AIR COMPRESSOR CAPABLE OF INFLATING AIR AND SUPPLYING SEALANT

Information

  • Patent Application
  • 20210016616
  • Publication Number
    20210016616
  • Date Filed
    July 15, 2020
    3 years ago
  • Date Published
    January 21, 2021
    3 years ago
Abstract
An air compressor contains: a box in which the air compressor and a sealant supply device are accommodated. The air compressor is configured to produce high-pressure airs, and the sealant supply device has an air inlet pipe and a supply pipe. An air outlet pipe of the air compressor is connected with the air inlet pipe, and the air compressor is detachable from the sealant supply device. The air inlet pipe is configured to receive the high-pressure airs from the air compressor, the supply pipe is configured to output chemical sealant from the sealant supply device, and a tube is configured to communicate the air inlet pipe with the supply pipe. A rotation element includes a driven portion and a central stem. The rotation element is fitted on the second sub-tube. The central stem of the rotation element abuts against a top of the tube.
Description
FIELD OF THE INVENTION

The present invention relates to an air compressor which is capable of inflating air independently or inflating air and supplying sealant.


BACKGROUND OF THE INVENTION

A conventional sealant supply device contains a cover, a can, and a tube, wherein chemical sealant is accommodated in the can. The cover includes two sub-tubes, wherein one of the two sub-tubes is configured to receive high-pressure airs from the air compressor, and the other sub-tube is configured to output the chemical sealant. The tube is in connection with the cover and is received in the can.


A conventional air compressor is accommodated in a box and mates with a sealant supply device detachable from the air compressor. In operation, a delivery hose of an air inlet pipe of the sealant supply device is connected to an air connector of the box, and a feeding hose of a sealant supply pipe of the sealant supply device is coupled to an air nozzle of a broken tire. After starting the air compressor in the box, the chemical sealant of the can of the sealant supply device is pushed into the broken tire, thus repairing the broken tire.


However, the sealant supply device is only applied to repair the broken but cannot inflate the high-pressure airs independently into the tire, when the tire is not broken.


The present invention has arisen to mitigate and/or obviate the afore-described disadvantages.


SUMMARY OF THE INVENTION

The primary aspect of the present invention is to provide an air compressor which contains the rotation element configured to move the tube so that the air compressor is capable of inflating the high-pressure airs to the tire and supplying the chemical sealant to the tire when the tire is broken.


Another aspect of the present invention is to provide an air compressor which contains the air outlet pipe of the air compressor connected with the air inlet pipe of the sealant supply device to reduce the size of the air compressor, and the air compressor is detachable from the sealant supply device quickly, thus replacing the sealant supply device easily.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view showing the assembly of an air compressor according to a preferred embodiment of the present invention.



FIG. 2 is a perspective view showing the exploded components of the air compressor according to the preferred embodiment of the present invention.



FIG. 3 is a perspective view showing the exploded components of a part of the air compressor according to the preferred embodiment of the present invention.



FIG. 4 is a cross-sectional perspective view showing the assembly of a part of the air compressor according to the preferred embodiment of the present invention.



FIG. 5 is a cross sectional view showing the assembly of a part of the air compressor according to the preferred embodiment of the present invention.



FIG. 6 is a cross sectional view showing the operation of the air compressor according to the preferred embodiment of the present invention.



FIG. 7 is another cross sectional view showing the operation of the air compressor according to the preferred embodiment of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS


With reference to FIGS. 1-3, an air compressor 14 according to a preferred embodiment of the present invention comprises: a box, a tire sealant supply device 9, and a pressure gauge 17. The box includes a first shell 11, a second shell 12, and a third shell 13, wherein the first shell 11 has multiple partitions 110 configured to separate the air compressor 14 from the pressure gauge 17 in the first shell 11, a switch 111 fixed on an outer wall of the first shell 11 and configured to turn on/off the air compressor 14, and multiple locating posts 112 arranged in the first shell 11, wherein a respective locating post 112 has a positioning orifice 113. The second shell 12 has an open concave portion 121 and multiple through orifices 122, a respective through orifice 122 corresponds to the respective positioning orifice 113 of the first shell 11, such that multiple fixing elements 8 are locked with the multiple through orifices 122 of the second shell 12 and the multiple positioning orifice 113 of the first shell 11, wherein a first passing orifice 123 is defined between the first shell 11 and the second shell 12 after the first shell 11 and the second shell 12 are connected, such that the pressure gauge 17 is viewable via the first passing through 123. The first shell 11 has a first side plate 114, and the second shell 13 has a second side plate 124, wherein a second passing orifice 125 is defined between the first side plate 114 and the second side plate 124, and the first side plate 114 has a first extension 115 extending therefrom, the second side plate 124 has a second extension 126 extending therefrom. The third shell 13 has a defining space 130, a cutout 133 defined on a peripheral side of an upper surface of the third shell 13, a third passing orifice 132, a receiving groove 135 passing through the third passing orifice 132, a recessed portion 131 formed on a side of the third passing orifice 132 and corresponding to the open concave portion 121 of the second shell 12, an engagement portion 134 arranged on an outer wall of the third shell 13 and engaged with the first extension 115 of the first shell 11 and the second extension 126 of the second shell 12.


