of the structural matrix to be thoroughly wetted by the sorbent chemistry necessary to remove the captured CO2 and to refresh the active material. Commensurate with its ability to be easily and thoroughly wetted is its ability to completely drain in preparation for the next processing cycle.


A fourth criterion requires that the structural matrix be configured to present a robust, uniform and dimensionally stable form. This is necessary given the following factors:

    • 1. Firstly, the material may undergo significant dimensional variations owing to expansion and contraction processes between the wet and dry states. The fabrication of the matrix must provide robust joints between subcomponents to withstand the repeating strain over years of cycling without tear or rupture.
    • 2. The design of the internal features must accommodate the expansion and contraction while maintaining dimensional stability. This is necessary in order to avoid localized and/or gross reductions in cross-sectional area as presented to the air stream which would lead to a reduction in the exposed active membrane.


Very high specific active surface area will compete, however, with the requirements for low pressure drop, this arising from the fact that high surface area to volume efficiencies are achieved with very small internal features or passages. Additionally, very small internal features may also compromise air flow by causing air stagnation in these features below a characteristic critical air flow.


Thus, the final design and configuration will be an optimization of pressure drop, specific active surface area and overall collector size. This will also be influenced by practical manufacturing processes necessary to make a robust and cost effective device.


Design and Configuration of Active Element


a. Requirements Overview


The air capture device of the present invention comprises a field or matrix of active elements or features that communicate directly between two opposing faces in such a manner as to minimize energy loss owing to aerodynamic forces arising from airflow through these features. In one embodiment of the invention, the active elements or features take the form of an open matrix or unordered mesh of “noodle-like” strands, similar to those found in evaporative or humidifier pads. In another embodiment of the invention the active elements or features are comprised of repeating shapes such as, but not limited to, regular and irregular polygons that may be of varying sizes and shapes occupying the complete matrix. The shape, size and distribution may vary over the entire matrix in order to optimize the airflow characteristics and pressure drop distribution to achieve the desired capture kinetics and structural performance criteria noted previously.


b. Physical and Performance Attributes


The smaller the cross-sectional area of a given feature, the higher the specific area of a unit volume of the matrix, i.e., specific area being the ratio of area to volume. For example for a matrix of rows of equilateral triangles, 5 mm on each side, each row separated by a planar sheet would have a specific area of approximately 1200 m2/m3. A matrix of 10 mm equilateral triangles would present a specific area of approximately 600 m2/m3.


The trade-off of a small feature size is that with the air-side aerodynamic characteristics of turbulence and pressure drop. For a given airflow, as the cross-sectional area of the feature is reduced, the turbulence and pressure drop along the air path length will increase. To a limited extent, turbulence is desirable to ensure good CO2 capture kinetics with a solid phase anion exchange material. However, a cost for higher turbulence and commensurate pressure drop though is the higher energy required to move the air through the air capture device. For a given surface roughness of the solid phase anion exchange material in contact with the process air, the significant performance trade-off variables are feature cross-sectional area and uniformity, flow path length, air velocity flux at the face of the matrix and CO2 capture kinetic response of the solid phase anion exchange material.


Overlaying these performance trade-off issues are those related to the manufacturing and assembly of the features and the matrix. The manufacturing process necessary to create the small features while ensuring a robust and consistent assembly will be reflective of the starting raw materials. The two most common forms of solid phase anion exchange materials are thermoplastic sheet and beads. The practicality of forming small features will be driven by available processes and practices given these materials. There may be certain feature sizes, below which the manufacturing process may need to change potentially resulting in higher unit costs.


c. Configuration Options


At the most discrete level, the repeating feature would be comprised of repeating shapes such as, but not limited to, regular and irregular polygons that may be of varying sizes and shapes comprising the complete matrix. The selection of shape would be influenced, in part, by the specific area requirements and manufacturability. Additionally, the overall configuration of the air capture device may dictate more than one feature shape in order to maximize exposure to the air stream and adjust for differential air velocity fluxes. Potential shapes include, but are not limited to, isosceles and equilateral triangles, trapezoids, squares, rectangles, other regular and irregular polygons. See, e.g. FIGS. 2a-2f. The shaped anion exchange material may be formed from sheets of anion exchange material such as functionalized polystyrene or the like, or comprise sheets of inert substrate material coated with anion exchange material. Alternatively, and in a preferred embodiment of the invention, the anion exchange material comprises “noodle-like” 1 mm thick by 1 mm wide strands formed by slitting commercially available anion exchange membrane material. One currently preferred material is an anion exchange membrane material available from SnowPure, LLC, San Clemente, Calif. The manufacturer describes these membrane materials as comprising crushed anionic exchange resin mixed in a polypropylene matrix and extruded as a sheet according to the teachings of U.S. Pat. Nos. 6,503,957 and 6,716,888. The “noodles” or strands are formed by slitting 1 mm thick sheets of SnowPure anion exchange material into 1 mm wide “noodles” or strands. (See FIGS. 2h-2i).


In accordance with one embodiment of the invention, an air capture device may be formed in a substantially circular shape and constant thickness shape, i.e., a disc, using a matrix of polygons which follow a spiral pattern to take advantage of a continuous strip of corrugated solid phase anion exchange material that is as wide as the air capture device is thick. See, e.g. FIGS. 3a and 3b. The unit would be wound with a continuous corrugated layer and a co-joined planar layer until the desired diameter is achieved. An alternative to this configuration would be discrete increasingly larger diameter annular segments of corrugated solid phase anion exchange material and planar sheet subassemblies that would fit snugly together until the desired diameter of the air capture device is achieved.


A variant of the above example would have a disc of variable thickness. See, e.g. FIG. 4. This may be desirable in the presence of a non-uniform air flux field in order to ensure uniform capture and/or aerodynamic performance throughout the mass of the air capture device.


One advantage of the circular cross-section would be to match the geometry of the air capture device to a cooling tower such as an up-draft cooling tower which is circular in cross-section as well. See, e.g. FIG. 5. This circular feature also lends itself to retrofit applications of existing cooling tower installations.


Another configuration for the air capture device would be substantially rectangular, e.g., as shown in FIG. 6. The matrix would consist of a field of regular, repeating polygons set in rows or columns separated from each other by planar sheets. An alternative arrangement would include substantially a field of regular polygons with discretely placed regions of alternate shapes, patterns and/or sizes to optimize the CO2 capture kinetics and aerodynamic performance throughout the mass of the air capture device. One advantage to this configuration is that it lends itself to an installation into a standard shipping container facilitating the development of a stand-alone, integrated and self-contained device that is readily shipped via the existing intermodal transportation infrastructure.


In all the configurations previously discussed. a significant advantage to the matrix arrangement of the polygon-based features is its inherent structural stability and strength. In the planar sheet form, the solid phase anion exchange material has no practical structure for stability and low specific area and in the bead form, the solid phase anion exchange material has high pressure drop and requires external containment structures. A fabricated matrix of solid phase anion exchange material or a substrate coaled with an anion exchange material creates a space frame structure similar to that used in aircraft floors and automobile bodies. In these applications, the space frame allows the designer to create a very stiff, strong and stable structure that is light weight with a very high strength to weight ratio. An example in nature of a similar matrix of regular polygons, fabricated from light weight material that yields a highly stable and strong 3-dimensional structure is the beehive.


Overview of Manufacturing Processes


a. Overview and Requirements


Common ion exchange resins are made up of a polystyrene or cellulose based backbone which is subsequently functionalized (aminated) into the anionic form usually via chloromethalation.


The manufacturing processes available to assemble the proposed matrix structure can take advantage of the formability offered by the polystyrene thermoplastic. Broadly, there are two paths open to the fabrication process. The first involves the formation of an assembled matrix or mesh prior to its activation or functionalization. This allows the fabricator the flexibility of apply a broad selection of mature plastics fabrication processes to manufacture the air capture matrix that would otherwise damage or destroy a functionally treated material. The primary concern is that the temperatures involved in melting polystyrene exceed the upper limit tolerance of the functionalized material.


