The present invention generally relates to industrial air compressor systems and more particularly, but not exclusively, to assembly and connection of one or more intercoolers with the compressor systems.
Large industrial compressor systems typically have complex design and assembly procedures, and are difficult to move due to the large size and weight. Reducing system complexity can reduce costs related to manufacturing and assembly as well as to increase durability of the system. Some existing systems have various shortcomings relative to certain applications. Accordingly, there remains a need for further contributions in this area of technology.
One embodiment of the present invention is a unique compressor system. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for compressor systems with an intercoler suspended from a base support. Further embodiments, forms, features, aspects, benefits, and advantages of the present application shall become apparent from the description and figures provided herewith.
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any alterations and further modifications in the described embodiments, and any further applications of the principles of the invention as described herein are contemplated as would normally occur to one skilled in the art to which the invention relates.
Industrial compressor systems that use external fluid to fluid heat exchangers such as intercoolers are heavy weight packages. Heat exchangers as defined herein can be of any type commonly utilized in industrial applications. It should be noted that terms such as intercooler, cooler, inter-stage cooler, aftercooler or the like can be interchanged or substituted and still fall within the broad definition of a heat exchanger as defined by the present disclosure. Present compressor systems include intercoolers and a main base to support airend components and a motor with integral oil reservoir. Typically because each of the size and weight of industrial components each of the components are transported separately and assembled on site.
The compressor system packaging concept of the present disclosure eliminates the need for a large base structure and enables the transportation of the package in a single unit so as to avoid site assembly work during installation. This concept is scalable and can be applied to the entire range of compressors.
An aspect of assembling heavy weight intercoolers is disclosed in the present application. The intercoolers can be hung from a central base structure and then optionally clamped by bolted joints. The intercoolers can include an attachment such as a hanger bracket that enables mounting of the intercoolers to the base structure. The structural design of the intercooler shell and hanger bracket allows for free thermal expansion of cooler shell during all system operating conditions and also allows lifting of heavy coolers along with the base structure without permanent deforming or damaging the cooler shell.
An intercooler of the present application may promote a modular design concept; may promote standardization of structures and components across an entire range and size of centrifugal compressors with external coolers; may reduce overall footprint size; may promotes cost reduction and component quality improvement due to modular design; may Isolates thermal stress and deflection of coolers from base structure; and/or may ease assembly and serviceability of coolers and other subsystems.
Referring now to
Referring now to
One or more attachment mounts or hanging brackets 300 can be attached to an outershell 102 of the intercooler 100. The hanging brackets 300 can be attached to the outershell 102 by any means desired, however, in an illustrative embodiment the hanging brackets can be welded to the outer shell 102. Other attachment means can include the use of threaded fasteners and/or locking connections such as dovetail joints, pressfit configurations and other mechanical fastening means as would be known by those skilled in the art. Each hanging bracket 300 can include an attachment portion 302 that can conform with a portion of the surface of the outer shell 102. In the illustrative embodiment the outer shell 102 is substantially round and forms a cylinder shape wherein the attachment portion 302 is formed with a complimentary surface to that of the outer shell 102. It should be understood that the illustrative shape is but one example and that other forms and shapes are contemplated herein. Each hanging bracket 300 can include a substantially flat vertical face 304 that transitions into a hook portion 306 having a top portion 308 that extends from the vertical face 304 to a front ledge 310. The front ledge 310 extends downward in substantially parallel orientation as the flat vertical face 304. It should be understood that the terms vertical and parallel do not need to be exact and that various differing angles and curved portions may be employed in certain embodiments. A space or groove 312 is formed between the front ledge 310 and the vertical face 304 so as to provide means for hanging the intercooler 100 onto a portion of the base 12 of the compressor system 10 as will be described in detail below.