A tire sealant supply device 9 is accommodated in the defining space 130 of the third shell 13 and abuts against the first side plate 114 of the first shell 11 and the second side plate 124 of the second shell 12 securely. An air outlet pipe 141 of the air compressor 14 is inserted through the second passing orifice 125, an air inlet pipe 33 of the tire sealant supply device 9 is connected with the air outlet pipe 141, and the engagement portion 35 of the sealant supply device 9 is fixed on a lock plate 140 of the air outlet pipe 141. Thereby, the air inlet pipe 33 of the tire sealant supply device 9 is connected with the air outlet pipe 141 of the air compressor 14 to reduce a size of the air compressor 14, and the air compressor 14 is detachable from the sealant supply device 9, thus replacing the sealant supply device 9 quickly. A first end of a sealant delivery hose 15 is connected with a supply pipe 34 of the sealant supply device 9, and a second end of the sealant delivery hose 15 has a connector 151 connected to an air nozzle (not shown). In another embodiment, the connector 151 is a check connector. A first end of an air delivery hose 16 is connected with the air outlet pipe 141 of the air compressor 14, and a second end of the air delivery hose 16 is connected with the pressure gauge 17. When the switch 111 is turned on, high-pressure airs are inflated to a tire from the air outlet pipe 141, the sealant supply device 9, and the sealant delivery hose 15 so as to inflate the high-pressure airs or to supply chemical sealant 23, thus repairing a tire when it is broken. Preferably, only the sealant delivery hose exposes outside the box and is configured to inflate the high-pressure airs or to supply the chemical sealant 23, wherein the sealant delivery hose is the sealant delivery hose 15.


Referring to FIGS. 3-5, the sealant supply device 9 includes a can 2, a cover 3, and a tube 5. The can 2 is hollow and has an open segment 21, a lower fence 24, an accommodation chamber 22, and the chemical sealant 23 received in the accommodation chamber 22 (as shown in FIGS. 6 and 7). The cover 3 is connected with the can 2 in a screwing manner and in a hot melting manner. The cover 3 has a first sub-tube 31 extending from a top thereof, and the cover 3 has a second sub-tube 32 extending from a bottom thereof and communicating with the first sub-tube 31, wherein the first sub-tube 31 has a first room 310, and the second sub-tube 32 has a second room 320 communicating with the first room 310, the first sub-tube 31 has a shoulder 311 extending from a bottom thereof, and the shoulder 311 has a central orifice 312 formed on a center thereof and communicating with the first room 310 (as illustrated in FIG. 7), wherein a top of the second sub-tube 32 is opened. The second sub-tube 32 has multiple protrusions 321 extending from an inner wall of the top of the second sub-tube 32, two opposite columns 322 extending from an outer wall of the top of the second sub-tube 32, and the air inlet pipe 33 and the supply pipe 34 which are in communication with the second room 320, wherein an operation portion 351 of the engagement portion 35 is received in the air inlet pipe 33. A sleeve 6 has a check film 61 and is fitted on a distal end of the air inlet pipe 33, wherein the sleeve 6 is configured to close the sealant supply device 9 and the air compressor 14 airtightly and to stop the chemical sealant 23 of the sealant supply device 9 flowing back to the air compressor 14.