The other fabrication path involves the use of pre-treated or functionalized material. This provides the option of working with pre-existing solid phase anion exchange materials albeit with some limitations to the processing conditions in order to preserve the ionic capabilities of the material. The limitation arises from the relatively low temperature tolerance of the functional amine groups on the material. The upper temperature limit is in the range of 100 to 140° C., well below the processing temperature necessary to fuse the thermoplastic material. Polystyrene has a Tg or glass transition temperature of approximately 100° C. and a melting point around 240° C. As a result, the material can be worked or formed near the upper safe limit for the functionalized material without melting the material which would destroy the functionality.


Experimentation with thermoplastic solid phase anion exchange materials has shown that highly localized fusion bonding processes, such as spot welding, may be for the assembly of the matrices as the heat-affected zone is highly localized limiting the amount of functionality that is removed by this processes. This process does not significantly impact the bulk performance of the solid phase anion exchange materials.


b. Forming of Features and Assembly of Matrix


Selection of the shape of the features will be influenced, in part, by the manufacturing processes available. For example, the choice of a simple polygon, such as a triangle, lends itself to some simple forming processes. Starting with a continuous sheet of either pre- or post-functionalized polystyrene in roll form, a continuous forming operation of creating a corrugation can be achieved by passing the sheet between two heated and matched contoured rollers. The precisely spaced rollers will capture the polystyrene, heat the material to its glass transition temperature and impart the triangular shape. As the corrugated sheet exits the rollers, they are allowed to cool to ensure the shape takes a permanent set. For shapes that feature sharp bends or that require more severe processing, the post-functionalized material may be more suitable to allow for higher temperature processing.


Another forming processes that yields similar results as in the above example but produces formed sheets on a discrete basis, would be to press planar sheets between two heated and contoured platens under pressure. As before, the shape's features may dictate the forming temperatures and therefore the selection of pre- or post-functionalized material.


Another forming process takes advantage of the existing technologies applied to the manufacturing of plastic parts. Specifically, polystyrene can be heated and extruded or injection molded to form complex shapes. Whether discrete parts or continuously cast shapes, the final product would then be functionalized after formation.


Yet another forming process involves the creation of a polystyrene foam material. With the addition of blow agents, an open-cell foam material would be created, the material cut into shape, and the pieces could be functionalized prior to assembly. The open cell nature of the foam would allow airflow through the material.


Yet another manufacturing process involves the fusion of two or more discrete pre-formed polystyrene parts. Through the application of highly localized high temperatures at or above the melting point of the material, it is possible to create a region where two or more pieces of polystyrene material would fuse together, e.g., by spot welding at discrete locations, or by seam welding along a continuous line. The welding method selected would be chosen to suite the final assembly, the tooling and the required robustness of the final part.


Finally, a matrix or unordered mesh of “noodle-like” strands of anion exchange material may be employed.


Design and Configuration Options for Air Capture Device


a. Overview and Requirements


The myriad of design options open for the matrix in terms of shapes and manufacturing processes lends itself to numerous configurations of the air capture device. These configurations provide opportunity for modularization; customization to fit existing spaces and optimization for cost, efficiency and productization.


b. Cubic Forms


The cubic form lends itself to efficient packing arrangements and modularization to support performance scale-up. An option is the development of a CO2 capture system that is configured to fit into standard 20 and 40 foot shipping containers wherein the air capture device will be substantially in a cubic form.


The air capture device also could be comprised of numerous, discrete cubical modular sections that collectively provide the desired CO2 capture performance. This provides an opportunity to individually regenerate each section, one at a time, allowing for continuous, uninterrupted CO2 capture.


c. Circular Forms


The circular form lends itself to a design that mimics a conventional updraft cooling tower. The disc could be configured to be a “solid” form with uniform dimensions and features throughout its thickness. Airflow would follow a path parallel to the axis of rotation of the disc.


In one arrangement, the air capture disc may be oriented horizontally with a fan positioned above it to provide an updraft flow of air.


Another arrangement has the disc oriented vertically with the fan either in front or behind it. The disc may be arranged to slowly spin through a trough containing the chemicals to regenerate the active material.


In the retrofit market, the disc may be configured to fit within an existing updraft cooling tower thereby taking advantage of the available draft.


Another configuration of the circular form is one wherein the device has an annular cross section. In this configuration the processed air would move radially through the sides of the structure, either inwards or outwards depending on the installation.


d. Other Forms


There are many forms open to the design of the air capture device including those that are hollow. The configuration will be very much dependant on the constraints of the installation, notwithstanding those that govern performance as previously indicated.


e. Non-Uniform Cross-Section Forms


Adjustments to the cross section may be necessary in some instances to ensure uniform and efficient performance of the air capture device. This may lead to matrix configurations that have non-uniform cross sections and/or asymmetric profiles. Installation factors, enclosure designs and fan performance also may have a hearing on the final design and form of the matrix.


f. Matrix or Unordered Mesh Forms


A matrix or unordered mesh of “noodle-like” strands 1 mm thick by 1 mm wide are formed by slitting sheets of 1 mm thick commercially available anion exchange material. The resulting “noodles” may then be loosely packed in a conduit, i.e., as shown in FIG. 2h, through which the air is directed.


Yet other structures that combine high surface area with low pressure drop advantageously may be employed in accordance with the present invention.


In yet another aspect of the invention, the CO2 captured from the air is permanently sequestered. There are several discrete processes that can be integrated to achieve permanent CO2 sequestration. Referring to the attached drawing FIG. 7, two such processes are the air capture process such as described in our co-pending U.S. application Ser. No. 11/209,962, filed Aug. 22, 2005, and a conventional industrial chlor-alkali process.


The chlor-alkali process is a common industrial process for the manufacture of commodity chlorine (Cl2) and sodium hydroxide (NaOH) from NaCl by electrolysis, e.g., of sea water, in an electrolytic cell. The electrochemical current causes chloride ions to migrate to the anode where it is collected as chlorine gas. Sodium hydroxide and hydrogen also are formed. The overall process operates under the following stoichiometric relationship:

2H2O+2NaCl→2NaOH+H2+Cl2 ΔH=+543 kJ/g-mole H2  I


Typical uses for chlorine include a bleaching agent for the pulp and paper industry as well as a disinfectant agent. Sodium hydroxide is very common feed stack for numerous chemical and material manufacturing processes. The stream of hydrogen typically is considered a waste stream. Although some plants recover a portion of this waste stream for use as a heat and power fuel source, the majority produced worldwide is simply flared, i.e., burned in the atmosphere for disposal. The invention in one aspect leverages the product and waste streams from existing chlor-alkali processes as well as the CO2 product stream from an air capture system by inserting a Sabatier reduction process, which is an exothermic process, downstream of the two previously mentioned processes. More particularly, in accordance with the present invention, the CO2 collected in an air capture system, and the H2 waste stream are combined over a nickel or ruthenium catalyst at an elevated temperature to reform these feed streams into CH4 (methane) and H2O (water) under the stoichiometric conditions:

CO2+4H2→CH4+2H2O ΔH=−165 kJ/mole@25° C.  II


Thus, in accordance with one aspect of the present invention, carbon dioxide from an air capture system and hydrogen gas from a Chlor-alkali process are used as the feed streams for a Sabatier process. At low pressure (approximately 1 bar) and 400° C. to 600° C. operating temperature, a product stream of methane and water vapour evolves. To ensure the permanent sequestration of the carbon in the methane, the methane gas may become the feedstock for the plastics processing industry. The methane gas also may be burned as a synthetic fuel, or used as a feedstock for forming a liquid synthetic fuel.


Additional CO2 sequestration can be achieved by further consolidation of the product streams of the chlor-alkali process. As above described, an H2 stream is utilized to aid in the sequestration of CO2 through the Sabatier process. An NaOH stream also may be utilized to capture and sequester CO2. Specifically, NaOH is a strong solvent for CO2. Thus, by exposing the NaOH to the atmosphere, atmospheric CO2 will react with the NaOH to form stable carbonates according to the following reactions:

2NaOH+CO2→Na2CO3+H2O and,  III
NaOH+CO2→NaHCO3  IV


These compounds occur naturally in the environment especially in the oceans. Thus, once the NaOH has completely reacted with the CO2 in the atmosphere, the resulting carbonates can be introduced into the ocean where they are complementary to the marine life, and may be used by the indigenous marine life to form such vital structures as hard coral and shells. Another possibility is the direct injection of NaOH into the ocean, changing the pH of the ocean which will allow the ocean to act as an atmospheric CO2 collector as described in our aforesaid PCT Patent Application Serial No. PCT/US06/029,238.