Referring now to
Referring now to
In operation the compressor system is configured to provide compressed air at a desired temperature and pressure to external systems. The compressor systems can be used in any industrial application including but not limited to automobile manufacturing, textile manufacturing, process industries, refineries, power plants, mining, material handling, etc. The controller permits user input to define parameters such as pressure, temperature and mass flow rate. The controller will send command signals to the motor to rotate at a desired operating speed in order to drive the one or more compressors and control various valving to control airflow rate and coolant flow rate. In the illustrative example, the compressor system includes a three-stage centrifugal compressor system, however, the system can operate with other types of compressors and/or with more or less stages of compressors. One or more intercoolers can be fluidly coupled to each compressor stage such that after air is compressed through the first stage the air can be transported through a first intercooler and can be cooled to a desired temperature via a heat transfer mechanism such as conduction and convection in tube type heat exchangers. The compressed air can then be transported into a second stage compressor where the air further compressed and necessarily heated to a higher temperature through a thermodynamic process. The second stage compressed air can then be routed through a second intercooler to cool the air to desired temperature while remaining at or close to the compressor outlet pressure of the second stage compressor. The cooled compressed air exiting from the second intercooler can then be transported to a third stage compressor where it is compressed to a final desired pressure and then subsequently routed to a third stage intercooler to bring the temperature of the final discharged air pressure to the desired temperature for delivery to a final subsystem. In one form the compressors can be centrifugal compressors, however, other forms of compression can include axial flow compressors, piston compressors or other positive displacement compressors can be used under the teachings of the present disclosure. The intercoolers are designed and assembled in such a manner as to permit thermal expansion relative to the other components of the compressor system including the base support and the cantilevered portions extending from the base support. In this manner the intercoolers can remain structurally sound and minimize potential mechanical failure such as cracks generated by loads caused by mechanical constraints that limit material expansion during conditions of high temperature gradients across the system. Material selection for the intercoolers, the base support structure and other components can include various forms of metal, composites or metal alloys as desired. Metals can include but are not limited to aluminum, steel, iron, and/or super alloys. The metal material may further be formed from cast, wrought, or sheet configuration.
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiments have been shown and described and that all changes and modifications that come within the spirit of the inventions are desired to be protected. It should be understood that while the use of words such as preferable, preferably, preferred or more preferred utilized in the description above indicate that the feature so described may be more desirable, it nonetheless may not be necessary and embodiments lacking the same may be contemplated as within the scope of the invention, the scope being defined by the claims that follow. In reading the claims, it is intended that when words such as “a,” “an,” “at least one,” or “at least one portion” are used there is no intention to limit the claim to only one item unless specifically stated to the contrary in the claim. When the language “at least a portion” and/or “a portion” is used the item can include a portion and/or the entire item unless specifically stated to the contrary.
Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings.
Number | Date | Country | Kind |
---|---|---|---|
536/KOL/2014 | May 2014 | IN | national |
Number | Name | Date | Kind |
---|---|---|---|
3644054 | Pilarczyk | Feb 1972 | A |
3748065 | Pilarczyk | Jul 1973 | A |
3835918 | Pilarczyk | Sep 1974 | A |
4130376 | Dietsche | Dec 1978 | A |
5795136 | Olsaker et al. | Aug 1998 | A |
6991440 | Achtelik et al. | Jan 2006 | B2 |
7708538 | Kawabata et al. | May 2010 | B2 |
7819634 | Kolodziej et al. | Oct 2010 | B2 |
7832992 | Kolodziej et al. | Nov 2010 | B2 |
8376718 | Baker et al. | Feb 2013 | B2 |
8647076 | Baker et al. | Feb 2014 | B2 |
8740251 | Batson | Jun 2014 | B2 |
20030059299 | Miura | Mar 2003 | A1 |
20130078118 | Maier et al. | Mar 2013 | A1 |
20130251556 | DePaz et al. | Sep 2013 | A1 |
20140017110 | Zemliak | Jan 2014 | A1 |
20140072467 | Wang et al. | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
0587157 | Mar 1994 | EP |
2336654 | Jun 2011 | EP |
2008039733 | Apr 2008 | WO |
Entry |
---|
European Search Report and Written Opinion, EP15167591, dated Sep. 11, 2015, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20150330409 A1 | Nov 2015 | US |