1. Technical Field
The present invention relates to compressed air systems. In particular, the present invention relates to an air compressor that uses lubricating oil and to a method and apparatus for reducing migration of oil from the compressor to the compressed air output.
2. Description of the Prior Art
Air compressors using lubricating oil are commonly used in, for example, air brake systems of heavy vehicles. The compressor uses engine oil or another oil for internal lubrication. Some of this oil can undesirably migrate to the air brake system via the compressed air output of the compressor, a result sometimes referred to as oil-passing or oil carry-over. For example, in one known compressor, when the compressor is in the unloaded mode, the swept volume of the cylinder is open to a small chamber in the head of the compressor where air is compressed and expanded. Oil collects in this chamber, or drains back down into the cylinder and is carried into the air stream when the compressor loads.
The invention in one aspect relates to removing oil from air in an air compressor that has a piston reciprocable in a cylinder to compress the air. In one embodiment, an apparatus includes an oil removal chamber associated with the compressor, and an unloader valve having an unactuated condition and having an actuated condition disabling flow of compressed air out of the compressor and establishing fluid communication between the cylinder and the oil removal chamber. In one embodiment, an apparatus may include an oil discharge port for draining oil from the oil removal chamber to a location away from the cylinder, for example the crank case, and/or a filter element in the oil removal chamber. In another embodiment, a method of removing oil may be provided.
The foregoing and other features of the present invention will become apparent to one skilled in the art to which the present invention relates upon consideration of the following description of the invention with reference to the accompanying drawings, in which:
The present invention relates to compressed air systems. In particular, the present invention relates to an air compressor that uses lubricating oil and to a method and apparatus for preventing migration of oil from the compressor to the compressed air output. The present invention is applicable to air systems of differing constructions. As representative of the invention,
The system 10 includes a compressor 12 for compressing inlet air from an inlet line 14. Compressed air from the compressor 12 flows through a discharge line 16 line to a reservoir 18. The reservoir 18 is connected to various system devices as shown schematically at 20, such as vehicle brake chambers, that use compressed air to operate. A governor 22 is operative to control operation (loading and unloading) of the compressor 12, in response to sensed pressure in a line 26 from the reservoir 18, via a control line 24.
The compressor 14 includes a block 32 and a cylinder head 34. The cylinder head 34 includes portions not shown including an inlet passage connected with an inlet port, and a discharge passage connected with a discharge port. The inlet passage and the discharge passage are connected in fluid communication with the swept volume of a cylinder 36 in the block 32. A piston 38 is reciprocable in the cylinder 36, upon rotation of a crankshaft 40, to compress air flowing between the inlet port and the discharge port.
The compressor 12 has an unloader valve 50 that is normally closed. When the unloader valve 50 is closed, it blocks flow of air out of the cylinder 36 through an unloader passage 52, so that the air in the cylinder 36 can be compressed by the piston 38. The compressor 12 has an unloader port 54 for receiving an air pressure unloader signal over the control line 24, to open (actuate) the unloader valve 50. When the unloader valve 50 is actuated, in conjunction with operation of a discharge valve shut-off system, air can flow out of the cylinder 36 through the unloader passage 52, thus disabling the flow of compressed air out of the compressor to the vehicle braking system air even when the piston 38 continues to reciprocate. The unloader port 54 also communicates with a discharge port shut-off valve to shut off the discharge port when in the unloaded mode.
The compressor 12, including the piston 38 and cylinder 36, is lubricated by a lubricant (not shown) from a source, such as engine oil from the engine lubrication system 10. Typically a small amount of the lubricating oil flows out of the cylinder 36 (migrates) into the compressed air output of the compressor 12.
The system 10 includes an apparatus 60 for removing oil from the air in the system. In the illustrated embodiments, the apparatus 60 is shown as associated with the compressor 12; in other embodiments, the apparatus 60 could be located or associated elsewhere in the system 10.
