The present invention generally relates to air compressor systems and more particularly to improvements in air compressor systems that permit an air compressor system to be manufactured with lower cost and increased robustness.
Air compressor systems having one or more reciprocating pistons that provide single-stage air compression can be relatively inexpensive, lightweight and durable in light to medium duty applications and as such, this type of air compressor system is relatively popular across a diverse span of professional and recreational users. As the users of air compressor systems become more sophisticated and as the number of pneumatically-powered accessories increases and their cost decreases, there is increasing interest in air compressor systems that are capable of producing higher output pressures. The cost of the available higher-pressure air compressor systems, particularly those involving two-stage compression or other types of compression (e.g., scroll compressors) tends to be relatively higher than the cost of a single-stage air compressor system and as such, can tend to dampen consumer enthusiasm for higher-pressure air compressor systems.
Accordingly, it would be advantageous to provide an air compressor system that employs single-stage compression but which is relatively low cost to manufacture, operate and maintain and which is relatively robust. Those of skill in the art will appreciate that the teachings of the present disclosure have application to diverse types of air compressor systems and as such, will appreciate that the present disclosure is not necessarily limited to reciprocating piston-type compressors or compressors that are capable of outputting relatively high pressure compressed air.
In one form, the present teachings provide an air compressor assembly with a cylinder block group, a crankshaft, a piston kit group and a member associated with the crankshaft. The cylinder block group has a head deck and defines an internal cavity. At least a portion of the interior cavity forms a sump that is configured to receive a lubricant such that the lubricant is disposed below a liquid lubricant fill level. The crankshaft is rotatably disposed in the interior cavity. The piston kit group has a cylinder and a piston kit. The cylinder is received through the head deck and defines a piston bore. At least one cooling channel is formed about an exterior surface of the cylinder. The piston kit includes a piston, a wrist pin and a connecting rod. The piston is slidably received in the piston bore. The wrist pin connects the piston to a first end of the connecting rod and a second end of the connecting rod is coupled to the crankshaft. The member moves in the sump such that at least a portion of the member crosses the liquid lubricant fill level as the crankshaft rotates. The member is adapted to sling the lubricant outwardly from the sump such that a first portion of the slung lubricant collects on at least one of the piston bore and the piston to lubricate an interface between the piston and the cylinder and a second portion of the slung lubricant collects in the at least one cooling channel and moves at least partially around the exterior surface of the cylinder in response to gravitational force exerted thereon to thereby draw heat from the cylinder. The air compressor assembly does not include a lubricant pump for pumping the lubricant to lubricate the piston group and the crankshaft.
In another form, the present teachings provide air compressor assembly with a cylinder block group, a crankshaft, a lubricant, a piston kit and a member associated with the crankshaft. The cylinder block group has a head deck and defines an internal cavity. At least a portion of the interior cavity forms a sump. The crankshaft is rotatably disposed in the interior cavity and the lubricant is disposed in the sump. The piston kit group has a cylinder and a piston kit. The cylinder is received through the head deck and defines a piston bore. The piston kit includes a piston, a wrist pin and a connecting rod. The piston is slidably received in the piston bore. The wrist pin connects the piston to a first end of the connecting rod and a second end of the connecting rod is coupled to the crankshaft. The member is associated with the crankshaft and moves through the lubricant in the sump to thereby sling the lubricant outwardly from the sump such that a first portion of the slung lubricant collects on at least one of the piston bore and the piston to lubricate an interface between the piston and the cylinder and a second portion of the slung lubricant draws heat from the cylinder from a surface other than the piston bore. The cylinder is configured to collect the second portion of the slung lubricant and control the flow of the second portion of the slung lubricant as it drains back to the sump.
In another form, the present teachings provide a method for rejecting heat from an air compressor that includes comprising a cylinder block group, a crankshaft, a lubricant and a piston kit. The cylinder block group has a head deck and defining an internal cavity and at least a portion of the interior cavity forms a sump. The crankshaft is rotatably disposed in the interior cavity. The lubricant is disposed in the sump. The piston kit group has a cylinder and a piston kit. The cylinder is received through the head deck and defines a piston bore. The piston kit includes a piston, a wrist pin and a connecting rod. The piston is slidably received in the piston bore. The wrist pin connects the piston to a first end of the connecting rod and a second end of the connecting rod is coupled to the crankshaft. The method includes: rotating the crankshaft to reciprocate the piston in the cylinder to alternately intake air into the cylinder and compress the air, wherein rotation of the crankshaft moves a member associated with the crankshaft through the lubricant in the sump such that the member slings lubricant outwardly; discharging the compressed air from the cylinder; collecting a portion of the slung lubricant on an exterior surface of the cylinder; and directing the collected portion of the slung lubricant to flow about the exterior surface in a predetermined manner to permit heat to be rejected from the cylinder to the collected portion of the slung lubricant.
