The invention relates to an air condenser with the features set forth in the preamble of patent claim 1.
Air-cooled condensers serve for the direct condensation of exhaust steams, in particular of turbine steam. They can be regarded as a special application of air-cooled heat exchangers, which serve for the cooling of fluids in various processes of the chemical, petrochemical and power generating industry by means of ambient air. The used heat exchangers essentially include heat exchanger tubes, which because of the poor thermal conductivity of air are provided with fins on the outside to facilitate heat transfer. Multiple of these tubes provided with fins, are combined to so-called tube bundles which, in planar construction, are exposed to a cooling air stream. The cooling medium air is advanced through the heat exchanger bundles by means of ventilators in an aspirating or pushing arrangement.
Oftentimes, the heat exchanger bundles are arranged roof-shaped above the cooling air ventilators. In order to guarantee air supply at the lowest possible pressure losses, the heat exchanger bundles which are arranged roof-shaped, and the ventilators which are arranged underneath, are together supported by a support structure. The turbine exhaust steam to be condensed is conducted through an exhaust steam duct and the adjoining upper steam distributor ducts into the fin tubes. The constructional effort for the support construction is not insignificant.
Beside the roof-shaped construction, the state of the art also includes air condensers in which tube bundles extend vertically and form a closed sheath of a polygon (EP 1 710 524 A1). Such a polygon requires less space, because an elaborate support structure is not needed. A disadvantage is however, that when doubling of the cooling capacity is desired, the for example hexagonally configured cells cannot be mounted in a space saving manner directly adjacent to one another, because in this case the two abutting sidewalls would cover one another and thus prevent aspiration of air through the heat exchangers that are arranged in these sidewalls. In a serial arrangement with for example three hexagonal cells, the opposing heat exchanger elements of the middle cell would be covered and of course also those of the neighboring cells. Even more unfavorable is a honeycombed, i.e. staggered, arrangement of three hexagonal heat exchanger elements, because in this case even more side surfaces would block one another. Even in the case of two adjacently extending rows of hexagonal cells, which only contact each other at their tips, only relatively small spaces, which lack a sufficient cross sectional surface for adequate air supply, remain between the cells. In order to enlarge the spaces, the distance between mutually parallel extending rows would have to be increased, which in turn requires more installation surface.
Based on the foregoing, the invention is based on the object to provide an air condenser which in modular construction can also be extended for higher cooling capacities, i.e. is easily scalable, which however, does not require an elaborate steel construction for supporting the tube bundles.
This object is solved by an air condenser with the features of patent claim 1.
The sub claims relate to advantageous refinements of the invention.
First, the air condenser according to the invention is characterized by upwards oriented tube bundles for condensing steam. The tube bundles form sidewalls of a cell in the form of a circumferentially closed, upwards, i.e. vertically extending polygon, wherein the polygon itself lies in a horizontal plane. This polygon, which is configured with tube bundles as sidewalls, is provided with a fan which is arranged above the polygon in a manner so as to aspirate cooling air. In the air condenser according to the invention, two of the circumferential sidewalls of the cell are formed by tube bundles, while the at least one further sidewall is impermeable to air. The sidewalls formed by the tube bundles form an angle of 90° with one another.
This construction purposely provides for not using more than two sidewalls for the heat exchange, while the remaining sidewalls are closed, in order to seal the space enclosed by the cell so that cooling air is aspirated by the fan exclusively through the tube bundles. This allows combining multiple cells having this configuration, in a space-saving manner without blocking one another or delimiting a too narrow air intake space outside the cells.
The basic shape of such a cell is the triangle or a straight cylindrical hollow space with a triangular base area, respectively. Generally, it is assumed that such an air condenser is installed on a solid floor surface, so that an arrangement of the air condenser close to the ground obviates an elaborate support structure, as it is required for air condensers which are arranged roof-shaped.
The sidewalls formed by the tube bundles can well be longer than the at least one sidewall, which interconnects the spaced apart ends of the tube bundles. This results in a non-isosceles triangle. When multiple air-impermeable sidewalls are provided, these extend either between the confronting ends of the tube bundles or between the ends of the tube bundles which face away from each other.
A further basic shape is represented by deltoid cells. A deltoid, which is also referred to as kite quadrilateral, is a flat quadrilateral with two pairs of adjacent sides of equal lengths. Within the context of the invention, this means the convex shape of the deltoid. Applied to the invention this means that the tube bundles are one of two pairs of sidewalls of equal lengths, wherein the other pair of mutually adjacent sidewalls is formed by the air-impermeable sidewalls.
