The present disclosure relates to an air compressor and, more particularly, to an air compressor with a user settable automatic shut-off feature.
The statements in this section are merely background information and may not constitute prior art.
One of the main features of portable compressors is their ability to be used in diverse environments. Unfortunately, the availability of standard A/C or D/C power in these environments may be limited. To overcome this, compressors are typically driven by a D/C motor with associated circuitry which provides D/C power either from an A/C or a D/C input. The circuitry associated with input detection and conversion is often energy inefficient and expensive.
Another feature which is desirable is to control the output pressure on the compressor. Typically, systems have in-line gauges which are used to allow a user to monitor the output pressure of the compressor. Inattention on the part of the operator or a failure of a shut-off mechanism, however, may lead to over pressurization of the system.
It is an object of the present invention to overcome the aforementioned disadvantages of the prior art. As such, disclosed herein is a portable compressor having a first compressor coupled to a D/C motor and a second compressor coupled to an A/C motor. The outputs of the first and second compressors are fluidly coupled to a gauge and an output hose.
In one embodiment, the system as described above has a gauge with a user settable shut-off mechanism that cuts power to both of the motors when the system pressure reaches a user settable level. In another embodiment, a compressor is disclosed having a gauge with a rotatable bezel having a needle stop. The shut-off mechanism is engaged when the needle interacts with the needle stop.
In yet another embodiment, a compressor system is provided which utilizes a gauge having a shut-off mechanism. The shut-off mechanism has a movable member which allows the user to set a cut-off system pressure. The gauge has a first needle rotatably coupled to a rotatable gauge shaft. A second needle is fixably coupled to the rotatable shaft. A spring is disposed between the first and second needles to bias the first needle into contact with the second needle, so that rotation of the gauge shaft in response to changes in pressure in the system causes rotation of both the first and second needles. A signal is provided to stop the compressor when the first needle interacts with or encounters the movable member. The first needle indicates pressure in the system irrespective of the location of the movable member, or the first needle.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
The first pump 14 is driven by a D/C motor 28, while the second pump 16 is powered by an A/C motor 30. As best seen in
Disposed between the first and second connectors 32 and 34 is a three position switch 36. In a first position, the switch 36 functions to allow current flow from the first connector 32 to the first motor 28. The third position allows currents to flow from the second connector 34 to the second motor. The middle position is an off position that prevents current from flowing to either of the pump motors. In this particular configuration, only a single motor can be energized at a given time, even if both connectors 32 and 34 are coupled to power simultaneously.
As shown in
The gauge 38 allows the user to set a desired pressure in the system by cutting off power to one or both of the pumps once the gauge needle 48 engages the stop 44. Generally, the signal provided from the shut-off mechanism can be generated several ways. The needle 48 is coupled to a rotatable shaft 52 which rotates in response to changes in pressures in the system. In this regard, it is envisioned the engagement of the needle 48 with the stop 44 can function either as an open or closed switch. Additionally, it is envisioned that the bezel 40 can have a magnetorestrictive sensor which would sense movement of a magnetic member (not shown) disposed on the needle 48.
The shut-off mechanism is configured to provide a signal which will be used by the system to interrupt power to one or both of the motors 28 and 30. As shown in
Optionally, the gauge 38 can be formed of a pair of needles 48 and 54 which are coupled to the shaft 52. The first needle 48 can be rotatably coupled to the shaft 52, while the second needle 54 can be fixably coupled to the shaft 52. Disposed between the first and second needles 48 and 54 is a spring 53 that rotatably biases the first needle 48 toward and into the second needle 54. Either one of the needles can have a flange 55 which allows the simultaneous rotation of the first 48 and second needles 54.
The first needle 48 is attached to the shaft 52 of the gauge by means of a bearing system so that it can float on the shaft 52. Travel of the first needle 48 is limited by the bottom range of the gauge 38 and the position of the stop 44 of the bezel 40. As described above, the first needle 48 can make electrical contact with the bezel's fixed stop contact 44 and can function to switch off the power to the pump motor. The first needle 48 is connected to the second needle 54 by means of the coil spring 53 in a manner that will hold it in position directly above the second needle 54. Travel of the second needle 54 is not limited by the bezel stop or contact 44.
As seen in
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
This application is a continuation application of U.S. patent application Ser. No. 11/729,734 filed on Mar. 29, 2007, now U.S. Pat. No. 7,874,807, issued on Jan. 25, 2011. The entire disclosure of the above applications is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11729734 | Mar 2007 | US |
Child | 13012143 | US |