The present disclosure relates to an air conditioner.
In a known refrigeration apparatus including a refrigerant circuit for vapor compression refrigeration cycle operation, refrigerant pipes through which a refrigerant flows are combined into one in order to reduce the size of the refrigerant circuit. For example, Patent Literature 1 discloses a functional block with a refrigerant passage formed inside. The functional block is attached to a compressor.
PATENT LITERATURE 1: Japanese Laid-Open Patent Publication No. 2010-151343
An air conditioner according to the present disclosure includes:
Hereinafter, embodiments will be described with reference to the accompanying drawings.
The outdoor unit 2 includes a casing 3. The casing 3 is formed in a rectangular parallelepiped shape and is formed in a rectangular shape in plan view. The casing 3 has a bottom plate 4, supports 5, a front panel 6, and the like. The casing 3 houses therein a refrigerant flow path unit 10, a compressor 61, an accumulator 62, a heat exchanger 63, a fan 64, a four-way switching valve 65 (see
The plurality of plates 21, 22, and 23 has a first plate 21, a second plate 22 stacked on the first plate 21, and a third plate 23 stacked on the second plate 22. The plates 21, 22, and 23 adjacent to each other are joined by brazing.
The first plate 21 is disposed at both ends of the unit body 11 in the first direction. The first plate 21 is formed to be thinner than the other second and third plates 22 and 23. A plurality of first openings 21a are formed in the first plate 21. The first openings 21a are circular holes penetrating the first plate 21.
The second plate 22 is located second from both ends of the unit body 11 in the first direction. The second plate 22 is formed to be thicker than the first plate 21. A plurality of second openings 22a are formed in the second plate 22. The second openings 22a are circular holes penetrating the second plate 22. The second openings 22a each communicate with the first opening 21a of the first plate 21.
The third plate 23 is disposed between the two second plates 22 that are spaced apart in the first direction. In one or more embodiments, the three third plates 23 are stacked between the two second plates 22. Each of the third plates 23 is formed to have the same thickness as the second plate 22.
The third plate 23 is formed with a third opening 23a that constitutes the refrigerant flow path 15. The third opening 23a is a hole penetrating the third plate 23 or a slit extending in the second direction. In the example illustrated in
The unit body 11 of the refrigerant flow path unit 10 according to one or more embodiments is configured from the plurality of plate-shaped members (plates 21, 22, and 23), but is not limited thereto, and may be configured from members other than the plate-shaped members.
The first joint pipe 12 is attached to the first plate 21 and the second plate 22 arranged on one side (upper side in
The second joint pipe 13 is attached to the first plate 21 and the second plate 22 arranged on the other side (lower side in
As illustrated in
The fixed-side member 60 may be a dedicated component to support the refrigerant flow path unit 10 in addition to the existing components (casing 3, accumulator 62, heat exchanger 63, and the like) of the outdoor unit 2. Note that the compressor 61 is not included in the fixed-side member 60 because the compressor 61 is the source of vibration for the casing 3 during the operation of the compressor 61.
The refrigerant flow path unit 10 is further supported at a distance from the bottom plate 4 by the fixed-side member 60. The state in which the refrigerant flow path unit 10 is “at a distance from” the bottom plate 4 means not only a case where a gap is formed between the bottom plate 4 and the refrigerant flow path unit 10, but also a case where a component is interposed between the bottom plate 4 and the refrigerant flow path unit 10 without a gap.
The component interposed between the bottom plate 4 and the refrigerant flow path unit 10 may be the fixed-side member 60 that supports the refrigerant flow path unit 10, or may be a soft component that does not substantially support the refrigerant flow path unit 10.
The refrigerant flow path unit 10 according to one or more embodiments is disposed above the accumulator (container) 62 which is an existing component of the outdoor unit 2. An end surface 11 a on the lower side of the unit body 11 of the refrigerant flow path unit 10 in the second direction is firmly fixed to the accumulator 62 by a fastener (screw or the like) (not illustrated) while installed on an upper surface 62a of the accumulator 62. As described above, the refrigerant flow path unit 10 is supported at a distance above the bottom plate 4 by the fixed-side member 60 (accumulator 62) other than the compressor 61.
