This application claims the benefit of Korean Patent Application No. 2009-0113911, filed on Nov. 24, 2009 in the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference.
1. Field
Embodiments relate to an air conditioner in which data communication is performed between one or more outdoor units and a plurality of indoor units, and a communication method thereof.
2. Description of the Related Art
An air conditioner is an apparatus that is used to cool or heat a room. In the air conditioner, a refrigerant is circulated between an indoor unit and an outdoor unit, and a cooling or heating operation is performed based on characteristics that the refrigerant absorbs ambient heat when evaporated and discharges the heat when liquefied.
An air conditioner generally has one outdoor unit and one indoor unit connected to the outdoor unit. However, recently, users have increasingly demanded a multi-system air conditioner in which a plurality of indoor units with various shapes and volumes are connected to one or more outdoor units to perform a cooling or heating operation in a place having a number of divided spaces, such as a school or company.
In general, an RS-485 communication mode, which needs a smaller number of lines than that in a bidirectional communication mode and is appropriate for a multi-communication system, is widely used between an outdoor unit and an indoor unit.
Therefore, it is an aspect to provide an air conditioner in which a Carrier Sensing Multiple Access/Collision Avoidance (CSMA/CA) algorithm is provided on a bidirectional RS-485 communication line, and a communication method thereof.
Additional aspects will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the invention.
In accordance with one aspect, an air conditioner in which data communication is performed between one or more outdoor units and a plurality of indoor units includes an RS-485 communication module to transmit data in an RS-485 communication mode, and a microcomputer to determine presence or absence of data on a communication line through an external interrupt terminal for a predetermined time when data to be transmitted is generated, and transmit the generated data to the communication line through the RS-485 communication module if no data is present on the communication line.
The external interrupt terminal may be connected to a reception terminal of the microcomputer to detect data on the communication line.
The microcomputer may occupy the communication line if no data is present on the communication line, and then transmit the generated data to the communication line.
The microcomputer may transmit occupancy data to the communication line to occupy the communication line.
The occupancy data may have high and low states alternating at random.
The microcomputer may transmit hold data to make a distinction between the occupancy data and the data to be transmitted.
The hold data may be transmitted to the communication line for a certain time under the condition of assuming a high state.
The microcomputer may transmit a transmission enable signal to the RS-485 communication module if no data is present on the communication line when the data to be transmitted is generated.
In accordance with another aspect, a communication method of an air conditioner in which data communication is performed between one or more outdoor units and a plurality of indoor units includes determining whether data is present on a communication line, if data to be transmitted is generated, and transmitting the generated data to the communication line if it is determined that no data is present on the communication line.
The transmitting may include occupying the communication line if it is determined that no data is present on the communication line, and then transmitting the generated data to the communication line.
The occupying may include transmitting occupancy data to the communication line to occupy the communication line.
The occupancy data may have high and low states alternating at random.
The transmitting may further include transmitting hold data to make a distinction between the occupancy data and the data to be transmitted.
The hold data may be transmitted to the communication line for a certain time under the condition of assuming a high state.
The determining may include determining presence or absence of data on the communication line for a predetermined time if the data to be transmitted is generated.
In accordance with another aspect, an air conditioner in which data communication is performed between one or more outdoor units and a plurality of indoor units includes an RS-485 communication module to transmit data in an RS-485 communication mode, and a microcomputer to determine presence or absence of data on a communication line when data to be transmitted is generated, and transmit the generated data to the communication line through the RS-485 communication module if no data is present on the communication line.
The microcomputer may determine presence or absence of data on the communication line through an external interrupt terminal, the external interrupt terminal being connected to a reception terminal of the microcomputer.
These and/or other aspects will become apparent and more readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:
Reference will now be made in detail to the embodiments, examples of which are illustrated in the accompanying drawings, wherein like reference numerals refer to like elements throughout.
As shown in
As shown in
The microcomputer 12, 22 or 32 controls transmission and reception of RS-485 communication. For data transmission, the microcomputer 12, 22 or 32 delivers a transmission enable signal and transmission data to the RS-485 communication module 14, 24 or 34. For data reception, the microcomputer 12, 22 or 32 delivers a reception enable signal to the RS-485 communication module 14, 24 or 34 and receives data transmitted from the RS-485 communication module 14, 24 or 34. On the other hand, the RS-485 communication mode, which is a communication protocol for a multi-point communication line, is one of interface protocols for serial transmission.