The tube 5 has a hollow portion 50, a closed notch 51 defined in a top of the tube 5, an opening 52 defined on a bottom of the tube 5, at least two spaced first ribs 53 arranged on an outer wall of the top of the tube 5, at least two second ribs 54, at least two third ribs 55, a first trench 56 defined between the at least two first ribs 53 and the at least two second ribs 54, and a second trench 57 defined between the at least two second ribs 54 and the at least two third ribs 55, wherein the first trench 56 has at least one aperture 560 communicating with the tube 5, at least two first seal rings 530 are defined between the at least two first ribs 53, at least two second seal rings 540 are defined between the at least two second ribs 54, and at least two third seal rings 550 are defined between the at least two third ribs 55, wherein the tube 5 further has two opposite troughs 58 and at least one conduit 59 which are defined on the bottom of the tube 5, a plug 7 is configured to close the opening 52 of the tube 5, the plug 7 has two opposite locking portions 71 corresponding to the opposite troughs 58, and the plug 7 has a wing 72 configured to turn on/off the at least one conduit 59 of the tube 5, as shown in FIG. 3. The tube 5 is put into the second sub-tube 32 and extends out of the central orifice 312 of the shoulder 311 (as illustrated in FIG. 7), and the at least two third ribs 55 of the tube 5 contact with the shoulder 311 of the first sub-tube 31, the at least two first ribs 53 of the tube 5 abut against the multiple protrusions 321 of the second sub-tube 32 so that the at least two first ribs 53, the at least two second ribs 54, and the at least two third ribs 55 of the tube 5 are received in the second sub-tube 32 and the first sub-tube 31 of the cover 3, hence a first slit 301 is formed between the first trench 56 and the second sub-tube 32, and a second slit 302 is formed between the second trench 57 and the first sub-tube 31.


As shown in FIG. 3, a rotation element 4 is formed in a lid shape and includes a driven portion 41 arranged on an outer wall thereof, a central stem 42 formed on a center of an inner wall of the rotation element 4, at least one rail 43 formed on the inner wall of the rotary element 4. In this embodiment, the at least one rail 43 has double threaded sections, two opposite slots 430 defined on a start position of the rotation element 4, and a close segment 431 extending upward on the other end of the rotation element 4 (as illustrated in FIG. 5). When the air compressor 14 is not operated, the rotation element 4 is accommodated in a storage groove 135 of the box, as shown in FIGS. 1 and 2.


The tube 5 is disposed on the cover 3, and the cover 3 is connected with the can 2, wherein the first sub-tube 31 of the cover 3 and a most part (from the at least two third ribs 55 to the bottom of the tube 5) of the tube 5 are accommodated in the accommodation chamber 22 of the can 2, as shown in FIGS. 4 and 5.


With reference to FIGS. 1, 2, and 6, the air compressor 14, the pressure gauge 17, and the sealant supply device 9 are received in the box, wherein the pressure gauge 18 is connected to another air outlet pipe 142 of the air compressor 14 via the air delivery hose 16, and the air outlet pipe 141 of the air compressor 14 is inserted through the second passing orifice 125, the air inlet pipe 33 of the sealant supply device 9 is accommodated in the third shell 33 and is connected with the air outlet pipe 141, and the engagement portion 35 of the sealant supply device 9 is fixed on the lock plate 140 of the air outlet pipe 141, the second sub-tube 32 of the sealant supply device 9 is retained in the cutout 133 of the third shell 13, the supply pipe 34 of the sealant supply device 9 is coupled with the sealant delivery hose 15, and the sealant delivery hose 15 is inserted through the third passing orifice 132 to be accommodated in the recessed portion 131 and the open concave portion 121.


The sealant supply device 9 is received in the box, as shown in FIG. 6, when inflating the high-pressure airs to the tire, the tube 5 is not forced, and the at least two third ribs 55 of the tube 5 contact with the shoulder 311 of the first sub-tube 31 of the cover 3 so that the at least two third ribs 55 of the tube 5 engage with the central orifice 312 of the shoulder 311 of the cover 3 (as illustrated in FIG. 7), and the high-pressure airs flow into the second slit 302 of the second trench 57 of the tube 5 from the air compressor 14 via the air outlet pipe 141, the check film 61 of the sleeve 6, the inlet pipe 33, and the second sub-tube 32 of the cover 3 so that the air inlet pipe 33 communicates with the supply pipe 34, and the high-pressure airs are outputted out of the supply pipe 34 to inflate the tire independently. Referring to FIG. 7, when inflating the high-pressure airs to the tire which is broken, the rotation element 4 is fitted on the second sub-tube 32 of the cover 3 so that the two opposite columns 322 of the second sub-tube 32 enter into the two opposite slots 430 of the rotation element 4 (as illustrated in FIGS. 3 and 4) so that the central stem 42 of the rotation element 4 is engaged in the notch 51 of the tube 5, the rotation element 4 is rotated along the at least one rail 43. Since the central stem 42 of the rotation element 4 is engaged in the notch 51 of the tube 5, the rotation element 4 is rotated downward to actuate the tube 5 to move downward, the at least two third ribs 55 of the tube 5 contact with the central orifice 312 of the shoulder 311 of the cover 3, in the meantime, the at least two second ribs 54 of the tube 5 stop the air inlet pipe 33 communicating with the supply pipe 34, hence the high-pressure airs are not outputted out of the supply pipe 34 from the air inlet pipe 33 via the second sub-tube 32 but flow into the accommodation chamber 22 of the can 2 via the second slit 302 of the second trench 57 of the tube 5 and the central orifice 312 of the shoulder 311 of the cover 3, and the high-pressure airs force the chemical sealant 23 of the can 2 to push the wing 72 of the plug 7 so that the at least one conduit 59 of the tube 5 communicates with the accommodation chamber 22 of the can 2, such that the chemical sealant 23 of the can 2 flows out of the first slit 301 via the tube 5, the at least one conduit 59, and the first trench 56 and are delivered to the supply pipe 34, thereafter the chemical sealant 23 are delivered to the connector 151 via the sealant delivery hose 15, thus supplying the chemical sealant 23 to the tire which is broken. As illustrated in FIGS. 6 and 7, the sealant supply device 9 is positioned in the box, the air compressor is configured to inflate the high-pressure airs to the tire and to supply the chemical sealant to the tire by using the rotation element 4 when the tire is broken.