In yet another form, the present teachings provide an air compressor assembly with a crankcase, a crankshaft, a lubricant, a compression cylinder, a piston kit, and a head assembly. The crankcase includes a head deck and defines an internal cavity. At least a portion of the interior cavity forms a sump. The crankshaft is rotatably disposed in the interior cavity and the lubricant is disposed in the sump. The compression cylinder includes an exterior surface principally surrounded by the internal cavity and an inner surface defining a piston bore. The piston kit includes a piston, a wrist pin and a connecting rod. The piston is slidably received in the piston bore. The wrist pin connects the piston to a first end of the connecting rod and a second end of the connecting rod is coupled to the crankshaft. The head assembly is coupled to the crankcase and includes an outlet valve. The piston reciprocates in the cylinder to compress air that is disposed between the compression cylinder, the piston and the head assembly and wherein the valve opens to release compressed air in the compression cylinder when a pressure of the compressed air in the compression cylinder exceeds a predetermined pressure.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
With reference to
Cylinder Block Group
With reference to
The cylinder block assembly 30 can include a cylinder block 40, a pair of locating dowels 42 and a shaft seal 44. The cylinder block 40 can include a case or block 50 and mounting base 52 that can be integrally formed with the block 50 and configured in a manner that facilitates the mounting of the block 50 to another structure, such as a frame (not shown). The block 50 can include a plurality of sidewalls 54a, 54b and 54c, and a head deck 56 having one or more counterbores 58 and a plurality of threaded head bolt apertures 60 formed therein. In the particular example provided, the sidewalls 54a, 54b and 54c and head deck 56 are arranged to such that the counterbores 58 are oriented to provide an in-line configuration in which the piston kits 18 are disposed in a single row along vertically extending axes, but those of ordinary skill in the art will appreciate that the block 50 could be otherwise configured to provide any desired orientation of the piston kits 18, such as a V or opposed cylinder configuration. Also in the particular example provided, the block 50 is shaped (as seen in front or rear plan view) in the form that is similar to that of a truncated tear drop (i.e., a tear drop with a flattened upper end).
The block 50 can define a rear opening 60a, an internal cavity 62 and a joint flange 64 that extends around the rear opening 60a and against which the rear cover gasket 34 can sealing abut. A pair of dowel holes 66 and a plurality of threaded bolt holes 68 can be formed into the block 50 generally perpendicular to the joint flange 64. The locating dowels 42 can be received into the dowel holes 66 and can be employed to locate both the rear cover gasket 34 and the rear cover assembly 32 to the block 50. The sidewalls 54a, 54b and 54c can include a plurality of external cooling ribs 70 that can provide the block 50 with increased external surface area and/or cooperate to form a plurality of flow channels 72. In the particular example provided, the external cooling ribs 70 on the opposite facing sidewalls 54a and 54b extend longitudinally over substantially the entire surface of the sidewalls 54a and 54b, while the cooling ribs 70 on the front sidewall 54c are oriented generally perpendicular to the cooling ribs 70 on the opposite facing sidewalls 54a and 54b. Optionally, the block 50 can further include a plurality of internal cooling ribs (not shown) that can be configured to increase the internal surface area of the block 50 and/or to direct the flow of lubricant within the block 50 in a desired manner. The internal cooling ribs can be arranged in any desired manner, such as parallel or transverse (e.g., perpendicular) to the external cooling ribs 70.
The front sidewall 54c can define a shaft aperture 80, an annular pocket 82 that is disposed about the shaft aperture 80, and one or more sensor bosses 84. The shaft seal 44 can be received in the annular pocket 82 and sealingly engaged to the block 50. Each sensor boss 84 can be formed to receive a sensor, such as a float sensor (not shown) or a temperature sensor (not shown), which can sense a lubricant level and lubricant temperature, respectively, and generate a lubricant level signal and a lubricant temperature signal, respectively. The lubricant level signal and/or the lubricant temperature signal can be employed by a controller (not shown) to halt or prevent the operation of the air compressor system 10 if the amount of the lubricant within the block 50 is less than a desired amount and/or if the temperature of the lubricant within the block 50 exceeds a desired amount. It will be appreciated that the air compressor system 10 could be an “oil-less” type of compressor and as such, the sensor boss(es) 84 may be present but not machined or may be plugged.
