Air Compressor

Information

  • Patent Application
  • 20100232980
  • Publication Number
    20100232980
  • Date Filed
    February 04, 2010
    14 years ago
  • Date Published
    September 16, 2010
    13 years ago
Abstract
An air compressor 20, for enabling to restart a fan motor when an inverter trip generates within an inverter control of the fan motor, as well as, to continue supplying of compressed air therefrom, comprises: a compressor main body 1; a compressor motor 2 for driving this compressor main body 1; a fan motor 9b for driving a fan 9a; an inverter for controlling the fan motor; and a controller 10 for controlling driving of the compressor motor 2 and driving of the fan motor 9b. The controller 10 conducts such control that the fan motor 9b is brought into a restart waiting condition while continuing operation of the compressor motor 2 when an inverter trip generates, and thereafter to restart the fan motor 9b.
Description

This application relates to and claims priority from Japanese Patent Application No. 2009-061416 filed on Mar. 13, 2009, the entire disclosure of which is incorporated herein by reference.


BACKGROUND OF THE INVENTION

The present invention relates to an air compressor, and in particular, it relates to an air compressor suitable for controlling a cooling fan through an inverter.


Requirements are further increased, in particular, for lowing electric power consumption and noises of the air compressor. Under such a situation, in addition to a variable speed control by means of an inverter within a main body of the compressor, developments are also made upon a variable speed control by means of the inverter, for a fan motor to be used in a heat exchanger. With an inverter control of the fan motor, since a rotation speed of the fan motor can increased or decreased depending upon an increase/decrease of a load needed, there can be obtained a merit of achieving the lowing of electric power consumption and the lowering of noises.


As an example of applying an inverter control into the cooling fan of the air compressor, a screw compressor can be listed up, which is shown in the following Patent Document 1. The screw compressor of this Patent Document 1 is built up with, comprising a main body of compressor having a pair of male/female screw rotors, an air-cooled type cooler for use of a compressor lubrication oil, an air-cooled type cooler for use of a compressed air, a cooling fan for supplying a cooling air to the main body of compressor and the air-cooled type coolers mentioned above, an inverter for controlling the rotation speed of the cooling fan, a first sensor for detecting temperature of the lubrication oil, a second sensor for detecting temperature of a suction air, and a cooling fan controller.


The control of the cooling fan controller has a memory portion for memorizing setup temperature of the lubrication oil and the setup temperature of the suction air, and a calculation portion for calculating a control signal for increasing the rotation speed of the cooling fan mentioned above, when a detected value of temperature of the lubrication oil from the first sensor comes to be higher than the setup temperature, which is memorized in the memory portion, or for calculating a control signal for increasing the rotation speed of the cooling fan, when a detected value of temperature of the suction air from the second sensor comes to be higher than the setup temperature of the suction air, which is memorized in the memory portion mentioned above.


<Prior Art Documents>
<Patent Documents>

[Patent Document 1] Japanese Patent Laying-Open No. 2009-13843 (2009).


BRIEF SUMMARY OF THE INVENTION

In the Patent Document 1 mentioned above is disclosed that the rotation speed of the cooling fan is controlled by means of the inverter, however no disclosure is made in relation to the control when an inverter trip is generated.


In a general air compressor, wherein the cooling fan is controlled through the inverter, even when a temporary and insignificant external disturbance is generated on a power source line, such as, instantaneous voltage drop or the like, for example, the inverter is stopped for the purpose of protecting the inverter of the cooling fan (i.e., generating the inverter trip), and during this time period, the operation of the main body of compressor is also stopped, at the same time. For this reason, with the general air compressor, in which the cooling fan is controlled through the inverter, a degree of allowance is less with respect to the temporary external disturbance on the power source line, in comparison with the air compressor, in which the cooling fan is not controlled through the inverter.


An object according to the present is to provide an air compressor for controlling the fan motor through the inverter, so that the fan motor can be restarted even if the inverter trip generates, and thereby enabling to supply compressed air continuously.


For accomplishing the object mentioned above, according to the present invention, there is provided an air compressor, comprising: a compressor main body; a compressor motor, which is configured to drive said compressor main body; a fan motor, which is configured to drive a fan; an inverter, which is configured to control said fan motor; and a controller, which is configured to control driving of said compressor motor and driving of said fan motor, wherein said controller conducts such control that said fan motor is brought into a restart waiting condition while continuing operation of said compressor motor when an inverter trip generates, and thereafter to restart said fan motor.