The refrigerant flow path unit 10 and the accumulator 62 are formed from a material that suppresses electrolytic corrosion due to mutual contact. In one or more embodiments, the plates 21, 22, and 23 of the unit body 11 of the refrigerant flow path unit 10 are stainless steel. The accumulator 62 is configured, for example, by insulation paint being applied to the outer surface including the upper surface 62a.
The refrigerant flow path unit 10 may be supported by the side surface of the accumulator 62 as long as the refrigerant flow path unit 10 is at a distance from the bottom plate 4. In addition, the refrigerant flow path unit 10 may be supported by a container (receiver or the like) other than the accumulator 62, or may be supported by the supports 5.
Since the functional block described in Patent Literature 1 is attached to the compressor, which is a source of vibration, the operational vibration of the compressor is easily transmitted to the functional block. If the operational vibration is transmitted to the functional block, there is a risk of damage to the connection portions or the like of the functional block to the piping.
One or more embodiments of the present disclosure provide an air conditioner capable of suppressing a refrigerant flow path unit from being damaged by vibration.
In the air conditioner 1 according to one or more embodiments, the refrigerant flow path unit 10 is supported at a distance from the bottom plate 4 by the accumulator 62, which is the fixed-side member 60 other than the compressor 61. Thus, it is possible to suppress the operational vibration of the compressor 61 installed on the bottom plate 4 from being transmitted to the refrigerant flow path unit 10. As a result, it is possible to suppress the refrigerant flow path unit 10 from being damaged by the operational vibration. In addition, since the refrigerant flow path unit 10 is located at a distance from the bottom plate 4, even if drain water or the like accumulated on the bottom plate 4 freezes, the occurrence of an ice-up phenomenon in which frozen ice grows excessively can be suppressed at the lower end of the refrigerant flow path unit 10.
Since the accumulator 62 supporting the refrigerant flow path unit 10 is an existing component of the outdoor unit 2, it is not necessary to provide a dedicated component to support the refrigerant flow path unit 10. Thus, the configuration of the outdoor unit 2 can be simplified.
Since the refrigerant flow path unit 10 is disposed above the accumulator 62, the refrigerant flow path unit 10 can be supported by the container as far away from the bottom plate 4 as possible. As a result, it is possible to effectively suppress the operational vibration of the compressor 61 installed on the bottom plate 4 from being transmitted to the refrigerant flow path unit 10. In addition, the occurrence of the ice-up phenomenon can be effectively suppressed at the lower end of the refrigerant flow path unit 10.
Since the refrigerant flow path unit 10 and the accumulator 62 are formed from a material that suppresses electrolytic corrosion due to mutual contact, the occurrence of electrolytic corrosion due to mutual contact can be suppressed even if the refrigerant flow path unit 10 is supported by the accumulator 62.
The refrigerant flow path unit 10 is supported at a distance from the bottom plate 4 by the tube plate 63b on one side (right side in
The refrigerant flow path unit 10 and the tube plate 63b are formed from a material that suppresses electrolytic corrosion due to mutual contact. In one or more embodiments, the plates 21, 22, and 23 of the unit body 11 of the refrigerant flow path unit 10 are stainless steel. The tube plate 63b is configured, for example, by insulation paint being applied to the outer surface including the side surface 63c. Other configurations of the second embodiments are similar to those of the first embodiments, and therefore the description thereof will be omitted.
In the air conditioner 1 according to one or more embodiments, the refrigerant flow path unit 10 is supported at a distance from the bottom plate 4 by the tube plate 63b of the heat exchanger 63 which is the fixed-side member 60 other than the compressor 61. Thus, it is possible to suppress the operational vibration of the compressor 61 installed on the bottom plate 4 from being transmitted to the refrigerant flow path unit 10. As a result, it is possible to suppress the refrigerant flow path unit 10 from being damaged by the operational vibration. In addition, since the refrigerant flow path unit 10 is located at a distance from the bottom plate 4, it is possible to suppress the occurrence of the ice-up phenomenon as in the first embodiments.