The rear cover assembly 32 can include a rear cover 90, a fill plug 92 and a drain plug assembly 94. With additional reference to
The rear cover gasket 34 can include a perimeter seal portion 124, a labyrinth cover 126, a lubricant inlet aperture 128 and a lubricant baffle 130. In the particular embodiment illustrated, the rear cover gasket 34 is unitarily formed of a very highly bound nitrile, high viscosity NBR copolymer, but those of skill in the art will appreciate that the rear cover gasket 34 may be formed of two or more discrete components. For example, an O-ring or a suitable amount of Permatex® RTV can be employed to form the perimeter seal portion 124. The perimeter seal portion 124 can be raised relative to an adjacent portion of the rear cover gasket 34 and can be sized to be received into a seal groove 132 that can be formed in the cover portion 100 of the rear cover 90. The labyrinth cover 126 can extend over the breather labyrinth 108 and can include an inlet aperture 134 that can be disposed proximate the bearing hub 106 when the rear cover gasket 34 is affixed to the rear cover 90. The tube portion 112 can extend through the lubricant inlet aperture 128. It will be appreciated that pressure within the internal cavity 62 of the block 50 can be vented into the breather labyrinth 108 through the inlet aperture 134 and out the breather outlet 118. It will be further appreciated that lubricant entrained in the air flowing through the breather labyrinth 108 can collect on the baffle plates 116 and drain back to the sump 36. In this regard, cross-holes (not shown) can be formed in the bearing hub 106 to permit the lubricant that drains from the breather labyrinth 108 to drain into the bearing hub 106 and lubricate the crankshaft group 14. The lubricant baffle 130 can permit fluid communication between the internal cavity 62 and the lubricant outlet port 104 and can attenuate a surge of lubricant toward or away from the drain plug assembly 94 so that the level of lubricant in the internal cavity 62 may be more accurately determined via a sight glass (not specifically shown) within the drain plug assembly 94.
Fasteners 136 may be positioned through bosses 138 in the rear cover 90 and threadably engaged to the threaded bolt holes 68 in the block 50 to thereby fixedly but removably couple the rear cover assembly 32 to the cylinder block 40.
Crankshaft Group
The crankshaft group 14 can include a crankshaft 150, first and second bearings 152 and 154, a thrust washer 156, and a front or driven pulley 158. The crankshaft 150 can include first and second main bearing journals 162 and 164, respectively, first and second pin journals 172 and 174, respectively, a shaft member 176, and a counterweight 178. The first and second main bearing journals 162 and 164 are disposed on opposite sides of the crankshaft 150 and are sized to be received in the first and second bearings 152 and 154, respectively. The first and second bearings 152 and 154 can be any type of bearing, such as a ball or roller bearing, and can be sized to be received in the bearing hub 106 and the annular pocket 82, respectively, to support the crankshaft 150 for rotation within the internal cavity 62. The shaft member 176 can extend from the second main bearing journal 162 through the front sidewall 54c and can sealingly engage the shaft seal 44. The shaft member 176 can be configured in any manner desired, but in the particular example provided, the shaft member 176 includes a tapered segment 180 and a threaded aperture 182. The first and second pin journals 172 and 174 are disposed on opposite sides of the counterweight 178 and are generally similar in their construction. Accordingly, a discussion of the first pin journal 172 with suffice for the second pin journal 174. The first pin journal 172 can include a journal portion 190 and an annular rim 192 that can abut the journal portion 190 on a side that is closest to the counterweight 178. The journal portion 190 can define an axis that can be offset from the rotational axis of the crankshaft 150. The journal portion 190 can be relatively large in diameter so as to be larger in cross-sectional area than the shaft member 176, the first main bearing journal 162 or the portion of the crankshaft 150 that interconnects the first main bearing journal 192 and the journal portion 190. The counterweight 178 can be shaped in the form of a round plinth that is mounted somewhat transverse to the rotational axis of the crankshaft 150 such that portions of the counterweight 178 can extend in-line with the portions of the first and second pin journals 172 and 174. The counterweight 178 can be tilted relative to an axis that is perpendicular to a rotational axis of the crankshaft 150 by an angle of about 10° to about 30° and in the particular example provided, the angle is about 15°. Gussets 200 can be employed to support the counterweight 178 where the counterweight 178 leans over the first and second pin journals 172 and 174. The perimeter 204 of the counterweight 178 can be configured in a manner that resists, reduces or minimizes the atomization of the lubricant in the internal cavity. In the example provided, the perimeter 204 of the counterweight 178 is an “sand-cast” surface (i.e., not machined) and relatively round so that some portion of the perimeter 204 is always immersed in the lubricant in the internal cavity 62 (i.e., some portion of the perimeter 204 extends below the liquid lubricant fill level) and no parts of the counterweight 178 impact upon the top surface (liquid lubricant fill level) of the lubricant. The thrust washer 156 can be employed to limit axial end play of the crankshaft 150 relative to the block 50. In the example provided, the thrust washer 156 is a spring washer that can be received in the bearing hub 106 to bias the second bearing 154 and the crankshaft 150 toward the front sidewall 54c of the block 50.