The chlorine product stream may be safely sequestered in the earth, e.g., via its reaction with natural magnesium hydroxide (MgOH). The chlorine would be dissociated in water to produce hydrochloric acid which would react with the magnesium hydroxide producing magnesium chloride, which has various industrial uses, and water. Another possibility would be to leave the mineral salt in situ for permanent mineral sequestration.


Of course, the chlor-alkali product streams of NaOH, Cl2 and HCl also are marketable commodities, and thus may be used for revenue generation as opposed to disposal.


Yet other possibilities include direct injection of CO2 into deep wells or deep ocean storage.


The present invention generates carbon credits at several stages. One carbon credit results from removal of CO2 from the air. An additional carbon credit results from sequestration of the carbon as sodium carbonate. Two carbon credits are earned by conversion of the carbon into sodium bicarbonate. An additional carbon credit also can be earned by acid injection of the carbon into minerals, i.e., to form salts, the CO2 passed to deep well or deep ocean storage, or sequestration of the carbon into plastics methane or synthetic fuel.


Various changes are possible without departing from the spirit and scope of the invention. For example, NaOH has been described for reactivating the anionic exchange surface sorbent; however, the invention is not limited to the use of sodium hydroxide as a sorbent, and other sorbents capable of absorbing carbon dioxide, such as sodium carbonate may be used in the present invention. Also, while ion exchange material has been described as a preferred material for forming the backbone of the air capture device, other air capture devices such as described in our aforesaid PCT/US06/029238 and our PCT/US05/029979 advantageously may be employed. Also, rather than cut the “noodles” from anion exchange sheet material, threads of anion exchange material may be formed by crushing anionic exchange resin material, and extruding the crushed resin material in a binder to form the “noodles” directly. Still other applications may be made without departing from the spirit and scope of the invention.

Claims
  • 1. An apparatus for capture of CO2 from ambient air comprising a solid capture material comprising an amine exposed to the ambient air from which said solid capture material captures CO2; a release mechanism for releasing captured CO2 from said solid capture material comprising an amine, wherein said release mechanism comprises a liquid; a concentrator that concentrates CO2 released from said solid capture material; and either (i) a converter that converts the concentrated CO2 to a useful product or (ii) an injector that injects said concentrated CO2 into a deep well or into deep ocean storage.
  • 2. The apparatus of claim 1, wherein the solid capture material is formed as a plurality of polygons.
  • 3. The apparatus of claim 1, wherein the solid capture material is formed as a plurality of squares, rectangles, triangles, trapezoids, pentagons, or hexagons.
  • 4. The apparatus of claim 1, wherein the solid capture material is shaped as a spiral wound disc.
  • 5. The apparatus of claim 1, wherein the solid capture material is shaped as a plurality of concentric layers.
  • 6. The apparatus of claim 1, wherein the solid capture material is shaped as a truncated cone.
  • 7. The apparatus of claim 1, wherein the solid capture material is shaped as a plurality of louvers.
  • 8. The apparatus of claim 1, wherein the solid capture material is formed of an amine-functionalized polystyrene or cellulose based anion exchange resin.
  • 9. The apparatus of claim 1, wherein the solid capture material is formed as a mesh.
  • 10. The apparatus of claim 1, installed in a cooling tower.
  • 11. The apparatus of claim 1, wherein the solid capture material is formed as a honeycomb.
  • 12. The apparatus of claim 1, wherein said solid capture material is an anion exchange material.
  • 13. The apparatus of claim 12, wherein said anion exchange material is coated on an inert substrate material.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. Patent application Ser. No. 13/102,915 filed May 6, 2011, now U.S. Pat. No. 8,246,723, which is a continuation of Ser. No. 11/683,824, now U.S. Pat. No. 7,993,432, filed on Mar. 8, 2007, which claims the benefit of U.S. Provisional Applications No. 60/780,466 and 60/780,467, both filed Mar. 8, 2006, all of which applications are incorporated herein by reference in their entirety.