Since the tube plate 63b of the heat exchanger 63 which supports the refrigerant flow path unit 10 is an existing component of the outdoor unit 2, it is not necessary to provide a dedicated component to support the refrigerant flow path unit 10. Thus, the configuration of the outdoor unit 2 can be simplified.
Since the refrigerant flow path unit 10 and the tube plate 63b are formed from a material that suppresses electrolytic corrosion due to mutual contact, the occurrence of electrolytic corrosion due to mutual contact can be suppressed even if the refrigerant flow path unit 10 is supported by the tube plate 63b.
The refrigerant flow path unit 10 is supported at a distance from the bottom plate 4 by the spacer 69. In one or more embodiments, the end surface 11a on the lower side of the unit body 11 in the second direction is firmly fixed to the spacer 69 by a fastener (screw or the like) (not illustrated) while installed on an upper surface 69a of the spacer 69. The refrigerant flow path unit 10 may be supported by the side surface of the spacer 69 as long as the refrigerant flow path unit 10 is at a distance from the bottom plate 4.
The refrigerant flow path unit 10 and the spacer 69 are formed from a material that suppresses electrolytic corrosion due to mutual contact. In one or more embodiments, the plates 21, 22, and 23 of the unit body 11 of the refrigerant flow path unit 10 are stainless steel. The spacer 69 is configured, for example, by insulation paint being applied to the outer surface including the upper surface 69a. Other configurations of the third embodiments are similar to those of the first embodiments, and therefore the description thereof will be omitted.
In the air conditioner 1 according to one or more embodiments, the refrigerant flow path unit 10 is supported at a distance from the bottom plate 4 by the spacer 69, which is the fixed-side member 60 other than the compressor 61. Thus, it is possible to suppress the operational vibration of the compressor 61 installed on the bottom plate 4 from being transmitted to the refrigerant flow path unit 10. As a result, it is possible to suppress the refrigerant flow path unit 10 from being damaged by the operational vibration. In addition, since the refrigerant flow path unit 10 is located at a distance from the bottom plate 4, it is possible to suppress the occurrence of the ice-up phenomenon as in the first embodiments.
Since the refrigerant flow path unit 10 and the spacer 69 are formed from a material that suppresses electrolytic corrosion due to mutual contact, the occurrence of electrolytic corrosion due to mutual contact can be suppressed even if the refrigerant flow path unit 10 is supported by the spacer 69.
The casing 3 has the bottom plate 4, the front panel (not illustrated in
The refrigerant flow path unit 10 is supported at a distance from the bottom plate 4 by the partition plate 8. In one or more embodiments, a second side surface 11c on the other side of the unit body 11 in the third direction is firmly fixed to the partition plate 8 by a fastener (screw or the like) (not illustrated) while abutting on a plate surface 8a of the partition plate 8 on the machine chamber S2 side.
The refrigerant flow path unit 10 and the partition plate 8 are formed from a material that suppresses electrolytic corrosion due to mutual contact. In one or more embodiments, the plates 21, 22, and 23 of the unit body 11 of the refrigerant flow path unit 10 are stainless steel. The partition plate 8 is configured, for example, by insulation paint being applied to the outer surface including the plate surface 8a. Other configurations of one or more embodiments are similar to those of the first embodiments, and therefore the description thereof will be omitted.
In the air conditioner 1 according to one or more embodiments, the refrigerant flow path unit 10 is supported at a distance from the bottom plate 4 by the partition plate 8, which is the fixed-side member 60 other than the compressor 61. Thus, it is possible to suppress the operational vibration of the compressor 61 installed on the bottom plate 4 from being transmitted to the refrigerant flow path unit 10. As a result, it is possible to suppress the refrigerant flow path unit 10 from being damaged by the operational vibration. In addition, since the refrigerant flow path unit 10 is located at a distance from the bottom plate 4, it is possible to suppress the occurrence of the ice-up phenomenon as in the first embodiments.
Since the partition plate 8 of the casing 3 which supports the refrigerant flow path unit 10 is an existing component of the outdoor unit 2, it is not necessary to provide a dedicated component to support the refrigerant flow path unit 10. Thus, the configuration of the outdoor unit 2 can be simplified.