The strict deltoid shape can be interrupted by arranging a very narrow sidewall between the mutually adjacent ends of the tube bundles. Narrow in this context means that the sidewall extends over a much smaller circumferential region of the cell than one of the neighboring tube bundles, thus creating a pentagon.
Similar as in a triangle-shaped or deltoid-shaped cell, the basic shape of the pentagonal cell is configured mirror-symmetrical with regard to a vertical plane of symmetry intersecting the cell, however not rotationally symmetric. This means that due to the different lengths sidewalls, the basic shape of the cell cannot be projected onto itself when rotated by an angle different from 360°. This also has the consequence that the angle enclosed by the tube bundles is smaller than the angle enclosed by the air-impermeable sides. This means the inner angle of the cell enclosed by the directly adjacent tube bundles. Enclosed angle however, also means the angle which results when a narrow air-impermeable sidewall is further arranged between the mutually adjacent ends of the tube bundles.
As an alternative to deltoid-shaped cells it is also conceivable, that the basic shape of the cell is trapeze-shaped. This means that the tube bundles which form an angle smaller than 90° with each other, form legs of the trapeze, while the further air-impermeable sidewalls form the mutually parallel base sides of the trapeze. Naturally, in this geometry the longer base side is the one which extends between the ends of the mutually distally positioned tube bundles. The other base side, which extends parallel to the first base side, is significantly shorter corresponding to the angular position of the tube bundles. The trapeze-shaped cell is a special form of the triangle-shaped cell.
In a further embodiment of a triangle-shaped or also trapeze-shaped cell, the ends of the spaced apart positioned tube bundles, are connected to one another by sidewalls which are arranged U-shaped. U-shaped in this context means that the sidewall does not extend in a straight line from the one tube bundle to the other tube bundle, but rather has an arched course, however, in particular is angled two-fold, resulting in a U-shaped course when viewing the cell from the top. In this case, the cell has quasi a triangle- or trapeze-shaped part, whose sidewalls are formed by the tube bundles, and a rectangle-shaped part which is formed by the air-impermeable sidewalls. Of course, no closed intermediate wall is present between the triangle-shaped and the rectangle-shaped region.
Within the context of the invention it is well possible to provide sidewalls which are angled once or multiple times instead of the U-shaped form, wherein a single angled portion corresponds to a V-shape and thus a deltoid base structure, and multiple angled portions in the extreme case lead to a semi-circle or arched course.
In the context of the invention it is possible to arrange multiple cells configured in this manner atop one another, thereby delimiting a straight cylinder space above which a fan can be placed. Because the fans are limited in their capacity to the maximum inner circle of the cylinder space, additional fans may be required. Additional fans can be arranged in the sidewalls previously referred to as air-impermeable, which means in a right angle relative to the head-side fan at the upper end of the cylinder space.
As an alternative to the stacked arrangement it is regarded particularly advantageous, when multiple cells are combined to form an arrangement in which two rows are arranged horizontally adjacent to one another and extend parallel to one another, and in which the air-impermeable sidewalls are arranged so as to face one another and the sidewalls which are formed by the tube bundles form the outside of the rows. Here, the particular advantages of the invention that the tube bundles do not block one another come to bear. The triangle cells, trapeze cells and deltoid cells can be arranged in one row without any impediment to airflow as well as in two rows, also referred to as in blocks, with the cells again not interfering with each other with regard to the air intake space.
This possibility to position the individual cells next to one another in a space-saving manner results in the advantage to install the scalable air condensers according to the invention also in the case of higher cooling capacity without loss of performance. In a standardized construction, the individual cells require no modification. In particular, in contrast to the state of the art, no heat exchanger surfaces are lost in the arrangement in blocks.
Trapeze-shaped cells allow neighboring, confronting sidewalls to be in such close proximity to one another that one of the rear-side sidewalls can be omitted. In any case, however, one sidewall is retained, so that in a direct back-to-back arrangement no cooling air is aspirated by the fans of one of the trapeze-shaped cells through the heat exchangers of the other trapeze-shaped cell. Instead of being combined into a hexagonal cell, two trapeze-shaped cells thus remain trapeze-shaped in their layout.