US Referenced Citations (270)
Number Name Date Kind
1031799 MacKay Jul 1912 A
1296889 White Mar 1919 A
1482367 Elledge Jan 1924 A
2718454 Wylie Sep 1955 A
2796145 King Jun 1957 A
2922489 Lee Jan 1960 A
3024207 Shaw et al. Mar 1962 A
3063195 Ravich Nov 1962 A
3111485 Kunin Nov 1963 A
3282831 Hamm Nov 1966 A
3294488 Dunlop et al. Dec 1966 A
3318588 Russell et al. May 1967 A
3330750 McRae et al. Jul 1967 A
3344050 Mayland et al. Sep 1967 A
3466019 Priestley Sep 1969 A
3466138 Routsis Kostas et al. Sep 1969 A
3470708 Weil et al. Oct 1969 A
3489506 Galstaun et al. Jan 1970 A
3498026 Messinger et al. Mar 1970 A
3554691 Kuo et al. Jan 1971 A
3556716 Pollio et al. Jan 1971 A
3561926 McElroy Feb 1971 A
3594989 Bastiaans Jul 1971 A
3627478 Tepper Dec 1971 A
3627703 Kojima Dec 1971 A
3645072 Clapham Feb 1972 A
3691109 Larsen Sep 1972 A
3710778 Cornelius Jan 1973 A
3712025 Wallace Jan 1973 A
3727375 Wallace Apr 1973 A
3833710 Deschamps et al. Sep 1974 A
3841558 Fowler et al. Oct 1974 A
3848577 Storandt Nov 1974 A
3865924 Gidaspow et al. Feb 1975 A
3876565 Takashima et al. Apr 1975 A
3876738 Marinaccio et al. Apr 1975 A
3880981 Garingarao et al. Apr 1975 A
3891411 Meyer Jun 1975 A
3907967 Hiss Sep 1975 A
3915822 Veltman Oct 1975 A
3948627 Schwarz et al. Apr 1976 A
3981698 Leppard Sep 1976 A
4012206 Macriss et al. Mar 1977 A
4047894 Kuhl Sep 1977 A
4140602 Lewis et al. Feb 1979 A
4167551 Tamura et al. Sep 1979 A
4197421 Steinberg Apr 1980 A
4238305 Gancy et al. Dec 1980 A
4239515 Yanagioka et al. Dec 1980 A
4246241 Mathur et al. Jan 1981 A
4249317 Murdock Feb 1981 A
4296050 Meier Oct 1981 A
4321410 Ono et al. Mar 1982 A
4336227 Koyama et al. Jun 1982 A
4340480 Pall et al. Jul 1982 A
4398927 Asher et al. Aug 1983 A
4409006 Mattia Oct 1983 A
4436707 Karwat Mar 1984 A
4475448 Shoaf et al. Oct 1984 A
4497641 Brown, Jr. et al. Feb 1985 A
4511375 BeVier Apr 1985 A
4528248 Galbraith et al. Jul 1985 A
4543112 Ackley et al. Sep 1985 A
4566221 Kossin Jan 1986 A
4569150 Carlson et al. Feb 1986 A
4592817 Chlanda et al. Jun 1986 A
4594081 Kroll et al. Jun 1986 A
4608140 Goldstein Aug 1986 A
4678648 Wynn Jul 1987 A
4711097 Besik Dec 1987 A
4711645 Kumar Dec 1987 A
4729883 Lam et al. Mar 1988 A
4735603 Goodson et al. Apr 1988 A
4770777 Steadly et al. Sep 1988 A
4804522 Hass Feb 1989 A
4810266 Zinnen et al. Mar 1989 A
4861360 Apffel Aug 1989 A
4869894 Wang et al. Sep 1989 A
4899544 Boyd Feb 1990 A
4906263 Von Blucher et al. Mar 1990 A
4941898 Kimura Jul 1990 A
4946620 Kadono et al. Aug 1990 A
4953544 Hansen et al. Sep 1990 A
4957519 Chen Sep 1990 A
4980098 Connery Dec 1990 A
5069688 Wells Dec 1991 A
5070664 Groh et al. Dec 1991 A
5170633 Kaplan Dec 1992 A
5180750 Sugaya et al. Jan 1993 A
5203411 Dawe et al. Apr 1993 A
5215662 Johnson et al. Jun 1993 A
5253682 Haskette et al. Oct 1993 A
5277915 Provonchee et al. Jan 1994 A
5281254 Birbara et al. Jan 1994 A
5304234 Takatsuka et al. Apr 1994 A
5308466 Ganzi et al. May 1994 A
5316637 Ganzi et al. May 1994 A
5318758 Fujii et al. Jun 1994 A
5328851 Zaromb Jul 1994 A
5344627 Fujii et al. Sep 1994 A
5385610 Deerer et al. Jan 1995 A
5389257 Todd et al. Feb 1995 A
5401475 Ayala et al. Mar 1995 A
5409508 Erickson Apr 1995 A
5414957 Kenney May 1995 A
5443740 Schmitt Aug 1995 A
5454189 Graham et al. Oct 1995 A
5520894 Heesink et al. May 1996 A
5525237 Birbara et al. Jun 1996 A
5535989 Sen Jul 1996 A
5658372 Gadkaree Aug 1997 A
5659974 Graeff Aug 1997 A
5682709 Erickson Nov 1997 A
5711770 Malina Jan 1998 A
5747042 Choquet May 1998 A
5756207 Clough et al. May 1998 A
5779767 Golden et al. Jul 1998 A
5788826 Nyberg Aug 1998 A
5792440 Huege Aug 1998 A
5797979 Quinn Aug 1998 A
5833747 Bleakley et al. Nov 1998 A
5876488 Birbara et al. Mar 1999 A
5887547 Caveny et al. Mar 1999 A
5914455 Jain et al. Jun 1999 A
5917136 Gaffney et al. Jun 1999 A
5934379 Ostlyngen et al. Aug 1999 A
5955043 Neuman et al. Sep 1999 A
5972080 Nagata Oct 1999 A
5980611 Kumar et al. Nov 1999 A
6004381 Rohrbach et al. Dec 1999 A
6027552 Ruck et al. Feb 2000 A
6048509 Kawai et al. Apr 2000 A
6083740 Kodo et al. Jul 2000 A
6117404 Mimura et al. Sep 2000 A
6136075 Bragg et al. Oct 2000 A
6158623 Benavides et al. Dec 2000 A
6180012 Rongved Jan 2001 B1
6200543 Allebach et al. Mar 2001 B1
6214303 Hoke et al. Apr 2001 B1
6221225 Mani Apr 2001 B1
6228145 Falk-Pedersen et al. May 2001 B1
6237284 Erickson May 2001 B1
6279576 Lambert Aug 2001 B1
6284021 Lu et al. Sep 2001 B1
6306803 Tazaki Oct 2001 B1
6316668 King et al. Nov 2001 B1
6322612 Sircar et al. Nov 2001 B1
6334886 Barnes, Jr. et al. Jan 2002 B1
6364938 Birbara et al. Apr 2002 B1
6402819 De Ruiter et al. Jun 2002 B1
6500236 Suzuki et al. Dec 2002 B2
6503957 Bernatowiez et al. Jan 2003 B1
6526699 Foglio Mar 2003 B1
6547854 Gray et al. Apr 2003 B1
6565627 Golden et al. May 2003 B1
6582498 Sass et al. Jun 2003 B1
6617014 Thomson Sep 2003 B1
6632848 Sugaya Oct 2003 B2
6645272 Lemaire et al. Nov 2003 B2
6716888 Bernatowicz et al. Apr 2004 B2
6755892 Nalette et al. Jun 2004 B2
6814021 Turkewitz et al. Nov 2004 B1
6830596 Deckman et al. Dec 2004 B1
6863713 Ghosal et al. Mar 2005 B1
6890497 Rau et al. May 2005 B2
6908497 Sirwardane Jun 2005 B1
6969466 Starner Nov 2005 B1
7067456 Fan et al. Jun 2006 B2
7132090 Dziedzic et al. Nov 2006 B2
7270796 Kemp et al. Sep 2007 B2
7343341 Sandor et al. Mar 2008 B2
7364608 Tanahashi et al. Apr 2008 B2
7384621 Stevens et al. Jun 2008 B2
7415418 Zimmerman Aug 2008 B2
7420004 Hardy et al. Sep 2008 B2
7604787 Maroto-Valer et al. Oct 2009 B2
7655069 Wright et al. Feb 2010 B2
7699909 Lackner et al. Apr 2010 B2
7708806 Wright et al. May 2010 B2
7776296 Sarlis Aug 2010 B2
7795175 Olah et al. Sep 2010 B2
7833328 Lackner et al. Nov 2010 B2
7993432 Wright et al. Aug 2011 B2
8083836 Wright et al. Dec 2011 B2
8088197 Wright et al. Jan 2012 B2
8133305 Lackner et al. Mar 2012 B2
8221527 Wright et al. Jul 2012 B1
8246723 Wright et al. Aug 2012 B2
8702847 Lackner et al. Apr 2014 B2
8715393 Wright et al. May 2014 B2
8999279 Wright et al. Apr 2015 B2
20010004895 Preiss Jun 2001 A1
20010009124 Suzuki et al. Jul 2001 A1
20010022952 Rau et al. Sep 2001 A1
20020083833 Nalette et al. Jul 2002 A1
20020102674 Anderson Aug 2002 A1
20020178925 Mimura et al. Dec 2002 A1
20030022948 Seiki et al. Jan 2003 A1
20030041733 Seguin et al. Mar 2003 A1
20030145726 Gueret et al. Aug 2003 A1
20030167692 Jewell et al. Sep 2003 A1
20030205692 Fleming et al. Nov 2003 A1
20030220188 Marand et al. Nov 2003 A1
20040031424 Pope Feb 2004 A1
20040069144 Wegeng et al. Apr 2004 A1
20040103831 Pope Jun 2004 A1
20040134353 Gillingham et al. Jul 2004 A1
20040195115 Colombo Oct 2004 A1
20040213705 Blencoe et al. Oct 2004 A1
20040219090 Dziedzic et al. Nov 2004 A1
20050011770 Katsuyoshi et al. Jan 2005 A1
20050063956 Bernklau et al. Mar 2005 A1
20050092176 Ding et al. May 2005 A1
20050095486 Hamamoto et al. May 2005 A1
20050204915 Sammons et al. Sep 2005 A1
20050252215 Beaumont Nov 2005 A1
20050269094 Harris Dec 2005 A1