Since the refrigerant flow path unit 10 and the partition plate 8 are formed from a material that suppresses electrolytic corrosion due to mutual contact, the occurrence of electrolytic corrosion due to mutual contact can be suppressed even if the refrigerant flow path unit 10 is supported by the partition plate 8.
The refrigerant flow path unit 10 and the side plate 7 are formed from a material that suppresses electrolytic corrosion due to mutual contact. In one or more embodiments, the plates 21, 22, and 23 of the unit body 11 of the refrigerant flow path unit 10 are stainless steel. The side plate 7 is configured, for example, by insulation paint being applied to the outer surface including the plate surface 7a. Other configurations of one or more embodiments are similar to those of the fourth embodiments, and therefore the description thereof will be omitted.
In the air conditioner 1 according to one or more embodiments, the refrigerant flow path unit 10 is supported at a distance from the bottom plate 4 by the side plate 7 of the casing 3 which is the fixed-side member 60 other than the compressor 61. Thus, it is possible to suppress the operational vibration of the compressor 61 installed on the bottom plate 4 from being transmitted to the refrigerant flow path unit 10. As a result, it is possible to suppress the refrigerant flow path unit 10 from being damaged by the operational vibration. In addition, since the refrigerant flow path unit 10 is located at a distance from the bottom plate 4, it is possible to suppress the occurrence of the ice-up phenomenon as in the first embodiments.
Since the side plate 7 of the casing 3 which supports the refrigerant flow path unit 10 is an existing component of the outdoor unit 2, it is not necessary to provide a dedicated component to support the refrigerant flow path unit 10. Thus, the configuration of the outdoor unit 2 can be simplified.
Since the refrigerant flow path unit 10 and the side plate 7 are formed from a material that suppresses electrolytic corrosion due to mutual contact, the occurrence of electrolytic corrosion due to mutual contact can be suppressed even if the refrigerant flow path unit 10 is supported by the side plate 7.
A plate surface 11d on the lower side (in this case, the second joint pipe 13 side) of the unit body 11 of the refrigerant flow path unit 10 is installed on the upper surface 62a of the accumulator 62, which is the fixed-side member 60. In this state, the unit body 11 is firmly fixed to the accumulator 62 by a fastener (screw or the like) (not illustrated).
As described above, the refrigerant flow path unit 10 is supported at a distance above the bottom plate 4 by the fixed-side member 60 (accumulator 62) other than the compressor 61. Other configurations of one or more embodiments are similar to those of the first embodiments, and therefore the description thereof will be omitted. The air conditioner 1 according to one or more embodiments has functional effects similar to the first embodiments.
The refrigerant flow path unit 10 is disposed with the second joint pipes 13 facing downward. The predetermined number (two in
Each of the refrigerant pipes 50 extending from the accumulator 62 is formed from a material that suppresses electrolytic corrosion due to contact with the refrigerant flow path unit 10. In one or more embodiments, the refrigerant pipe 50 is configured by, for example, by insulation paint being applied to the contact portions with the accumulator 62 and the second joint pipe 13. Other configurations of one or more embodiments are similar to those of the first embodiments, and therefore the description thereof will be omitted.
The air conditioner 1 according to one or more embodiments, similarly to the first embodiments, can suppress the refrigerant flow path unit 10 from being damaged by the operational vibration of the compressor 61. In addition, the occurrence of the ice-up phenomenon can be effectively suppressed.
Since the refrigerant pipes 50 and the accumulator 62 which support the refrigerant flow path unit 10 are existing components, it is not necessary to provide dedicated components to support the refrigerant flow path unit 10. In addition, in the first embodiments, a dedicated fastener for fixing the refrigerant flow path unit 10 to the accumulator 62 is required, but in one or more embodiments, a dedicated fastener is not required. Thus, the configuration of the outdoor unit 2 can also be simplified.
Since the refrigerant flow path unit 10, the refrigerant pipes 50, and the accumulator 62 are formed from a material that suppresses electrolytic corrosion due to mutual contact, the occurrence of electrolytic corrosion due to mutual contact can be suppressed even if the refrigerant flow path unit 10 is supported by the accumulator 62 with the refrigerant pipes 50 interposed therebetween.