More preferable detailed structures, according to the present invention, are as follows:


(1) The control is so made that said fan motor is restarted after elapsing a predetermined time from when said controller brings said fan motor into the restart waiting condition.


(2) Said controller detects on whether the inverter trip is ended or not, so as to conduct such control that it restarts said fan motor when the inverter trip is ended, while it continues the restart waiting condition of said fan motor when the inverter trip is not ended, thereby to restart said cooling fan thereafter.


(3) Further comprising therein a temperature detector means for detecting air temperature discharged by said compressor main body, wherein said controller conducts control of restarting said fan motor when the discharged air temperature detected by said temperature detector means is lower than an upper limit value, which is determined in advance.


(4) Further comprising therein a temperature detector means for detecting air temperature discharged by said compressor main body, wherein said controller conducts control of stopping said compressor motor when the discharged air temperature detected by said temperature detector means reaches to an upper limit value, which is determined in advance, during the restart waiting time of said fan motor.


With such the air compressor, according to the present invention, it is possible to provided the air compressor for controlling the fan motor through the inverter, so that the fan motor can be restarted even if the inverter trip generates, and thereby enabling to supply compressed air continuously.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING

Those and other objects, features and advantages of the present invention will become more readily apparent from the following detailed description when taken in conjunction with the accompanying drawings wherein:



FIG. 1 is a view for showing the entire configuration of an air compressor, according to a first embodiment of the present invention;



FIG. 2 is a time chart for showing a control 1 of the air compressor, according to the first embodiment;



FIG. 3 is a time chart for showing a control 2 of the air compressor, according to the first embodiment;



FIG. 4 is a time chart for showing a control 3 of the air compressor, according to the first embodiment; and



FIG. 5 is a time chart for showing a control 4 of the air compressor, according to a second embodiment.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Hereinafter, embodiments according to the present invention will be fully explained by referring to the attached drawings. The same reference numerals attached in each of the figures showing the embodiments indicates the same thing or one corresponding thereto.


First Embodiment

An explanation will be on an air compressor, according to the first embodiment of the present invention, by referring to FIGS. 1 to 4.


First of all, explanation will be made, in relation with the structures and functions of an entire of the air compressor 20, according to the present embodiment, by referring to FIG. 1. This FIG. 1 is the structure view of the air compressor 20 according to the present invention. The air compressor 20 according to the present embodiment is a screw compressor, for example.


A compressor main body 1 is built up by accommodating therein a pair of male/female screw rotors, being engaged or meshed with each other, which are driven by a compressor motor 2. With a suction filter 3, one side thereof is communicated with a suction side of the compressor main body 1, while the other side thereof is communicated with the atmosphere.


When the compressor motor is driven, the compressor main body 1 sucks air in the atmosphere through the suction filter 3 and a suction check valve 4 therein, and after compressing this air in the atmospheric up to a predetermined pressure, it discharges it as compressed air therefrom.


An oil separator 5 is provided on a discharge side of the compressor main body 1. On side of a compressed-air heat exchanger 7 is communicated with an upper portion of the oil separator 5, and the other side of a compressed-air heat exchanger 7 is guided into an outside of a package 13. The check valve 6 is provided between the oil separator 5 and the compressed-air heat exchanger 7. One side of a lubrication-oil heat exchanger 8 is communicated with an oil-accumulating portion in a lower portion of the oil separator 5, and the other side of the lubrication-oil heat exchanger 8 is communicated with a middle portion of a compressing chamber of the compressor main body 1.


The compressed-air heat exchanger 7 and the lubrication-oil heat exchanger 8 are disposed within a ventilation duct 15, together with that ventilation duct 15. The ventilation duct 15 is communicated with an outside of the package 13 through a suction air inlet 13a and a blowout air outlet 13b of the package 13. A cooling fan 9 is built up with a fan 9a for operating to suck an outside air from the suction air inlet 13a and to blow out it from the blowout air outlet 13b, and a fan motor 9b for driving the fan 9a. The compressed-air heat exchanger 7 and the lubrication-oil heat exchanger 8 perform the heat exchange between the outside air through ventilation by the cooling fan 9.