20050279095 Goldman Dec 2005 A1
20060013963 Thomson Jan 2006 A1
20060042209 Dallas et al. Mar 2006 A1
20060051274 Wright et al. Mar 2006 A1
20060150811 Callahan et al. Jul 2006 A1
20060186562 Wright et al. Aug 2006 A1
20060249020 Tonkovich et al. Nov 2006 A1
20060289003 Lackner et al. Dec 2006 A1
20070004023 Trachtenberg Jan 2007 A1
20070089605 Lampinen Apr 2007 A1
20070149398 Jones et al. Jun 2007 A1
20070187247 Lackner et al. Aug 2007 A1
20070199448 Yates et al. Aug 2007 A1
20070217982 Wright et al. Sep 2007 A1
20080008793 Forsyth et al. Jan 2008 A1
20080025893 Asprion et al. Jan 2008 A1
20080031801 Lackner et al. Feb 2008 A1
20080087165 Wright et al. Apr 2008 A1
20080276804 Sayari et al. Nov 2008 A1
20080293976 Olah et al. Nov 2008 A1
20090120288 Lackner et al. May 2009 A1
20090130321 Liu May 2009 A1
20090232861 Wright et al. Sep 2009 A1
20090294366 Wright et al. Dec 2009 A1
20090320688 Lackner et al. Dec 2009 A1
20100095842 Lackner et al. Apr 2010 A1
20100105126 Wright et al. Apr 2010 A1
20100116137 Wright et al. May 2010 A1
20100319537 Eisenberger et al. Dec 2010 A1
20110027157 Wright et al. Feb 2011 A1
20110033357 Wright et al. Feb 2011 A1
20110033358 Wright et al. Feb 2011 A1
20110056382 Lackner et al. Mar 2011 A1
20110079144 Wright et al. Apr 2011 A1
20110079146 Wright et al. Apr 2011 A1
20110079147 Wright et al. Apr 2011 A1
20110081709 Wright et al. Apr 2011 A1
20110081710 Wright et al. Apr 2011 A1
20110081712 Wright et al. Apr 2011 A1
20110083554 Wright et al. Apr 2011 A1
20110108421 Lackner et al. May 2011 A1
20110185897 Wright et al. Aug 2011 A1
20110189075 Wright et al. Aug 2011 A1
20110203174 Lackner et al. Aug 2011 A1
20110203311 Wright et al. Aug 2011 A1
20110206588 Lackner et al. Aug 2011 A1
20110209614 Wright et al. Sep 2011 A1
20110293503 Wright et al. Dec 2011 A1
20120058032 Lackner et al. Mar 2012 A1
20130309756 Wright et al. Nov 2013 A1
20130336722 Wright et al. Dec 2013 A1
20150104554 Wright et al. Apr 2015 A1
20150165373 Lackner Jun 2015 A1
Foreign Referenced Citations (80)
Number Date Country
1212522 Oct 1986 CA
1236877 May 1988 CA
1107078 Aug 1995 CN
1391642 Jan 2003 CN
19521678 Jun 1995 DE
19727295 Jan 1999 DE
19830470 Nov 1999 DE
20001385 Aug 2000 DE
0020055 Dec 1980 EP
0111911 Jun 1984 EP
0254137 Jan 1988 EP
0585898 Sep 1994 EP
2029424 Oct 1970 FR
1004046 Sep 1965 GB
1031799 Jun 1966 GB
1109439 Apr 1968 GB
1204781 Sep 1970 GB
1296889 Nov 1972 GB
1520110 Oct 1974 GB
58-122022 Jul 1983 JP
61-072035 Apr 1986 JP
61 227822 Oct 1986 JP
61-254221 Nov 1986 JP
61-280217 Dec 1986 JP
63-012323 Jan 1988 JP
63-012324 Jan 1988 JP
63-016032 Jan 1988 JP
63-069525 Mar 1988 JP
63-069527 Mar 1988 JP
1208310 Aug 1989 JP
1305809 Dec 1989 JP
2 187153 Jul 1990 JP
3245811 Nov 1991 JP
H 04171021 Jun 1992 JP
04-200720 Jul 1992 JP
H 05-57182 Mar 1993 JP
06-071137 Mar 1994 JP
06-253682 Sep 1994 JP
10-057745 Mar 1998 JP
2000-051634 Feb 2000 JP
2000-107895 Apr 2000 JP
2004-089770 Mar 2004 JP
2004-261757 Sep 2004 JP
2006-266583 Oct 2006 JP
2006-340683 Dec 2006 JP
2007-190529 Aug 2007 JP
2008-116193 May 2008 JP
2011-516107 May 2011 JP
2003-0012224 Feb 2003 KR
2097115 Nov 1997 RU
511963 Apr 1976 SU
715120 Feb 1980 SU
1828406 Jul 1993 SU
WO 9413386 Jun 1994 WO
WO 9816296 Apr 1998 WO
WO 9817388 Apr 1998 WO
WO 9822173 May 1998 WO
WO 0050154 Aug 2000 WO
WO 0076633 Dec 2000 WO
WO 0121269 Mar 2001 WO
WO 0121269 Aug 2001 WO
WO 2005108297 Nov 2005 WO
WO 2005108297 Jan 2006 WO
WO 2006009600 Jan 2006 WO
WO 2006009600 Apr 2006 WO
WO 2006036396 Apr 2006 WO
WO 2006036396 Aug 2006 WO
WO 2006084008 Aug 2006 WO
WO 2007016271 Feb 2007 WO
WO 2007016274 Feb 2007 WO
WO 2007016271 Mar 2007 WO
WO 2007016274 Mar 2007 WO
WO 2007114991 Oct 2007 WO
WO 2007114991 Apr 2008 WO
WO 2008042919 Apr 2008 WO
WO 2008131132 Apr 2008 WO
WO 2008061210 May 2008 WO
WO 2008061210 Jul 2008 WO
WO 2009149292 Dec 2009 WO
WO 2008042919 Jul 2010 WO
Non-Patent Literature Citations (235)
Entry
Dubey, Manvendra K. et al., “Chemical Extraction of Carbon Dioxide from Air to Sustain Fossil Energy by Avoiding Climate Change”, May 2003, 2nd Annual Conference on Carbon Sequestration, 27 pages.
Otsuji et al., “A Regenerable Carbon Dioxide Removal and Oxygen Recovery System for the Japanese Experiment Module”, Acta Astronautica, 1987, vol. 15, No. 1, pp. 45-54.
U.S. Appl. No. 12/596,642, filed Oct. 19, 2009, Wright et al.
U.S. Appl. No. 13/386,587, filed Jan. 23, 2012, Lackner et al.
U.S. Appl. No. 13/463,359, filed May 3, 2012, Lackner et al.
U.S. Appl. No. 13/557,701, filed Jul. 25, 2012, Lackner et al.
“An Industrial Sized Unit” Drawing and specification.
Abstracts of Eos. Trans. AGU, 82 (47), Fall Meeting 2001; pp. 3.
Abstracts of Eos. Trans. AGU, 83 (19), Spring Meeting 2002; pp. 3.
Abstracts of Eos. Trans. AGU, 83 (47), Fall Meeting 2002; pp. 3.
Balster et al. Multi-Layer Spacer Geometries With Improved Mass Transport. Journal of membrane Science. 2006; 282:351-361.
Bituin. New Findings May Redefine Renewable Energy Debate. Access Jun. 29, 2009. found at http://www.dailycal.org/article.php?id=8559.
Canadian Official Action dated Jun. 21, 2011, Appin. No. 2,577,685.
Carbon Sequestration Could Be Employed Today to Help Alleviate Greenhouse Emissions. Accessed Jun. 29, 2009. found at http://www.earthinstitute.columbia.edu/news/2003/story06-25-03b.html.
Chinese Official Action dated Apr. 28, 2011 Appin. No. 200780042511.8.
Chinese Official Action dated Dec. 3, 2010, Appin. No. 200780008015.
Chinese Official Action dated Jun. 13, 2011, Appin. No. 200780008015.0.
Chinese Official Action dated May 5, 2010 and Jan. 20, 2011, Application No. 200680030297.X.
Choi, et al. A new preparation for cation-exchange membrane using monomer sorption into reinforcing materials. Desalination. Mar. 22, 2002; 146:287-291.
Choi, et al. Characterization of LDPE/polystyrene cation exchange membranes prepared by monomer sorption and UV radiation polymerization. Journal of Membrane Science. 2003; 223:201-215.
Choi, et al. Preparation and characterization of LDPE/polyvinvylbenzyl trimethyl ammonium salts anion-exchange membrane. Journal of Membrane Science. 2003; 2001:219-231.
Cuiming, et al. Fundamental Studies of a New Hybrid (Inorganic-Organic) Positively Charged Membrane: Membrane Preparation and Characterizations. Journal of Membrane Science. 2003; 216:269-278.
Dow Chemical Company, Dowex Type 1 Strong Base Anion Resin, 1998, http://www.inaqua.de/Prod/ion/pdf en/313 UPCORE Mono A625.pdf, p. 1.
Dubey et al. Chemical Extraction of Carbon Dioxide from Air to Sustain Fossil Energy by Avoiding Climate Change. 2nd Annual Conference on Carbon Sequestration, 2003.
Dubey et al., “Extraction of Carbon Dioxide from the Atmosphere Through Engineered Chemical Sinkage”, Fuel Chemistry Division Preprints, 2002; pp. 1-4.
Dubey. Science for Sustainability: From Capturing Carbon Dioxide From Air to Environmental Impact of a Hydrogen Economy. Accessed Jun. 14, 2010. found at http://www.mbari.org/seminars/2003/spring2003/apr2—dubey.html.