The driven pulley 158 can include a hub portion 210, a rim portion 212 and a plurality of spokes 214 that can interconnect the hub portion 210 and the rim portion 212. The hub portion 210 can include a through-hole 216 that can include a mating tapered portion 218 that is configured to matingly engage the tapered segment 180 of the shaft member 176. A threaded fastener 220 can be inserted through a Bellville spring washer 222 and the through-hole 216 in the driven pulley 158 and threadably engaged to the threaded aperture 182 in the shaft member 176 to thereby fixedly but removably couple the driven pulley 158 to the crankshaft 150. The spokes 214 can be formed in any desired manner and in the particular example provided, the spokes 214 are formed as straight vanes that draw air through the driven pulley 158 toward the front sidewall 54c when the driven pulley 158 is rotated about the rotational axis of the crankshaft 150 in a predetermined rotational direction. It will be appreciated that the spokes 214 could be formed in the alternative as curved vanes. The rim portion 212 can be formed in a desired manner to frictionally engage a drive belt (not shown). In one form, the driven pulley 158 is net formed from a powdered metal material and as such, the outer edge of the rim portion 212 and the through-hole 216 need not be machined.
Piston Kit Group
The piston kit group 16 can include the pair of piston kits 18 and a pair of cylinders 250. Each of the piston kits 18 can include a connecting rod 252, a piston or piston dome 254, a wrist pin 256, a pair of pin plugs 258, an oil control ring 260 and a pair of compression rings 262. The piston domes 254 are illustrated in the particular example provided as reciprocating along a vertical axis (e.g., axis 1001d) when the air compressor system 10 is disposed in an operating position (shown in
Each connecting rod 252 can include a crank pin portion 270, a wrist pin portion 272 and a beam 274 that can interconnect the crank pin portion 270 to the wrist pin portion 272. The crank pin portion 270 can define a crank pin aperture 280 that can be sized to receive the journal portion 190 of an associated one of the first and second pin journals 172 and 174. The wrist pin portion 272 can define a wrist pin aperture 282 that can be sized to receive an associated one of the wrist pins 256. The crank pin portion 270 and the wrist pin portion 272 can be integrally formed with the beam 274 and can present continuous or nearly continuous bearing surfaces 284 and 286, respectively. The crank pin portion 270 and the wrist pin portion 272 can be symmetric about a longitudinally extending centerline of the connecting rod 252. The lateral surfaces 300 and 302 of the crank pin portion 270 and the wrist pin portion 272, respectively, can taper inwardly toward the longitudinally extending centerline of the connecting rod 252 with increasing distance from the beam 274. Construction in this manner can minimize the mass of the connecting rod 252 while maintaining the strength of the connecting rod 252 and surface area of the bearing surfaces 284 and 286 at important areas. In the example provided, transverse grooves 306 are formed in the bearing surfaces 284 and 286 of the crank pin portion 270 and the wrist pin portion 272. More specifically, one transverse groove 306 is formed in the crank pin portion 270 on an end opposite the beam 274, and another transverse groove 306 is formed in the wrist pin portion 272 on an end adjacent the beam 274. The transverse grooves 306 are employed to retain oil on the interior (bearing) surface of the crank pin portion 270 and on the interior (bearing) surface of the wrist pin portion 272.