The refrigerant pipe 50 and the second joint pipe 13 illustrated in
The refrigerant flow path unit 10 is supported at a distance from the bottom plate 4 by the tube plate 63b on one side (right side in
As described above, the refrigerant flow path unit 10 is supported at a distance above the bottom plate 4 by the fixed-side member 60 (heat exchanger 63) other than the compressor 61. Other configurations of one or more embodiments are similar to those of the second embodiments, and therefore the description thereof will be omitted. The air conditioner 1 according to one or more embodiments has functional effects similar to the second embodiments.
The refrigerant flow path unit 10 is supported at a distance from the bottom plate 4 by a predetermined number (for example, four) of supports 70. Each of the supports 70 are formed in a columnar shape, for example. The support 70 is a dedicated component to support the refrigerant flow path unit 10. The end surface on one side of the support 70 in the longitudinal direction is installed on the upper surface of the bottom plate 4 of the casing 3 and fixed to the upper surface. The support 70 is a component fixed to the casing 3, and therefore is the fixed-side member 60.
The plate surface 11d on the lower side of the unit body 11 of the refrigerant flow path unit 10 is installed on an end surface (upper surface) 70a on the other side of the support 70 in the longitudinal direction, the support 70 being installed at each of the four corners of the plate surface 11d. In this state, the unit body 11 is firmly fixed to the support 70 by a fastener (screw or the like) (not illustrated). As described above, the refrigerant flow path unit 10 is supported at a distance above the bottom plate 4 by the fixed-side member 60 (support 70) other than the compressor 61.
The support 70 is formed from a material that suppresses electrolytic corrosion due to contact with the refrigerant flow path unit 10. In one or more embodiments, the support 70 is configured, for example, by insulation paint being applied to the outer surface including the end surface 70a. Other configurations of one or more embodiments are similar to those of the third embodiments, and therefore the description thereof will be omitted.
In the air conditioner 1 according to one or more embodiments, the refrigerant flow path unit 10 is supported at a distance from the bottom plate 4 by the support 70, which is the fixed-side member 60 other than the compressor 61. Thus, it is possible to suppress the operational vibration of the compressor 61 installed on the bottom plate 4 from being transmitted to the refrigerant flow path unit 10. As a result, it is possible to suppress the refrigerant flow path unit 10 from being damaged by the operational vibration. In addition, since the refrigerant flow path unit 10 is located at a distance from the bottom plate 4, it is possible to suppress the occurrence of the ice-up phenomenon as in the first embodiments.
Since the refrigerant flow path unit 10 and the support 70 are formed from a material that suppresses electrolytic corrosion due to mutual contact, the occurrence of electrolytic corrosion due to mutual contact can be suppressed even if the refrigerant flow path unit 10 is supported by the support 70.
The refrigerant flow path unit 10 may be supported by the side surface of the support 70 as long as the refrigerant flow path unit 10 is at a distance from the bottom plate 4. In addition, the refrigerant flow path unit 10 in the lying orientation according to one or more embodiments may be supported by the spacer 69 as in the third embodiments.
In one or more embodiments, the end surface 11a on the other side of the unit body 11 in the second direction abuts on the plate surface 8a of the partition plate 8 on the machine chamber S2 side. In this state, the unit body 11 is firmly fixed to the partition plate 8 by a fastener (screw or the like) (not illustrated).
As described above, the refrigerant flow path unit 10 is supported at a distance above the bottom plate 4 by the fixed-side member 60 (partition plate 8) other than the compressor 61. Other configurations of one or more embodiments are similar to those of the fourth embodiments, and therefore the description thereof will be omitted. The air conditioner 1 according to one or more embodiments has functional effects similar to the fourth embodiments.
In one or more embodiments, the end surface 11f on one side of the unit body 11 in the second direction abuts on the plate surface 7a of the side plate 7 facing the machine chamber S2. In this state, the unit body 11 is firmly fixed to the side plate 7 by a fastener (screw or the like) (not illustrated).