The apparatus 60 includes an unloaded mode delivery chamber or oil removal chamber 62. The chamber 62 is a volume defined by chamber walls 64. The chamber 62 is in fluid communication with the unloader passage 52 when the unloader valve 50 is open as shown in
A drain port or passage 66 at the bottom of the chamber 62 communicates with the compressor crank case 68. A condensed oil drain valve 70 is located between the oil removal chamber 62 and the compressor crank case 68. The valve 70 is controlled by an air pressure unloader signal from the governor 22 over the control line 24.
In the embodiment shown in
When the pressure in the reservoir 18 is high enough that further supply of compressed air is not needed for the devices 20, the discharge valve of the compressor 12 is closed, and air pressure is applied at the unloader port 54, opening (actuating) the unloader valve 50. Air that would otherwise be compressed in the cylinder 36 and delivered out the discharge port is not so compressed. Instead, air from the cylinder 36 is, on the piston up-stroke, delivered to the oil removal chamber 62 via the unloader passage 52, which is open because of the opening of the unloader valve 50. The air flows into the oil removal chamber 62.
As the air expands into the oil removal chamber 62, it cools. Some of the oil in the air condenses out and collects in the chamber 62. The chamber 62 is preferably maintained at a lower temperature than the cylinder 36, by being external to the cylinder. This can aid in the condensing of the oil. In addition, oil in the air can be filtered, that is, physically captured by the filter element 74. On the piston down stroke of the piston 38, the air in the chamber 62 expands back into the cylinder 36. This process repeats with each cycle of the piston 38.
When the compressor 12 is thus in the unloaded mode, the pressure in the oil removal chamber 62 cycles constantly, at the frequency of the compressor operation, from one atmosphere to about 4–6 atmospheres.
In this manner, at least a portion of the oil is removed from the air that is discharged from the cylinder 36 on the piston up-stroke. This can reduce or minimize the amount of oil that migrates into the air flowing into the downstream parts of the system 10.
When the compressor 12 is in the loaded mode, the unloader valve 50 is closed and compressed air is delivered out of the discharge port. During the loaded cycle, oil that was entrained in the filter 74, as well as oil collected in the chamber 62, can drain back into the crank case 68. Specifically, when the compressor 12 is loaded, the unloader valve 50 is closed and the drain valve 70 is opened. Oil collected in the chamber 62 is allowed to drain from the chamber to the compressor crank case 68.
In the embodiment of
The apparatus 60a also includes an oil drain passage 66a that does not connect the chamber 62a with the compressor crank case 68a. Rather, the oil drain passage 66a opens to a port 84 on the exterior of the compressor 12a. An oil line (not shown) can be connected to the port 84 to deliver removed oil back to the lubrication system from which it came, for example, the engine lubrication system.
In the embodiment of
From the above description of the invention, those skilled in the art will perceive improvements, changes, and modifications in the invention. Such improvements, changes, and modifications within the skill of the art are intended to be included within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1870458 | Kenney | Aug 1932 | A |
2301034 | Freeman et al. | Nov 1942 | A |
RE23175 | Mantle | Nov 1949 | E |
3043496 | Glass et al. | Jul 1962 | A |
3080693 | Glass et al. | Mar 1963 | A |
3844688 | Bulkley et al. | Oct 1974 | A |
3937622 | Hewitt et al. | Feb 1976 | A |
4781209 | Nelander et al. | Nov 1988 | A |
4887514 | Schintgen et al. | Dec 1989 | A |
4892569 | Kojima | Jan 1990 | A |
4902226 | Elliott et al. | Feb 1990 | A |
5171130 | Kume et al. | Dec 1992 | A |
5176505 | Horii et al. | Jan 1993 | A |
6010314 | Kobayashi et al. | Jan 2000 | A |
6113367 | Dunaevsky et al. | Sep 2000 | A |
6120107 | Eslinger | Sep 2000 | A |
6135008 | Soupal et al. | Oct 2000 | A |
6467287 | Sjoholm et al. | Oct 2002 | B1 |
Number | Date | Country |
---|---|---|
3134169 | Mar 1983 | DE |
929080 | Dec 1947 | FR |
Number | Date | Country | |
---|---|---|---|
20060222520 A1 | Oct 2006 | US |