The compressed air, including the lubrication oil therein, which is compressed and discharged from the compressor main body 1, after being separated the lubrication oil 14 therefrom within the oil separator 5, is transferred to the compressed-air heat exchanger 7 through the check valve 6, and after being cooled down within the compressed-air heat exchanger 7, it is discharged into an outside of the package 13. On the other hand, the lubrication oil 14, which is separated from the compressed air within the oil separator 5, is transferred to the lubrication-oil heat exchanger 8, and after being cooled down within the lubrication-oil heat exchanger 8, again, it is supplied to the compressor main body 1.


The compressor motor 2 and the fan motor 9a, which is driven through a fan inverter 12, are controlled by a controller 10. Also, in a downstream of the compressor main body 1 is provided a temperature detector means 11 for detecting discharge air temperature of the air, which is discharged from the compressor main body 1. The controller 10 compares a detection value “Td” of the temperature detector means 11 with an upper limit value “Tdh” of discharge gas temperature, which is determined or set up in advance, and in case where Td>Tdh, it determines that the compressor motor is in an abnormal condition, to stop the operation thereof; thereby stopping the operation of the compressor main body 1.


Next, explanation will be made on a control example, incase where the instantaneous voltage drop occurs, as a representative example of the temporary external disturbance, i.e., the inverter trip is generated, by referring to FIGS. 2 and 3. Herein, FIG. 2 shows a control example 1, and FIG. 3 a control example 2, respectively. In those control examples 1 and 2, at a time t=t1, the instantaneous voltage drop generates (i.e., starting the inverter trip), and at a time t=t2, it is restored (i.e., the inverter trip is ended), for example.


Explanation will be given on control made by the controller 10, in the control example 1 shown in FIG. 2. When the fan inverter 12 detects the instantaneous voltage drop generating at the time t=t1 on a power source voltage, then the fan motor 9b is stopped, once, and at the same time, control is done so as to bring fan motor 9b into a restart waiting condition, while to continue the operation of the compressor motor 2. Herein, in case where Td<Tdh after comparing the compressed air temperature “Tdh” and the detection value “Td” of the temperature detector means 11, control is made so that the compressor motor 2 can operate, continuously.


And then, while measuring a predetermined time that is set up in advance, i.e., a restart waiting time, with using a timer, the detection value “Td” of the temperature detector means 11 is compared with the compressed air temperature “Tdh”, and in case where Td<Tdh, such control is made that the compressor motor 2 is operated, continuously.


And, at a time t=t3 after elapsing the restart waiting time, determination is made on if the voltage drop of the power source line is ended or not (in other words, the power source voltage is restored or not, or the inverter trip is ended or not), and then if determining that it is ended, the fan motor 9b is restarted, to turn back to a normal operation thereof.


With provision of this control example 1, it is possible to continue the supply of compressed air with enabling the restart of the fan motor, in case where the inverter trip is generated within the inverter controlling of the fan motor.


Explanation will be made on the control of the controller 10 in a control example 2, which will be shown in FIG. 3. In this control example 1, explanation will be given only upon an aspect differing from the control example 1, but explanation of others than that, duplicating on the control example 1, will be omitted herein.


In case where Td≧Tdh at a time t=t4 before the time t=t3 under the restart waiting condition of the fan motor 9b, then at the time t=t4, such control is conducted that the fan motor 9b, which was under the restart waiting condition, is brought into a condition of an abnormal stoppage, and at the same time, the operation of the compressor motor 2 is also in the abnormal stoppage. With provision of this control example 2, it is possible to maintain a reliability of the compressor main body 1.


Next, explanation will be given on a control example 3 when the voltage drop generates, a little bit longer than the restart waiting time, as the temporary external disturbance, by referring to FIGS. 3 and 4. In this control example 3, explanation will be given only upon an aspect differing from the control example 1, but explanation of others than that, duplicating on the control example 1, will be omitted herein.


The control example 3 is an example of case where the voltage drop occurs (i.e., the inverter trip starts) at the time t=t1, and the power source voltage is restored at a time t=t5 after elapsing the time t=t3.


At the time t=t3 after elapsing the first restart waiting time, determination is made on if the voltage drop on the power source line is ended or not, and in case where it is not ended, such control is made that the fan motor 9b can continue to be in the restart waiting condition and the compressor motor 2 can continue the operation thereof, respectively.