Elliot, et al. Compensation of Atmospheric CO2 Buildup Through Engineered Chemical Sinkage. 2001; pp. 1-8.
European examination report dated Dec. 19, 2011 for EP Application No. 08746144.8.
European office action dated May 9, 2011 for EP Application No. 08746144.8.
European office action dated Jul. 4, 2011 for EP Application No. 07758183.3.
European official action dated Jan. 19, 2010 EP Application No. 05793918.3.
European Official Action, Serial No. 06 788 685.3-1213, dated Oct. 12, 2011 (3 pages).
European search report and opinion dated Jan. 7, 2011 for EP Application No. 07864483.8.
European search report and opinion dated Jan. 7, 2011 for EP Application No.
European search report and opinion dated Apr. 20, 2011 for EP Application No. 08746144.8.
European search report and opinion dated Jun. 22, 2010 for EP Application No. 07758183.3.
European search report and opinion dated Jul. 27, 2011 for EP Application No. 07853742.0.
European search report and opinion dated Oct. 16, 2009 for EP Application No. 06788685.3.
European search report and opinion dated Dec. 21, 2011 for EP Application No. 11008476.1.
Fuertes, et al. Carbon Composite Membranes from Matrimid and Kapton Polymides for Gas Separation. Microporous and Mesoporous Materials. 1999; 33:115-125.
Hashimoto, et al. Global CO2 recycling. Zairyo to Kankyo/Corrosion Engineering. 1996; 45(10):614-620. (Abstract only).
Hensel. In the Lab. Accessed Jun. 29, 2009. found at wvvw.eponline.comiarticles/53584.
Huang, et al. Method to Regenerate Ammonia for the Capture of Carbon Dioxide. Energy and Fuels. 2002; 16:904-910.
Information About: David Keith. Access Sep. 26, 2005. found at http://ideas.respec.org/e/pke74.html.
Information on David Keith. Access Jun. 14, 2010. found at http://www.ucalgary.ca/-keith/.
International Preliminary Report on Patentability dated Jan. 16, 2008 for PCT/US2006/003646.
International Preliminary Report on Patentability dated Jan. 29, 2008 for PCT/US2006/029238.
International Preliminary Report on Patentability dated Feb. 15, 2011 for PCT/US2009/053461.
International Preliminary Report on Patentability dated Feb. 20, 2007 for PCT/US2005/029584.
International Preliminary Report on Patentability dated Mar. 3, 2011 for PCT/US2009/054795.
International Preliminary Report on Patentability dated May 11, 2010 for PCT/US2008/082505.
International Preliminary Report on Patentability dated May 25, 2010 for PCT/US2007/084237.
International Preliminary Report on Patentability dated May 28, 2009 for PCT/US2007/084880.
International Preliminary Report on Patentability dated Jun. 1, 2010 for PCT/US2007/80229.
International Preliminary Report on Patentability dated Sep. 9, 2008 for PCT/US2007/063607.
International Preliminary Report on Patentability dated Oct. 20, 2008 for PCT/US2008/060672.
International Preliminary Report on Patentability dated Dec. 6, 2010 for PCT/US2009/046306.
International Search report and Written Opinion dated Jan. 27, 2009 for PCT/US2008/084237.
International Search report and Written Opinion dated Jan. 30, 2007 for PCT/US2006/029238.
International Search report and Written Opinion dated Feb. 25, 2008 for PCT/US2007/063607.
International Search report and Written Opinion dated Mar. 6, 2008 for PCT/US2007/080229.
International Search report and Written Opinion dated Apr. 23, 2008 for PCT/US2007/084880.
International search report and written opinion dated May 12, 2009 for PCT/US2009/034554.
International search report and written opinion dated May 21, 2012 for PCT/US2009/053450.
International Search report and Written Opinion dated Jun. 27, 2006 for PCT/US2006/003646.
International search report and written opinion dated Aug. 30, 2007 for PCT/US2005/032848.
International Search report and Written Opinion dated Sep. 3, 2009 for PCT/US2009/046306.
International Search report and Written Opinion dated Sep. 15, 2008 for PCT/US2008/060672.
International Search report and Written Opinion dated Sep. 25, 2009 for PCT/US2009/053461.
International Search Report and Written Opinion dated Oct. 4, 2006 for PCT/US2005/029584.
International search report and written opinion dated Nov. 17, 2010 for PCT/US2010/043133.
International Search report and Written Opinion dated Dec. 9, 2009 for PCT/US2009/054795.
International Search report and Written Opinion dated Dec. 24, 2008 for PCT/US2008/082505.
International Search Report and Written Opinion dated Nov. 24, 2010 GCC/P/2007/9020.
Israel Official Action, Application Serial No. 25585/09, dated Jun. 30, 2011.
Japanese Official Action, Application Serial No. 2008-524154, dated Feb. 16, 2011, 4 pgs.
Japanese Official Action, Application Serial No. 2008-524154, dated May 31, 2011, 3 pgs.
Japanese Official Action, Application Serial No. 2009-531567, dated Feb. 7, 2011, 4 pgs.
Keith et al., “Climate Strategy with CO2 Capture from the Air” 2005; pp. 1-43.
Keith, et al. CO2 Capture From the Air: Technology Assessment and Implications for Climate Policy. pp. 1-6.
Keith. The Carrot or the Stick: How to Build a Technology-Friendly Climate Policy in Canada. Climate Change Central Apr. 15, 2005, pp. 1-32.
Lackner et al., “CO2 Extraction from Air” A White Paper from Los Alamos National Labs, The Reddy Corporation International, Sourcebook, Sep. 1999.
Lackner, et al. Carbon Dioxide Extraction from Air: Is It an Option?. Proceedings of the 24th Annual Technical Conference on Coal Utilization and Fuel Systems, 1999; pp. 885-896.
Lackner, et al. Carbon Dioxide Extraction from Air? Arguments 2001.pp. 1-5.
Lackner, et al. Free-Market Approaches to Controlling Carbon Dioxide Emissions to the Atmosphere: A Discussion of the scientific basis. Los Alamos National Laboratory (Lackner & Ziock) & Harvard University (Wilson), pp. 1-16.
Lackner, et al. The Case for Carbon Dioxide Extraction From Air. Sourcebook, Sep. 1999; vol. 57, No. 9, pp. 6-10.
Lackner, et al., “Capturing Carbon Dioxide From Air”, pp. 1-15.
Lackner. Can Fossil Carbon Fuel the 21st Century? International Geology Review. 2002; 44:1122-1133.
Lackner. Extraction CO2 from the Air, Lackner presentation, 12 pages.
Liang, “Carbon Dioxide Capture From Flue Gas Using Regenerable Sodium-Based Sorbents”, dated Aug. 1, 2003, Department of Chemical Engineering Thesis, (137 pgs).
Liu, et al. Composite Membranes from Photochemical Synthesis of Ultrathin Polymer Films. Nature vol. 352 Jul. 4, 1991.
Mexican Official Action, Dated Feb. 2, 2011, Serial No. MX/a/2008/011464.
Mexican Official Action, Dated Jan. 24, 2011, Serial No. MX/a/2007/002019.
Mexican Official Action, Serial No. MX/a/2007/002019, dated Aug. 31, 2011 (Mexico Attorney notified Attorney of record in instant application on Sep. 22, 2011) (2 pages).
Mexican Official Action, Serial No. MX/a/2009/003500, dated Oct. 12, 2011 (3 pages).
Mizutani. Structure of Ion Exchange Membranes. Journal of Membrane Science. 1990; 49:121-144.89.