With reference to
With additional reference to
With reference to
The cylinder body 400 can define a piston bore 410, an internal chamfer 412, which can intersect the piston bore 410 on a side opposite the cylinder flange 402, and an exterior surface 414 that can be contoured so as to collect lubricant and control the flow of lubricant from the exterior surface 414 as the lubricant drains back to the bottom of the internal cavity 62. For example, the exterior surface 414 can include one or more flow channels 420 that can be shaped in a desired manner, such as helically spiraling downwardly from the cylinder flange 402. It will be appreciated, however, that the flow channels 420 can be formed in any desired manner and can comprise one or more helixes, one or more grooved crosshatches (
While the cylinders 250 have been described thus far as including a cylinder body 400 having one or more integrally formed flow channels 420, it will be appreciated that the flow channel(s) 420 may be separately formed and fitted to a remainder of the cylinder body 400. For example, the structure (not shown) that is to form the flow channel(s) 420 may a structure, such as a helical spring, that is fitted to the exterior of the remainder of the cylinder body 400. The structure can be secured to the remainder of the cylinder body 400 in any appropriate manner, such as by friction or interference fit; one or more fasteners, welds, bonds, adhesives; interlocking of the structure directly to the remainder of the cylinder body 400; and/or combinations thereof.
It will also be appreciated that while the cylinders 250 have been described thus far as including a cylinder flange 402 that is integrally formed with the cylinder body 400, the cylinder 250 may be formed as two or more discrete components. In the example of
Cylinder Head Group
The cylinder head group 20 can include a pair of cylinder seals 500, a head assembly 502, a plurality of head bolts 518 and a filter system 520. The head assembly 502 can include a valve plate 504, a pair of intake valve elements 506, a pair of washers 508 and a pair of threaded fasteners 510, a head 512, a pair of outlet valve elements 514, and a head seal 516.
Each cylinder seal 500 can be an O-ring or other appropriate seal and can sealingly engage an associated one of the cylinders 250, the head assembly 502 and the cylinder block 40. In the particular example provided, the cylinder seal 500 is received about the annular lip 432 (i.e., sealingly engages the outer surface of the annular lip 432) and sealingly abuts the annular land 430, the bottom surface 502a of the head assembly 502 and the annular surface 58b of the counterbores 58 in the head deck 56. The annular lip 432 can be tapered so as to form an inverted cone (i.e., the surface of the annular lip 432 against which the cylinder seal 500 sealingly engages can be frustro-conical in shape). It will be appreciated from this disclosure that configuration in this manner can prevent the cylinder seal 500 from “rolling off” of the annular lip 432 during assembly of the air compressor system 10 (
The valve plate 504 can include a generally flat body portion 530, a first set of intake apertures 532, a first set of outlet apertures 534, a first set of locating projections 536, a second set of intake apertures 538, a second set of outlet apertures 540 and a second set of locating projections 542. The body portion 530 can define a plurality of head bolt apertures 544 and a pair of fastener apertures 546. The second set of intake apertures 538, the second set of outlet apertures 540 and the second set of locating projections 542 can be identical to the first set of intake apertures 532, the first set of outlet apertures 534 and the first set of locating projections 536, respectively. With additional reference to
Each intake valve element 506 can be formed of an appropriate material, such as a spring steel, and can include a valve element body 560 and a plurality of discrete element members 562 that can be coupled to the valve element body 560. A hole 564 can be formed through the valve element body 560 that is sized to receive an associated one of the threaded fasteners 510.
With reference to
The head assembly 502 can be assembled as follows:
The head assembly 502 can be overlaid onto the block 50 and the cylinders 250, the head bolts 518 can be received into the head bolt bosses 584 and threadably engaged to the threaded head bolt apertures 60 to sealingly engage the cylinder seals 500 to the valve plate 504.
Returning to
Operation
With reference to
Those of skill in the art will appreciate from this disclosure that the angled disk-shaped counterweight 178 adds a rotating moment along the rotational axis of the crankshaft 150 to counterbalance the rotating moment produced by the rotation of the first and second pin journals 172 and 174 and reciprocation of the piston kits 18. The required value of the counterbalancing moment may be achieved by selecting a combination of the thickness of the counterweight 178 and the angle at which the counterweight 178 is disposed relative to the rotational axis of the crankshaft 150. A relatively thinner counterweight 178 may be disposed at a relatively higher angle relative to the rotational axis of the crankshaft 150 to achieve the same moment as that which is achieved by the counterweight 178 that is illustrated in the corresponding figures. It may be desirable in some situations to select a relatively thinner counterweight 178 (and a correspondingly larger angle of tilt for the counterweight 178 relative to the rotational axis of the crankshaft 150) to as to reduce the overall weight (and cost) of the crankshaft 150 while increasing the area over which oil may be slung by the counterweight 178.