And then, while measuring a second predetermined time, which is set up in advance, i.e., a second restart waiting time, with using a timer, the detection value “Td” of the temperature detector means 11 is compared with the compressed air temperature “Tdh”, and in case where Td<Tdh, such control is made that the compressor motor 2 is operated, continuously. In order not to elongate the time from “t1” to “t5” too long, it is preferable to determine the second restart waiting time to be shorter than the first restart waiting time.


And, at a time t=t5 after elapsing the second restart waiting time, determination is made on if the voltage drop of the power source line is ended or not, and if determining that it is ended, then the fan motor 9b is restarted, to turn back to a normal operation thereof.


With provision of this control example 3, it is also possible to determine the first restart waiting time to be short, and if determining it to be short, then it is possible to restart the fan motor within a short time, thereby to turn back to the normal operation thereof.


Second Embodiment

Next, explanation will be made on an air compressor 20, according to a second embodiment of the present invention, by referring to FIG. 5 attached therewith. This FIG. 5 is a time chart for showing a control example 4 of the air compressor 20 according to this second embodiment.


In this control example 4, when the fan inverter detects the instantaneous voltage drop generating at the time t=t1 on the power source voltage, then the fan motor 9b is stopped, once, and at the same time, control is done so as to bring fan motor 9b into a restart waiting condition, while to continue the operation of the compressor motor 2. Herein, in case where Td<Tdh after comparing the compressed air temperature “Tdh” and the detection value “Td” of the temperature detector means 11, such control is made that the compressor motor 2 can operate, continuously. In this aspect, it is same to the control example 1.


And then, while measuring a predetermined time that is set up in advance, i.e., a restart waiting time, with using a timer, the detection value “Td” of the temperature detector means 11 is compared with the compressed air temperature “Tdh”, and in case where Td<Tdh, such control is made that the compressor motor 2 is operated, continuously (In this aspect, it is same to the control example 1) , and further determination is made of whether the voltage drop on the power source line is ended or not, and if determining that it is ended, then such control is made that the fan motor 9b can restart, so as to turn back to the normal operation thereof.


With this control example, since the fan motor can turn back to the normal operation at the same time when the inverter stop is ended, it is possible to stop or suppress down an (ill) influence of the inverter trip to the minimal.


The present invention may be embodied in other specific forms without departing from the spirit or essential feature or characteristics thereof. The present embodiment(s) is/are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the forgoing description and range of equivalency of the claims are therefore to be embraces therein.

Claims
  • 1. An air compressor, comprising: a compressor main body;a compressor motor, which is configured to drive said compressor main body;a fan motor, which is configured to drive a fan;an inverter, which is configured to control said fan motor; anda controller, which is configured to control driving of said compressor motor and driving of said fan motor, whereinsaid controller conducts such control that said fan motor is brought into a restart waiting condition while continuing operation of said compressor motor when an inverter trip generates, and thereafter to restart said fan motor.
  • 2. The air compressor, as described in the claim 1, wherein the control is so made that said fan motor is restarted after elapsing a predetermined time from when said controller brings said fan motor into the restart waiting condition.
  • 3. The air compressor, as described in the claim 2, wherein said controller detects on whether the inverter trip is ended or not, so as to conduct such control that it restarts said fan motor when the inverter trip is ended, while it continues the restart waiting condition of said fan motor when the inverter trip is not ended, thereby to restart said cooling fan thereafter.
  • 4. The air compressor, as described in the claim 2, further comprising a temperature detector means for detecting air temperature discharged by said compressor main body, wherein said controller conducts control of restarting said fan motor when the discharged air temperature detected by said temperature detector means is lower than an upper limit value, which is determined in advance.
  • 5. The air compressor, as described in the claim 1, further comprising a temperature detector means for detecting air temperature discharged by said compressor main body, wherein said controller conducts control of stopping said compressor motor when the discharged air temperature detected by said temperature detector means reaches to an upper limit value, which is determined in advance, during the restart waiting time of said fan motor.
  • 6. The air compressor, as described in the claim 2, further comprising a temperature detector means for detecting air temperature discharged by said compressor main body, wherein said controller conducts control of stopping said compressor motor when the discharged air temperature detected by said temperature detector means reaches to an upper limit value, which is determined in advance, during the restart waiting time of said fan motor.
Priority Claims (1)
Number Date Country Kind
2009-061416 Mar 2009 JP national