As described above, the refrigerant flow path unit 10 is supported at a distance above the bottom plate 4 by the fixed-side member 60 (side plate 7) other than the compressor 61. Other configurations of one or more embodiments are similar to those of the fifth embodiments, and therefore the description thereof will be omitted. The air conditioner 1 according to one or more embodiments has functional effects similar to the fifth embodiments.
The shutoff valve 71 is fixed to a mounting plate 72 by a fastener (screw or the like) (not illustrated). The mounting plate 72 is fixed to a support plate 73. The mounting plate 72 and the support plate 73 are both disposed in the casing 3, with respective plate surfaces 72a and 73a aligned in the vertical direction. The lower portion of one of the plate surfaces 72a of the mounting plate 72 is overlapped with the upper portion of one of the plate surfaces 73a of the support plate 73. In this state, the mounting plate 72 is firmly fixed to the support plate 73 by a fastener (screw or the like) (not illustrated). The support plate 73 is installed on the upper surface of the bottom plate 4 and fixed to the upper surface. Therefore, since the support plate 73 is a component fixed to the casing 3, and therefore is the fixed-side member 60.
The refrigerant flow path unit 10 is supported in the standing orientation by the support plate 73 with the mounting plate 72 interposed therebetween. In one or more embodiments, the lower portion of a plate surface 11e on one side (here, the first joint pipe 12 side) of the unit body 11 abuts on the upper portion of the one plate surface 72a of the mounting plate 72. In this state, the unit body 11 is firmly fixed to the mounting plate 72 by a fastener (screw or the like) (not illustrated). As described above, the refrigerant flow path unit 10 is supported at a distance above the bottom plate 4 by the fixed-side member 60 (support plate 73) other than the compressor 61, with the mounting plate 72 interposed therebetween.
The mounting plate 72 and the support plate 73 are formed from a material that suppresses electrolytic corrosion due to contact with the refrigerant flow path unit 10. In one or more embodiments, the mounting plate 72 is configured, for example, by insulation paint being applied to the outer surface including the one plate surface 72a. The support plate 73 is configured, for example, by insulation paint being applied to the outer surface including the one plate surface 73a. Other configurations of one or more embodiments are similar to those of the first embodiments, and therefore the description thereof will be omitted.
In the air conditioner 1 according to one or more embodiments, the refrigerant flow path unit 10 is supported at a distance from the bottom plate 4 by the support plate 73, which is the fixed-side member 60 other than the compressor 61. Thus, it is possible to suppress the operational vibration of the compressor 61 installed on the bottom plate 4 from being transmitted to the refrigerant flow path unit 10. As a result, it is possible to suppress the refrigerant flow path unit 10 from being damaged by the operational vibration. In addition, since the refrigerant flow path unit 10 is located at a distance from the bottom plate 4, it is possible to suppress the occurrence of the ice-up phenomenon as in the first embodiments.
Since the support plate 73 supporting the refrigerant flow path unit 10 is an existing component that supports the shutoff valves 71, with the mounting plate 72 interposed therebetween, in the outdoor unit 2, it is not necessary to provide a dedicated component to support the refrigerant flow path unit 10. Thus, the configuration of the outdoor unit 2 can be simplified.
Since the refrigerant flow path unit 10, the mounting plate 72, and the support plate 73 are formed from a material that suppresses electrolytic corrosion due to mutual contact, the occurrence of electrolytic corrosion due to mutual contact can be suppressed even if the refrigerant flow path unit 10 is supported by the support plate 73 with the mounting plate 72 interposed therebetween.
The predetermined number (two in
Each of the shutoff valves 71 is formed from a material that suppresses electrolytic corrosion due to contact with the refrigerant flow path unit 10. The shutoff valve 71 is configured, for example, by insulation paint being applied to the contact portions with the mounting plate 72 and the refrigerant pipe 50. Similarly, the refrigerant pipe 50 extending from the shutoff valve 71 is formed from a material that suppresses electrolytic corrosion due to contact with the refrigerant flow path unit 10. In one or more embodiments, the refrigerant pipe 50 is configured by insulation paint being applied to the contact portions with the shutoff valve 71 and the first joint pipe 12. Other configurations of one or more embodiments are similar to those of the twelfth embodiments, and therefore the description thereof will be omitted.