Thereby, the rotation element 4 is configured to move the tube 5 so that the air compressor 14 is capable of inflating the high-pressure airs to the tire and supplying the chemical sealant to the tire when the tire is broken. Preferably, the air outlet pipe 141 of the air compressor 14 is connected with the air inlet pipe 33 of the sealant supply device 9 to reduce the size of the air compressor, and the air compressor 14 is detachable from the sealant supply device 9 quickly, thus replacing the sealant supply device 9 easily.


While the preferred embodiments of the invention have been set forth for the purpose of disclosure, modifications of the disclosed embodiments of the invention and other embodiments thereof may occur to those skilled in the art. Accordingly, the appended claims are intended to cover all embodiments which do not depart from the spirit and scope of the invention.

Claims
  • 1. An air compressor comprising: a box in which the air compressor and a sealant supply device are accommodated, the air compressor being configured to produce high-pressure airs, and the sealant supply device having an air inlet pipe and a supply pipe which are arranged on a second sub-tube of the sealant supply device;wherein an air outlet pipe of the air compressor is connected with the air inlet pipe of the tire sealant supply device, and the air compressor is detachable from the sealant supply device;wherein the air inlet pipe is configured to receive the high-pressure airs from the air compressor, and the supply pipe is configured to output chemical sealant from the sealant supply device, a tube is configured to communicate the air inlet pipe with the supply pipe, and the high-pressure airs are outputted out of the supply pipe to inflate to a tire;wherein a rotation element includes a driven portion arranged on an outer wall thereof, a central stem formed on a center of an inner wall of the rotation element, wherein the rotation element is fitted on the second sub-tube, the central stem of the rotation element abuts against a top of the tube, such that the rotation element is rotated on the second sub-tube to force the tube to stop the air inlet pipe communicating with the supply pipe, the high-pressure airs flows into a can from the air compressor, and the chemical sealant flows into the supply pipe from the tube and is supplied to the tire which is broken via a sealant delivery hose.
  • 2. The air compressor as claimed in claim 1, wherein the box includes a first shell, a second shell, and a third shell, wherein the first shell has multiple partitions configured to separate the air compressor from a pressure gauge in the first shell, a switch fixed on an outer wall of the first shell and configured to turn on/off the air compressor, and multiple locating posts arranged in the first shell, wherein a respective locating post has a positioning orifice the second shell has an open concave portion and multiple through orifices, a respective through orifice corresponds to the respective positioning orifice of the first shell, such that multiple fixing elements are locked with the multiple through orifices of the second shell and the multiple positioning orifice of the first shell, wherein a first passing orifice is defined between the first shell and the second shell after the first shell and the second shell are connected, such that the pressure gauge is viewable via the first passing through, the first shell has a first side plate, and the second shell has a second side plate, wherein a second passing orifice is defined between the first side plate and the second side plate, and the first side plate has a first extension extending therefrom, the second side plate has a second extension extending therefrom, the third shell has a defining space, a cutout defined on a peripheral side of an upper surface of the third shell, a third passing orifice, a receiving groove passing through the third passing orifice, a recessed portion formed on a side of the third passing orifice and corresponding to the open concave portion of the second shell, an engagement portion arranged on an outer wall of the third shell and engaged with the first extension of the first shell and the second extension of the second shell.
  • 3. The air compressor as claimed in claim 2, wherein the tire sealant supply device is accommodated in the defining space of the third shell and abuts against the first side plate of the first shell and the second side plate of the second shell securely.
  • 4. The air compressor as claimed in claim 3, wherein the sealant supply device includes the can, a cover, and the tube, wherein the can is hollow and has an open segment, a lower fence, an accommodation chamber, and the chemical sealant received in the accommodation chamber; the cover has a first sub-tube extending from a top thereof, and the cover has a second sub-tube extending from a bottom thereof and communicating with the first sub-tube, wherein the first sub-tube has a first room, and the second sub-tube has a second room communicating with the first room, the first sub-tube has a shoulder extending from a bottom thereof, and the shoulder has a central orifice formed on a center thereof and communicating with the first room, wherein a top of the second sub-tube is opened, the second sub-tube has multiple protrusions extending from an inner wall of the top of the second sub-tube, two opposite columns extending from an outer wall of the top of the second sub-tube, and the air inlet pipe and the supply pipe which are in communication with the second room.