When rows of cells which extending parallel to one another are provided, the steam manifold, which supplies the steam which is to be condensed, is arranged between the rows, so that junctions which branch off from both sides of the steam manifold can be guided to the top sides of the tube bundles. The steam enters into the tube bundles from above. The condensate which is generated in the tube bundles, drains downwards and is discharged via condensate collecting mains.
The supporting structure of the tube bundles and the sidewalls is configured so that the steam manifold is supported as well. This applies to triangle-shaped and trapeze-shaped cells, as well as to the cells with a deltoid-shaped cross section, which substantially form a stable support with their sidewalls which abut one another at their edges in back-to-back arrangement, exactly at the site where the heavy steam manifold extends. This allows for significant savings with regard to the support structure. Overall, less tonnage has to be moved, which allows realizing the installation of the entire air condenser in a more cost efficient-manner. Depending on the dimensioning, it may be necessary to support the main exhaust steam duct by a separate steel structure or concrete supports.
In any way, the new construction is especially economical compared to previous constructions. Especially compared to the roof-type construction, significant savings can be achieved in air-cooled condensers with regard to material costs and installation costs. The cost saving is primarily due to the fact that the heat exchanger bundles are mounted on a steel construction or concrete support, which are horizontally arranged on the ground. The ventilation system which includes the fan, engine and the raceway which surrounds the fan, can be configured in a similar manner as in wet cooling towers which are configured in cell-type construction, wherein an inspection and maintenance of the ventilation system can occur through a bridge which hangs underneath the fan and is made in particular of glass fiber-reinforced plastics.
Individual cells are accessed via a door arranged in the tip. A tip means for example the region between two adjacent ends of the condenser. Because a door is preferably located at this position, the adjacent ends of the air condensers do not directly border one another, but are connected to one another via a narrow sidewall, which is not significantly wider than the door.
It is further regarded as particularly economical, when the main supply of cells which are connected in series and arranged parallel to one another, takes place by a steam manifold which extends between the cells. The individual cells are each supplied via two respective ducts with one Y-branch duct and two junctions per cell, wherein each of these junctions leads to one respective tube bundle.
Moreover, savings also result in the region of the steam exhaust line. Steam exhaust duct means the duct between a turbine and a steam manifold. In a roof-type construction, the steam manifolds are arranged above the heat exchanger. Because of the small height in triangle cells, trapeze cells, kite cells or also in cells stacked upon one another, the steam exhaust duct does no longer have to be led to such a height as it is required in heat exchangers which are arranged roof-shaped. This results in a further reduction of material costs with regard to the steam exhaust duct.
As a result of the substantial reduction of material costs, installation costs are also significantly reduced, because less material has to be moved. A decreased construction height also means that smaller cranes can be used, that scaffolds and safety devices are not needed or can be reduced, and that installation can take place with means used in residential construction. Moreover, a parallel mounting is possible, allowing to shorten construction time.
In the following, the invention is explained in more detail by way of an exemplary embodiment shown in the drawings. It is shown in:
The shown cell 2 has vertically extending sidewalls. The sidewall 3 facing the viewer or the sidewall 4 positioned left in the image plane is formed by the not further shown tube bundles. The rearward sidewall 5, like the face-side sidewall 6, is closed. From the inside of cell 2, air can be exhausted upwards by aspiration through a fan 7, of which only the fan opening is shown. This causes cold ambient air to flow through the tube bundles or the sidewalls 3, 4, respectively, into the inside of cell 2. Steam which is conducted into the tube bundles of the sidewalls 3, 4 from above, condenses and can be conducted away via a not further shown condensate collecting main underneath the tube bundles. With the exception of the fan opening, the top side 8 of the cell 2 is closed, so that air can be aspirated exclusively through the tube bundles.
In the following, the reference signs introduced in
The embodiment of
A significant difference compared to the embodiments of
While the embodiments of the
The variant of
The embodiment of
All shown constructions have in common to be configured mirror symmetrical with regard to the drawn in axis of symmetry S, however, because of the different angles W, W1, cannot be projected onto themselves by rotation about a vertical axis, i.e. they are not configured rotationally symmetric.
In
The same applies to the deltoid-shaped cells 2, as they are shown in
The same applies to the variant of
Finally,
Number | Date | Country | Kind |
---|---|---|---|
10 2009 039 542.3 | Sep 2009 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2010/002789 | 9/1/2010 | WO | 00 | 2/29/2012 |