It will be appreciated that the teachings of the present disclosure have application to crankshafts having different numbers of pin journals than that which has been described above. As an example, a crankshaft 150′ for a single-cylinder air compressor (not shown) is illustrated in
Returning to
Maintenance
As will be appreciated by those of skill in the art, the liquid lubricant in the sump 36 will need to be changed on a periodic basis. To facilitate such maintenance, a used oil container 700 can be provided. The used oil container 700 can be formed of an appropriate plastic film and can include one or more bands of adhesive material 702 and a release strip 704. The used oil container 700 can be opened (e.g., unfolded) and an open end 706 of the used oil container 700 can be positioned under the rear cover 90 proximate the drain plug assembly 94 with a first hand of the technician. The other, second hand of the technician can be employed to press one side of the used oil container 700 against the drain plug assembly 94 so that the technician can remove the drain plug assembly 94 from the rear cover 90 with the second hand. It will be appreciated that the second hand is not directly touching the drain plug assembly 94 but rather that a layer of the plastic film that forms one side of the used oil container 700 is disposed between the drain plug assembly 94 and the second hand of the technician. The plastic film thus forms a barrier that is interposed between the technician and the block 50 so that the technician will not be exposed to the used lubricating fluid that exits the block 50 when the drain plug assembly 94 is removed from the rear cover 90. The barrier may be maintained while the drain plug assembly 94 is re-installed to the rear cover 90. Thereafter, the release strip 704 can be removed from the adhesive material 702 and the used oil container 700 can be folded onto itself to seal the open end 706.
In some embodiments, the used oil container 700 can include a reinforcing member (not shown) that can be secured to the rear cover on a temporary basis so that the technician need not hold the used oil container 700 throughout the interval at which the liquid lubricant is being drained from the air compressor system 10. For example, a hole (not shown) can be formed in the reinforcing member and a fastener (not shown) can be received through the hole and threadably engaged to a corresponding threaded hole (not shown) in the rear cover 90 to thereby secure the used oil container 700 to the rear cover 90.
In the example of
Assembly Method
The air compressor system can be assembled as follows:
While the air compressor system 10 has been illustrated and described with regard to a particular in-line two-cylinder configuration, those of skill in the art will appreciate that an air compressor system constructed in accordance with the teachings of the present disclosure may be constructed somewhat differently and could have any desired quantity of cylinders. For example, the air compressor system could be constructed with two cylinders that could be oriented in any desired orientation, such as tilted relative to a vertical axis (when the air compressor system 10a is in an operating orientation) by an angle of about 45° as shown in
In those air compressor systems that do not employ an oil pump, the annular lip may be spaced apart from the head deck 56a and the cylinder flange 402a and configured to catch liquid lubricant that is splashed downwardly from the cylinder head group 20a. Optionally, a side of the cylinder sleeve cover 1000 that is disposed above the cylinder 250a in a vertical direction can be perforated to permit relative more splashed lubricant to collect in the flow channels 420a.
Those of skill in the art will appreciate that the flow channels can be formed into the exterior surface at a desired angle relative to an axis along with the piston dome reciprocates, even when the piston dome reciprocates along a vertical axis. Configuration in this manner can provide the flow channel with a cup-like cross-section that can retain relatively more lubricant.