  • 5. The air compressor as claimed in claim 4, wherein an operation portion of the engagement portion is received in the air inlet pipe, and the engagement portion is fixed on a lock plate of the air outlet pipe.
  • 6. The air compressor as claimed in claim 4, wherein a sleeve has a check film and is fitted on a distal end of the air inlet pipe, and the sleeve is configured to close the sealant supply device and the air compressor airtightly and to stop the chemical sealant of the sealant supply device flowing back to the air compressor.
  • 7. The air compressor as claimed in claim 4, wherein only the sealant delivery hose exposes outside the box and is configured to inflate the high-pressure airs or to supply the chemical sealant, wherein a first end of the sealant delivery hose is connected with the supply pipe of the sealant supply device, and a second end of the sealant delivery hose is connected to an air nozzle.
  • 8. The air compressor as claimed in claim 7, wherein the tube has a hollow portion, a closed notch defined in a top of the tube, an opening defined on a bottom of the tube, at least two spaced first ribs arranged on an outer wall of the top of the tube, at least two second ribs, at least two third ribs, a first trench defined between the at least two first ribs and the at least two second ribs, and a second trench defined between the at least two second ribs and the at least two third ribs, wherein the first trench has at least one aperture communicating with the tube, at least two first seal rings are defined between the at least two first ribs, at least two second seal rings are defined between the at least two second ribs, and at least two third seal rings are defined between the at least two third ribs, wherein the tube further has two opposite troughs and at least one conduit which are defined on the bottom of the tube, a plug is configured to close the opening of the tube, the plug has two opposite locking portions corresponding to the opposite troughs, and the plug has a wing configured to turn on/off the at least one conduit of the tube; the tube is put into the second sub-tube and extends out of the central orifice of the shoulder, and the at least two third ribs of the tube contact with the shoulder of the first sub-tube, the at least two first ribs of the tube abut against the multiple protrusions of the second sub-tube so that the at least two first ribs, the at least two second ribs, and the at least two third ribs of the tube are received in the second sub-tube and the first sub-tube of the cover, hence a first slit is formed between the first trench and the second sub-tube, and a second slit is formed between the second trench and the first sub-tube.
  • 9. The air compressor as claimed in claim 8, wherein at least one rail is formed on the inner wall of the rotary element, the at least one rail has two opposite slots defined on a start position of the rotation element, and a close segment extending upward on the other end of the rotation element, when the air compressor is not operated, the rotation element is accommodated in a storage groove of the box; when inflating the high-pressure airs to the tire which is broken, the rotation element is fitted on the second sub-tube of the cover so that the two opposite columns of the second sub-tube enter into the two opposite slots of the rotation element so that the central stem of the rotation element is engaged in the notch of the tube, the rotation element is rotated along the at least one rail; since the central stem of the rotation element is engaged in the notch of the tube, the rotation element is rotated downward to actuate the tube to move downward, the at least two third ribs of the tube contact with the central orifice of the shoulder of the cover, in the meantime, the at least two second ribs of the tube stop the air inlet pipe communicating with the supply pipe, hence the high-pressure airs are not outputted out of the supply pipe from the air inlet pipe via the second sub-tube but flow into the accommodation chamber of the can via the second slit of the second trench of the tube and the central orifice of the shoulder of the cover, and the high-pressure airs force the chemical sealant of the can to push the wing of the plug so that the at least one conduit of the tube communicates with the accommodation chamber of the can, such that the chemical sealant of the can flows out of the first slit via the tube, the at least one conduit, and the first trench and are delivered to the supply pipe, thereafter the chemical sealant are delivered to the connector via the sealant delivery hose, thus supplying the chemical sealant to the tire which is broken.
  • 10. The air compressor as claimed in claim 7, wherein the sealant delivery hose has a connector fixed on the second end thereof, and the connector s a check connector.
Priority Claims (1)
Number Date Country Kind
108125743 Jul 2019 TW national