Murdoch, et al. Sabatier Methanation Reactor for Space Exploration. (2005) A Collection of Technical Papers—1st Space Exploration Conference: Continuing the Voyage of Discovery, 2, pp. 981-987 (Abstract only).
Office action dated Jan. 25, 2011 for U.S. Appl. No. 11/227,660.
Office action dated Jan. 27, 2010 for U.S. Appl. No. 11/227,660.
Office action dated Feb. 1, 2011 for U.S. Appl. No. 11/209,962.
Office action dated Feb. 3, 2012 for U.S. Appl. No. 13/102,915.
Office action dated Feb. 4, 2010 for U.S. Appl. No. 12/555,874.
Office action dated Feb. 11, 2011 for U.S. Appl. No. 12/638,717.
Office action dated Feb. 23, 2010 for U.S. Appl. No. 11/209,962.
Office action dated Mar. 9, 2009 for U.S. Appl. No. 11/207,236.
Office action dated Mar. 11, 2011 for U.S. Appl. No. 12/903,962.
Office action dated Mar. 11, 2011 for U.S. Appl. No. 12/903,967.
Office action dated Mar. 11, 2011 for U.S. Appl. No. 12/903,970.
Office action dated Mar. 11, 2011 for U.S. Appl. No. 12/903,974.
Office action dated Mar. 11, 2011 for U.S. Appl. No. 12/903,981.
Office action dated Mar. 14, 2012 for U.S. Appl. No. 11/209,962.
Office action dated Mar. 15, 2010 for U.S. Appl. No. 11/683,824.
Office action dated Mar. 28, 2011 for U.S. Appl. No. 12/389,213.
Office action dated Mar. 30, 2009 for U.S. Appl. No. 11/346,522.
Office action dated Apr. 6, 2011 for U.S. Appl. No. 11/996,615.
Office action dated Apr. 13, 2012 for U.S. Appl. No. 13/102,901.
Office action dated May 4, 2012 for U.S. Appl. No. 13/295,950.
Office action dated May 26, 2011 for U.S. Appl. No. 11/209,962.
Office action dated Jun. 9, 2010 for U.S. Appl. No. 11/209,962.
Office action dated Jun. 17, 2009 for U.S. Appl. No. 11/346,522.
Office action dated Jun. 28, 2010 for U.S. Appl. No. 11/683,824.
Office action dated Jul. 1, 2011 for U.S. Appl. No. 13/102,915.
Office action dated Jul. 3, 2008 for U.S. Appl. No. 11/207,236.
Office action dated Jul. 3, 2012 for U.S. Appl. No. 13/102,901.
Office action dated Jul. 16, 2012 for U.S. Appl. No. 12/389,213.
Office action dated Aug. 1, 2011 for U.S. Appl. No. 12/903,974.
Office action dated Aug. 3, 2011 for U.S. Appl. No. 12/903,962.
Office action dated Aug. 27, 2010 for U.S. Appl. No. 11/209,962.
Office action dated Sep. 11, 2009 for U.S. Appl. No. 11/209,962.
Office action dated Sep. 27, 2011 for U.S. Appl. No. 12/389,213.
Office action dated Sep. 27, 2011 for U.S. Appl. No. 13/102,915.
Office action dated Sep. 29, 2011 for U.S. Appl. No. 12/615,971.
Office action dated Oct. 1, 2009 for U.S. Appl. No. 11/227,660.
Office action dated Oct. 7, 2009 for U.S. Appl. No. 11/683,824.
Office action dated Oct. 7, 2010 for U.S. Appl. No. 11/227,660.
Office action dated Nov. 3, 2011 for U.S. Appl. No. 12/274,986.
Office action dated Nov. 9, 2010 for U.S. Appl. No. 12/638,717.
Office action dated Nov. 10, 2010 for U.S. Appl. No. 11/996,615.
Office action dated Nov. 19, 2010 for U.S. Appl. No. 11/683,824.
Office action dated Dec. 1, 2011 for U.S. Appl. No. 13/102,901.
Official Action issued in Applicants' counterpart Chinese Patent Application Serial No. 200680003905.8 dated Jun. 12, 2009.
Official Action issued in Applicants' counterpart Russian Patent Application Serial No. 2008139902 (051576) dated Feb. 4, 2011.
Official Action issued in Applicants' counterpart Russian Patent Application Serial No. 2008139902 dated Nov. 19, 2010.
Official Action issued in Applicants' counterpart Russian Patent Application Serial No. 2009116621/05 (022802) dated Jun. 1, 2011.
Official Action received in Applicants' related Australian Patent Application Serial No. 2005290082 dated Apr. 20, 2007.
Official Action received in Applicants' related Australian Patent Application Serial No. 2005290082 dated Mar. 5, 2010.
Official Action received in Applicants' related Australian Patent Application Serial No. 2005290082 dated Apr. 13, 2010.
Official Action received in Applicants' related Australian Patent Application Serial No. 2005290082 dated May 20, 2010.
Official Action received in Applicants' related Australian Patent Application Serial No. 2005290082 dated Jul. 22, 2010.
Official Action received in Applicants' related Australian Patent Application Serial No. 2007233275 dated Jan. 14, 2011.
Official Action received in Applicants' related Australian Patent Application Serial No. 2007303240 dated Feb. 9, 2011.
Official Action received in Applicants' related Australian Patent Application Serial No. 2010241388 dated Jul. 7, 2011.
Official Action received in Applicants' related Australian Patent Application Serial No. 2007319211 dated Jun. 17, 2011.
Official Action received in Applicants' related Australian Patent Application Serial No. 2007233275 dated Jun. 1, 2011.
Official Action received in Applicants' related Mexican Patent Application Serial No. MX/a/2007/009081, dated Jul. 18, 2011.
Official Action received in Applicants' related New Zealand Patent Application Serial No. 575870 dated Mar. 17, 2011 and Nov. 11, 2010.
Official Action received in Applicants' related New Zealand Patent Application Serial No. 575870 dated Jun. 27, 2011.
Official Action received in related Australian Patent Application Serial No. 2006210619 dated Mar. 1, 2010.
Researchers Explore Extracting CO2 Directly From Air. Apr. 15, 2002. found at http://www.earthvision.net/ColdFusion/News Page1.cfm?NewsID=20309.
Resume of David Keith, Academic CV, Spring 2005, 8 pgs.
Rickman. Imagine No Restriction on Fossil-Fuel Usage and No Global Warming! Accessed Jun. 29, 2009. found at http://www.lanl.govinews/releases/archive/02-028.shtml.
Russian Official Action + Translation, dated Feb. 11, 2010, Appin. No. 2007132880/15, (13 pgs).
Russian Official Action + Translation, dated Feb. 2, 2006, Appin. No. 2007132880/15 (035886).
Russian Official Action + Translation, dated Sep. 15, 2010 Appin. No. 2007132880/15 (035886).
Russian Official Action, Serial No. 2008139902/15, dated Jul. 20, 2011 (Russian Attorney notified Attorney of record in instant application on Sep. 15, 2011) (6 pages).
Russian Official Action, Serial No. 200914222/05, dated Sep. 30, 2011 (9 pages).
Sata, et al. Modification of Properties of Ion Exchange Membranes. VI. Electrodialytic Transport Properties of Cation Exchange Membranes with a Electrodeposition Layer of Cationic Polyelectrolytes. 1979, pp. 1199-1213.
Sata, et al. Modification of Properties of Ion Exchange Membranes. VII. Relative Transport Number between Various Cations of Cation Exchange Membrane Having Cationic Polyelectrolyte Layer and Mechanism of Selective Permeation of Particular Cations. 1979, pp. 2071-2085.
Sata. Modification of Properties of Ion Exchange Membranes. IV. Change of Transport Properties of Cation-Exchange Membranes by Various Polyelectrolytes. 1978, pp. 10631080.
Sata. Monovalent Cation Permselective Exchange Membrane. Apr. 15, 1972, pp. 980-982.
Singer. Americans Believe in Global Warming . . . and Psychic Powers, Astrology, and UFO's. Accessed Jun. 29, 2009. Environment & Climate News, 2002; vol. 5, No. 7. found at http://heartland.org/.