Returning to
The electric motor assembly 1020 can include an electric motor 1030, a motor pulley 1032, a fan 1034, a Belleville washer 1036 and a threaded fastener 1038. It will be appreciated that the fan 1034 can be employed to generate a flow of cooling air that can be employed to cool the air compressor in a manner that is similar to that which is disclosed in U.S. Pat. No. 7,131,824 entitled “Wheeled Portable Air Compressor”, the disclosure of which is hereby incorporated by reference as if fully set forth in detail herein. With additional reference to
The motor pulley 1032 can be formed of a sintered powdered metal material and can include a hub portion 1060 and a rim portion 1062 that can be interconnected to the hub portion 1060 in any desired manner. Like the driven pulley 158, the motor pulley 1032 can be constructed without machining of the outer surface of the rim portion 1062. The hub portion 1060 can include a through-hole 1070 that can include a mating tapered portion 1072 that is configured to matingly engage the tapered end 1054 of the output shaft 1042. The fan 1034 can be formed of a plastic material and can have a hub 1080 with a mounting hole 1082. The hub 1080 can be fitted (e.g., snapped) over the hub portion 1060 of the motor pulley 1032 in a manner that can locate a rotational axis of the fan 1034 to the rotational axis of the motor pulley 1032. Those of skill in the art will appreciate that the tapered end 1054 and the mating tapered portion 1072 can cooperate to align the rotational axis of the motor pulley 1032 to the rotational axis of the output shaft 1042. The mounting hole 1082 of the fan 1034 can be relatively larger in diameter than the through-hole 1070 of the motor pulley 1032. The threaded fastener 1038 can be inserted to the Belleville washer 1036 and threadably engaged to the threaded aperture 1056 in the output shaft 1042; the Belleville washer 1036 can be oriented so as to initially make contact with the head of the threaded fastener 1038 and with the hub 1080 of the fan 1034 (but not the motor pulley 1032). The threaded fastener 1038 can be tightened to deflect the center of the Belleville washer to a point in which it directly contacts both the head of the threaded fastener 1038, the hub 1080 of the fan 1034, and the hub portion 1060 of the motor pulley 1032. Accordingly, it will be appreciated that a first portion of the clamping force that is generated by the threaded fastener 1038 can be transmitted directly to the motor pulley 1032 and that a second portion of the clamping force that is generated by the threaded fastener 1038 can be transmitted to the hub 1080 of the fan 1034 to secure the fan 1034 to the motor pulley 1032. Advantageously, the outer periphery of the Belleville washer 1036 is spring-like in nature so as to maintain a desired clamping force on the fan 1034 despite changes in the thickness of the hub 1080 of the fan 1034 due to creep.
Those of skill in the art will appreciate from this disclosure that the rotational centerlines of the crankshaft 150 and the output shaft 1042 of the electric motor 1030 can be maintained at a desired spacing by virtue of the configuration of the rear cover 90a and also that the axial positions of the driven pulley 158 and the motor pulley 1032 can be maintained at a desired relationship by virtue of the size and location of the various tapered surfaces on the crankshaft 150, the driven pulley 158, the output shaft 1042 and the motor pulley 1032. Accordingly, a fan belt 1090, such as a “stretch-belt”, can be employed to transmit rotary power from the electric motor 1030 to the crankshaft 150. The fan belt 1090 can be fitted to the motor pulley 1032 and the driven pulley 158 and the motor pulley 1032 and the driven pulley 158 can be installed simultaneously to the electric motor 1030 and the crankshaft 150, respectively. The tapered end 1054 and the mating tapered portion 1072 can cooperate to align the rotational axis of the motor pulley 1032 to the rotational axis of the output shaft 1042 as the motor pulley 1032 is being installed to the output shaft 1042. Similarly, the tapered segment 180 and the mating tapered portion 218 can cooperate to align the rotational axis of the driven pulley 158 to the rotational axis of the crankshaft 150. The combination of the simultaneous installation of the motor pulley 1032 and the driven pulley 158 with the fan belt 1090 preinstalled to the motor pulley 1032 and the driven pulley 158 along with the mating tapers between the shafts (tapered end 1054 and tapered segment 180) and the pulleys (motor pulley 1032 and driven pulley 158) permits the fan belt 1090 to be stretched as the pulleys are being installed.
A belt guard 1100 can be mounted to the rear cover 90a to shroud the belt 1090. The belt guard 1100 can further be employed to direct the air flow generated by the fan 1034 toward the rear cover 90a and/or the block 50a in a manner that is similar to that which is described in U.S. patent application Ser. No. 11/047,521 entitled “Cooling Arrangement for a Portable Air Compressor”, the disclosure of which is hereby incorporated by reference as if fully set forth in detail herein. Moreover, the belt guard 1100 can include a cavity 1102 and a cover 1104 can be snap-fit to the belt guard 1100 to close the cavity 1102. A seal (not shown) can be disposed between the belt guard 1100 and the cover 1104 to inhibit dirt and moisture from entering the cavity 1102. The cavity 1102 can be sized to receive an owner's manual (not shown) and/or a tool kit (not shown) for use in servicing the air compressor system 10a.