The microcomputer 12, 22 or 32 transmits and receives data using a Carrier Sensing Multiple Access/Collision Avoidance (CSMA/CA) algorithm provided to the RS-485 communication mode. The CSMA/CA algorithm is a technology that, when data to be transmitted is generated in a device, determines whether a network currently connected to the device is in use (carrier sense), transmits a collision avoidance signal for data transmission to each node if the network is not in use, and transmits the data at a certain time after transmitting the collision avoidance signal. For example, as shown in
Hereinafter, a detailed description will be given of the operation of the air conditioner to, when data to be transmitted is generated in the indoor unit 20, transmit the data using the CSMA/CA algorithm. This description is similarly applied to the outdoor unit 10 and the controller 30.
When data to be transmitted is generated, the microcomputer 22 monitors a communication line for a predetermined time. If it is determined that no data is present on the communication line for the predetermined time, the microcomputer 22 transmits occupancy data. The occupancy data is data that is transmitted to occupy the communication line, which has high and low states alternating at random.
After transmitting the occupancy data for occupancy of the communication line, the microcomputer 22 transmits hold data. The hold data is data that is transmitted to the communication line to make a distinction between the occupancy data and the data to be actually transmitted. This hold data is transmitted to the communication line for a certain time under the condition of assuming a high state.
After transmitting the hold data, the microcomputer 22 transmits the data to be actually transmitted.
The RS-485 communication module 24 transmits and receives data in the RS-485 communication mode. For data transmission, the RS-485 communication module 24 enters a transmission enable state in response to a transmission enable signal from the microcomputer 22 and outputs data received from the microcomputer 22 to the communication line according to a sign. For data reception, the RS-485 communication module 24 enters a reception enable state in response to a reception enable signal from the microcomputer 22, restores a signal inputted from the communication line to original data and delivers the restored data to the microcomputer 22. On the other hand, in an aspect of the present invention, the RS-485 communication module 24 may always be in the reception enable state, so that it may receive data in real time.
When data to be transmitted is generated, the microcomputer 22 monitors a communication line for a predetermined time. The reception terminal Rx of the microcomputer 22 recognizes data on a 1-byte basis, as shown in
As shown in
On the other hand, in an aspect, the above-stated data collision may be avoided by connecting an external interrupt terminal ExT to the reception terminal Rx of the microcomputer 22, the method of which will hereinafter be described in detail.
As shown in
As shown in
As shown in
To solve this, as shown in
As shown in
As shown in
Upon determining that data is present on the communication line, the microcomputer 22 does not transmit the data thereof and waits for a predetermined time t2 (S30). When the predetermined time t2 has elapsed, the microcomputer 22 again determines whether data is present on the communication line (S20).
On the other hand, if it is determined that no data is present on the communication line, the microcomputer 22 determines whether a predetermined time t1 has elapsed (S40). In the case where it is determined that the predetermined time t1 has not elapsed, the microcomputer 22 continues to detect data on the communication line (S20). That is, the microcomputer 22 continuously detects data on the communication line for the predetermined time t1.
Then, if it is determined that no data is present on the communication line for the predetermined time t1 after the data generation, the microcomputer 22 transmits the data thereof (S50).
As shown in
Then, the microcomputer 22 transmits occupancy data to a communication line within a shortest time after initiating the transmission of the transmission enable signal to the RS-485 communication module 24 (S110). The occupancy data is data that is transmitted to occupy the communication line immediately after the RS-485 communication module 24 switches to the transmission enable state.
Then, the microcomputer 22 transmits hold data after transmitting the occupancy data (S120). The hold data is data that is transmitted to the communication line to make a distinction between the occupancy data and the data to be actually transmitted. This hold data is transmitted to the communication line for a certain time under the condition of assuming a high state.
Thereafter, the microcomputer 22 transmits the actual data (S130).
As is apparent from the above description, according to an embodiment, a CSMA/CA algorithm is provided to an RS-485 communication mode, so that information of respective devices of an air conditioner may be efficiently shared.
Although a few embodiments have been shown and described, it would be appreciated by those skilled in the art that changes may be made in these embodiments without departing from the principles and spirit of the invention, the scope of which is defined in the claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2009-113911 | Nov 2009 | KR | national |