The air conditioner 1 according to one or more embodiments, similarly to the twelfth embodiments, can suppress the refrigerant flow path unit 10 from being damaged by the operational vibration of the compressor 61. In addition, the occurrence of the ice-up phenomenon can be suppressed.
Since the refrigerant pipes 50, the shutoff valves 71, the mounting plate 72, and the support plate 73 that support the refrigerant flow path unit 10 are existing components, it is not necessary to provide dedicated components to support the refrigerant flow path unit 10. In addition, in the twelfth embodiments, a dedicated fastener for fixing the refrigerant flow path unit 10 to the mounting plate 72 is required, but in one or more embodiments, a dedicated fastener is not required. Thus, the configuration of the outdoor unit 2 can also be simplified.
Since the refrigerant flow path unit 10, the refrigerant pipes 50, the shutoff valves 71, the mounting plate 72, and the support plate 73 are formed from a material that suppresses electrolytic corrosion due to mutual contact, the occurrence of electrolytic corrosion due to mutual contact can be suppressed even if the refrigerant flow path unit 10 is supported by the support plate 73 with the refrigerant pipes 50, the shutoff valves 71, and the mounting plate 72 interposed therebetween.
As described above, the refrigerant flow path unit 10 is supported at a distance above the bottom plate 4 by the fixed-side member 60 (support plate 73) other than the compressor 61, with the mounting plate 72 interposed therebetween. Other configurations of one or more embodiments are similar to those of the twelfth embodiments, and therefore the description thereof will be omitted. The air conditioner 1 according to one or more embodiments has functional effects similar to the twelfth embodiments.
The refrigerant flow path unit 10 is disposed with the first joint pipes 12 facing downward. The predetermined number (two in
As described above, the refrigerant flow path unit 10 is supported at a distance above the bottom plate 4 by the fixed-side member 60 (mounting plate 72) other than the compressor 61. Other configurations of one or more embodiments are similar to those of the thirteenth embodiments, and therefore the description thereof will be omitted. The air conditioner 1 according to one or more embodiments has functional effects similar to the thirteenth embodiments.
The air conditioner 1 is not limited to the above embodiments, and may be, for example, an air conditioner dedicated to cooling or a room air conditioner. In the case of a room air conditioner, the refrigerant flow path unit 10 may be suspended from the top panel of the casing of the outdoor unit and supported. The refrigerant flow path unit 10 may be supported by a plurality of the fixed-side members 60 (for example, the side surface of the accumulator 62 and the tube plate 63b).
The refrigerant flow path unit 10 is directly supported by the fixed-side member 60, but may be supported by the fixed-side member 60 with a support member, such as a support base, interposed therebetween. In this case, the refrigerant flow path unit 10, the support member, and the fixed-side member 60 may be formed from a material that suppresses electrolytic corrosion due to mutual contact.
In the twelfth to fifteenth embodiments, the mounting plate 72 may be fixed to the upper surface of the bottom plate 4 while directly installed on the upper surface without the support plate 73 interposed therebetween. In this case, the mounting plate 72 serves as the fixed-side member 60 fixed to the casing 3. Therefore, the refrigerant flow path unit 10 is supported by the mounting plate 72, which is the fixed-side member 60 other than the compressor 61, by being directly fixed to the mounting plate 72 or indirectly fixed to the mounting plate 72 with the refrigerant pipe 50 or the like interposed therebetween, as described above.
Although the disclosure has been described with respect to only a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that various other embodiments may be devised without departing from the scope of the present disclosure. Accordingly, the scope of the disclosure should be limited only by the attached claims.
1 air conditioner
3 casing
4 bottom plate
7 side plate
8 partition plate
10 refrigerant flow path unit
15 refrigerant flow path
60 fixed-side member
61 compressor
62 accumulator (container)
63 heat exchanger
63
a heat transfer tube
63
b tube plate
Number | Date | Country | Kind |
---|---|---|---|
2021-060340 | Mar 2021 | JP | national |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2022/015142 | Mar 2022 | US |
Child | 18374235 | US |