In the example provided, the filter system 520a can also comprise an inlet tube 1200 that is coupled in fluid connection to the low pressure cavities 580a of the heads 512a. The filter system 520a can be constructed and operated as described in U.S. Pat. No. 5,137,434 entitled “Universal Motor Oilless Air Compressor”, the disclosure of which is hereby incorporated by reference as if fully set forth in detail herein. The distal end 1204 of the inlet tube 1200 is disposed in the flow path of the air that is discharged from the fan 1034 in a direction that is transverse to the flow path. The distal end 1204 may be crimped or crushed to a desired degree to inhibit the entry of relatively large particles or debris into the inlet tube 1200. Dirt and debris contained in the air in the flow path can travel at a relatively high speed past the distal end 1204 of the inlet tube 1200 and as such, their momentum reduces the likelihood that they will be drawn into the distal end 1204 of the inlet tube 1200 as the air compressor system 10a operates.
While specific examples have been described in the specification and illustrated in the drawings, it will be understood by those of ordinary skill in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the present disclosure as defined in the claims. Furthermore, the mixing and matching of features, elements and/or functions between various examples is expressly contemplated herein so that one of ordinary skill in the art would appreciate from this disclosure that features, elements and/or functions of one example may be incorporated into another example as appropriate, unless described otherwise, above. Moreover, many modifications may be made to adapt a particular situation or material to the teachings of the present disclosure without departing from the essential scope thereof. Therefore, it is intended that the present disclosure not be limited to the particular examples illustrated by the drawings and described in the specification as the best mode presently contemplated for carrying out the teachings of the present disclosure, but that the scope of the present disclosure will include any embodiments falling within the foregoing description and the appended claims.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/880,472 filed Jan. 12, 2007, the disclosure of which is hereby incorporated by reference as if fully set forth in detail herein.
Number | Name | Date | Kind |
---|---|---|---|
217965 | Waring | Jul 1879 | A |
1687395 | Shew | Oct 1928 | A |
1801395 | Summers | Apr 1931 | A |
1939057 | Kercher | Dec 1933 | A |
2151698 | Harper, Jr. | Mar 1939 | A |
2628765 | Anderson | Feb 1953 | A |
2944534 | Hodkin | Jul 1960 | A |
3672263 | Mirjanic | Jun 1972 | A |
4097202 | Price | Jun 1978 | A |
4393752 | Meier | Jul 1983 | A |
4667635 | Lichtblau | May 1987 | A |
4802826 | Hall | Feb 1989 | A |
5118263 | Fritchman | Jun 1992 | A |
5694780 | Alsenz | Dec 1997 | A |
5775885 | Dreiman et al. | Jul 1998 | A |
5971717 | Berthold | Oct 1999 | A |
6692205 | Moroi et al. | Feb 2004 | B2 |
6742995 | Wood et al. | Jun 2004 | B1 |
6923627 | Wood et al. | Aug 2005 | B1 |
D516090 | Gist et al. | Feb 2006 | S |
D516091 | Leasure et al. | Feb 2006 | S |
D517092 | Leasure et al. | Mar 2006 | S |
7025573 | Hardin et al. | Apr 2006 | B1 |
D559272 | Buck et al. | Jan 2008 | S |
D574020 | Buck et al. | Jul 2008 | S |
7413414 | Wood et al. | Aug 2008 | B2 |
7458784 | Vos et al. | Dec 2008 | B2 |
20030159888 | Burkholder | Aug 2003 | A1 |
20040197200 | Wood et al. | Oct 2004 | A1 |
20050175475 | Baron | Aug 2005 | A1 |
20060065309 | Leasure et al. | Mar 2006 | A1 |
20060104837 | Lee et al. | May 2006 | A1 |
20060219811 | Woods | Oct 2006 | A1 |
20080044296 | Wood et al. | Feb 2008 | A1 |
20080168898 | Hardin et al. | Jul 2008 | A1 |
20090016902 | Lee et al. | Jan 2009 | A1 |
20090053076 | Vos et al. | Feb 2009 | A1 |
Number | Date | Country |
---|---|---|
409617 | Feb 1925 | DE |
577185 | May 1933 | DE |
1234095 | Feb 1967 | DE |
1576407 | May 1970 | DE |
1916096 | Oct 1970 | DE |
3006332 | Aug 1981 | DE |
10214307 | Oct 2003 | DE |
10225062 | Jan 2004 | DE |
10338979 | Mar 2005 | DE |
182324 | May 1986 | EP |
0206184 | Dec 1986 | EP |
1957796 | Aug 2008 | EP |
658118 | Oct 1951 | GB |
2000223 | Jan 1979 | GB |
Number | Date | Country | |
---|---|---|---|
20080168898 A1 | Jul 2008 | US |
Number | Date | Country | |
---|---|---|---|
60880472 | Jan 2007 | US |