Snowpure, LLC, SnowPure Excellion Product Information and Brochure. Aug. 2009.
Strieber. New Solutions to Oil Problems, Whitley Strieber's Unknown Country, 2002, found at http://www.unknowncountry.com/news/print.phtml?id=1467.
Sun et al., “CO2 sorption in activated carbon in the presence of water”, dated Feb. 9, 2007, Science Direct, Chemical Physics Letterse 437 (2000) (abstract enclosed).
US Notice of Allowance, U.S. Appl. No. 12/265,556, dated Nov. 7, 2011 (33 pages).
US Official Action, U.S. Appl. No. 11/209,962, dated Oct. 6, 2011 (24 pages).
US Official Action, U.S. Appl. No. 13/208,156, dated Oct. 26, 2011 (21 pages).
Weber, et al. The absorption of carbon dioxide by weak base ion exchange resins. Aiche Journal. Jul. 1970; 609-614. http://onlinelibrary.wiley.com/doi/10.1002/aic.690160417/pdf.
Written Public Comments on the Strategic Plan for the U.S. Climate Change Science Program, General Comments. 2003, pp. 1-160.
Yin, et al., “Absorption and steam desorption performance of weak base anion exchange resin” (1995) Hangtian Yixue Yu Yixue Gongcheng/Space Medicine and Medical Engineering, 8 (1), pp. 27-31. (Abstract only).
Zeman, et al. Capturing carbon dioxide directly from the atmosphere. World resource review. 2004; 16(2):157-172.
Office action dated Aug. 1, 2012 for U.S. Appl. No. 12/903,877.
Office action dated Aug. 3, 2012 for U.S. Appl. No. 12/903,953.
Office action dated Aug. 8, 2012 for U.S. Appl. No. 12/903,873.
Office action dated Aug. 9, 2012 for U.S. Appl. No. 12/903,894.
Office action dated Aug. 10, 2012 for U.S. Appl. No. 12/903,886.
Office action dated Aug. 13, 2012 for U.S. Appl. No. 12/903,898.
Office action dated Aug. 28, 2012 for U.S. Appl. No. 12/903,868.
Office action dated Aug. 30, 2012 for U.S. Appl. No. 12/903,958.
Office action dated Sep. 10, 2012 for U.S. Appl. No. 13/058,802.
U.S. Appl. No. 13/733,227, filed Jan. 3, 2013, Wright et al.
U.S. Appl. No. 13/737,818, filed Jan. 9, 2013, Wright et al.
Chinese office action dated Dec. 25, 2012 for CN Application 200780036850.5.
Korean office action dated Nov. 20, 2012 for KR Application 10-2008-7004729.
Mexican office action dated Oct. 29, 2012 for MX/a/2008/001054.
Office action dated Nov. 9, 2012 for U.S. Appl. No. 13/045,317.
Office action dated Dec. 7, 2012 for U.S. Appl. No. 13/295,950.
Office action dated Dec. 20, 2012 for U.S. Appl. No. 11/209,962.
Russian office action dated Jan. 5, 2013 for RU Application 2008139902.
Astarita. Mass Transfer with Chemical Reaction. Amsterdam: Elsevier Publishing Company. 1967; 144-152.
Besra, et al. Particle Characteristics and Their Influence on Dewatering of Kaolin, Calcite and Quartz Suspensions. Int. J. Miner. Process. 2000; 59:89-122.
Blok, et al. Hydrogen Production From Natural Gas, Sequestration of Recovered CO2 in Depleted Gas Wells and Enhanced Natural Gas Recovery. Energy. 1997; 22(2-3):161-168.
Boynton. Chemistry and Technology of Lime and Limestone. New York: Interscience Publishers. 1966; 204-206.
Desideri, et al. Performance Modelling of a Carbon Dioxide Removal System for Power Plants. Energy Conversion and Management.1999; 40:1899-1915.
Dillon, et al. Oxy-Combustion Processes for CO2 Capture From Advanced Supercritical PF and NGCC Power Plant. Greenhouse Gas Control Technologies 7, Proceedings of the 7th International Conference on Greenhouse Gas Control Technologies 5—Sep. 2004, Vancouver, Canada. 211-220.
Hanson, et al. Steam Drying and Fluidized-Bed Calcination of Lime Mud. Tappi Journal. 1993; 76(11):181-188.
Herzog, et al. Carbon Dioxide Recovery and Disposal From Large Energy Systems. Annu. Rev. Energy Environ. 1996; 21:145-166.
International preliminary report on patentability dated Nov. 7, 2006 for PCT/US2005/015453.
International preliminary report on patentability dated Nov. 7, 2006 for PCT/US2005/015454.
International search report and written opinion dated Nov. 15, 2005 for PCT/US2005/015453.
International search report and written opinion dated Dec. 21, 2005 for PCT/US2005/015454.
Keith, et al. Co2 Capture From the Air: Technology Assessment and Implications for Climate Policy. Greenhouse Gas Control Technologies 6. Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies Oct. 1-4, 2002, Kyoto, Japan; 187-192.
Konno, et al. Crystallization of Aragonite in the Causticizing Reaction. Powder Technology. 2002; 123:33-39.
Meier, et al. Design and Experimental Investigation of a Horizontal Rotary Reactor for the Solar Thermal Production of Lime. Energy. 2004; 29:811-821.
Olsson, et al. Thermophysical Properties of Aqueous NaOH—H20 Solutions at High Concentrations. International Journal of Thermophysics. 1997; 18(3):779-793.
Singh. Technical Note Ultrasonically Assisted Rapid Solid-Liquid Separation of Fine Clean Coal Particles. Minerals Engineering. 1999; 12(4):437-443.
White, et al. Separation and capture of CO2 from large stationary sources and sequestration in geological formations—coalbeds and deep saline aquifers. J Air Waste Manag Assoc. Jun. 2003;53(6):645-715.
Zsako, et al Use of Thermal Analysis in the Study of Sodium Carbonate Causticization by Means of Dolomitic Lime. Journal of Thermal Analysis. 1998; 53:323-331.
European search report partial dated Oct. 11, 2013 for EP Application No. 13175213.1.
Office action dated Aug. 30, 2013 for U.S. Appl. No. 13/796,855.
Office action dated Oct. 24, 2013 for U.S. Appl. No. 13/737,818.
European search report dated Feb. 28, 2014 for EP Application No. 13175213.1.
U.S. Appl. No. 14/257,698, filed Apr. 21, 2014, Wright et al.
U.S. Appl. No. 14/163,559, filed Jan. 24, 2014, Wright et al.
U.S. Appl. No. 14/183,751, filed Feb. 19, 2014, Wright et al.
Office action dated Jan. 28, 2014 for U.S. Appl. No. 13/386,587.
Office action dated Jan. 29, 2014 for U.S. Appl. No. 12/996,589.
Office action dated Dec. 3, 2013 for U.S. Appl. No. 13/557,701.
Office action dated Dec. 12, 2013 for U.S. Appl. No. 13/733,227.
Avgul, et al. Adsorption of acid gases by macroporous, weekly basic anion exchange resins with different functional groups. Colloid Journal of the USSR. A translation of Kolloidnyi Zhurnal. 1982; 43(6):837-842.
Belyakova, et al. Adsorption of carbon dioxide and water by macroporous anion-exchange resins. Colloid Journal of the USSR. A translation of Kolloidnyi Zhurnal. 1975; 37(3):484-487.
Otsuji, et al. A regenerable carbon dioxide removal and oxygen recovery system for the Japanese Experiment Module. Acta Astronaut. Jan. 1987;15(1):45-54.
Notice of allowance dated Aug. 25, 2014 for U.S. Appl. No. 13/733,227.
Office action dated Dec. 18, 2014 for U.S. Appl. No. 13/058,812.
Office action dated Apr. 20, 2015 for U.S. Appl. No. 14/183,751.
Related Publications (1)
Number Date Country
20120279397 A1 Nov 2012 US
Provisional Applications (2)
Number Date Country
60780466 Mar 2006 US
60780467 Mar 2006 US
Divisions (1)
Number Date Country
Parent 13102915 May 2011 US
Child 13550691 US
Continuations (1)
Number Date Country
Parent 11683824 Mar 2007 US
Child 13102915 US