1. Field of the Invention
The present invention relates to an air conditioner having a plurality of indoor units and one or more outdoor units which are connected in parallel with each other.
2. Background Art
In recent years, with improved living standards and their workability, air conditioners have come to require less and less space for their installation and also to be expected to be able to air condition a whole building. With this tendency, the demands for smaller compressors and for multi-room type air conditioners provided with a plurality of indoor units are on the increase. To meet this demand, it has been tried to stabilize the lubricating oil used in the compressors.
An air conditioner provided with a plurality of indoor units and a plurality of outdoor units connected in parallel is known from Japanese Patent Unexamined Publication No. H11-117884. A system of this type requires long piping, so that refrigerant is replenished to provide the necessary amount. However, the replenishment of the refrigerant causes the oil amount in the refrigeration cycle to be insufficient, thus lowering the ratio of the oil to the refrigerant (hereinafter, the oil dilution ratio). This damages the reliability of the compressor.
In such an air conditioner, the use of conventional oil separator 7 allows the oil separated from the refrigerant to be returned to the compressor. However, when the type of indoor unit A is changed, a larger number of indoor units A are connected, or a plurality of outdoor units B are connected by the users request, the piping becomes longer, making it necessary to replenish the refrigerant to supply the sufficient amount. This causes the oil amount in the refrigeration cycle insufficient, making it impossible to maintain the required oil dilution ratio.
In order to solve the aforementioned problem, the present invention is provided with an oil separator which has a predetermined capacity and can store extra oil (hereinafter, separator with the oil tank) on the high-pressure side. As a result, in an air conditioner provided with a plurality of compressors, the oil level can be maintained in each of the compressors, thereby improving the reliability. In addition, the oil separator with the oil tank having the predetermined capacity can act as a buffer in response to an increase or decrease in the oil amount in the piping. In the case of a refrigeration cycle with a plurality of outdoor units connected in parallel, the separator with the oil tank distributes oil in such a manner as not to supply the outdoor units with too little or too much oil. The way of the distribution is not affected by the properties of the refrigerant or oil to be used. This makes it possible to provide a separator with the oil tank which can securely return oil to highly versatile general compressors, while maintaining the required oil dilution ratio in the refrigeration cycle.
In the air conditioner of the present invention, a separator with an oil tank which includes a reservoir to store extra oil, a first oil return tube having an opening above the surface of the extra oil, and a second oil return tube having an opening below the surface of the extra oil is provided in a high-pressure gas circuit in which refrigerant is always in gas phase. With this structure, the lubricating oil discharged into the exhaust gas from the compressors, which are basic functional components, can be separated, stored and returned to the compressors. The structure also makes it possible to maintain the required oil dilution ratio in refrigeration cycle, while using highly versatile general compressors.
Embodiments of the present invention will be described as follows with reference to accompanying drawings. Note that the present invention is not limited to these embodiments described below.
Separator-with-oil-tank 71 is disposed between the outlet of compressor 11 and the inlet of condenser 21, and is provided with an oil separation mechanism. Separator-with-oil-tank 71 has an oil reservoir provided with first oil return tube 81 positioned above the surface of the extra oil, and second oil return tube 82 positioned below the surface of the extra oil.
The refrigerant gas allows the oil that has been discharged into the exhaust gas to be separated from the gas and then to be dropped. In the case of providing a single indoor unit, the oil thus separated in separator-with-oil-tank 71 by this refrigerant gas is returned from first oil return tube 81 to the inlet tube of compressor 11. On the other hand, in the case where indoor units A1 and A2 are connected, replenishing the refrigerant gas would cause a decrease in the oil dilution ratio. To avoid the decrease, the extra oil thus stored is supplied to compressor 11 through opening valve 91 from second oil return tube 82. This operation can maintain the oil level of compressor 11 without the influence of the replenishment of the refrigerant gas, and can also maintain the required oil dilution ratio so as to improve the reliability.
Separator-with-oil-tank 71 is disposed between the confluence of the outlets of compressors 11, 12 and the inlet of condenser 21, and is provided with an oil separation mechanism. Separator-with-oil-tank 71 has an oil reservoir provided with first oil return tube 81 positioned above the surface of the extra oil, and second oil return tubes 82a and 82b positioned below the surface of the extra oil.
The refrigerant gas allows the oil that has been discharged into the exhaust gas to be separated from the gas and then to be dropped. In the case of providing a single indoor unit, the oil thus separated in separator-with-oil-tank 71 by this refrigerant gas is returned from first oil return tube 81 to the inlet tubes of compressors 11 and 12. On the other hand, in the case where indoor units A1 and A2 are connected, replenishing the refrigerant gas would cause a decrease in the oil dilution ratio. To avoid the decrease, the extra oil thus stored is supplied to compressors 11 and 12 through opening valves 91 from second oil return tubes 82a and 82b. This operation can maintain the oil level of compressors 11 and 12 without the influence of the replenishment of the refrigerant gas, and can also maintain the required oil dilution ratio so as to improve the reliability.
In each refrigeration cycle, separator-with-oil-tank 71 is disposed between the outlet of compressor 11 and the inlet of condenser 21, and is provided with an oil separation mechanism. Separator-with-oil-tank 71 has an oil reservoir provided with first oil return tube 81 positioned above the surface of the extra oil, and second oil return tube 82 positioned below the surface of the extra oil.
The connection between indoor units A1 and A2 and the connection between outdoor units B1a and B1b require longer piping. Replenishing the refrigerant gas would cause a decrease in the oil dilution ratio. To avoid the decrease, the extra oil thus stored is supplied to compressor 11 of outdoor unit B1a through opening valve 91 from second oil return tube 82 of separator-with-oil-tank 71 of outdoor unit B1a. This operation can maintain the oil level of compressor 11 in outdoor unit B1a without the influence of the replenishment of the refrigerant gas, and can also maintain the required oil dilution ratio so as to improve the reliability.
In the case where a decrease in the oil dilution ratio cannot be avoided only by supplying the extra oil of separator-with-oil-tank 71 of outdoor unit B1a, the extra oil is supplied to compressor 11 of outdoor unit B1b through opening valve 91 from second oil return tube 82 of separator-with-oil-tank 71 in outdoor unit B1b. This operation can prevent a decrease in the oil dilution ratio, and also can maintain the oil level of compressor 11 in outdoor unit B1b so as to improve the reliability.
In each refrigeration cycle, separator-with-oil-tank 71 is disposed between the confluence of the outlets of compressors 11, 12 and the inlet of condenser 21, and is provided with an oil separation mechanism. Separator-with-oil-tank 71 has an oil reservoir provided with first oil return tube 81 positioned above the surface of the extra oil, and second oil return tubes 82a and 82b positioned below the surface of the extra oil.
The connection between indoor units A1 and A2 and the connection between outdoor units B2a and B2b require longer piping. Replenishing the refrigerant gas would cause a decrease in the oil dilution ratio. To avoid the decrease, the extra oil thus stored is supplied to compressor 11 of outdoor unit B2a through opening valve 91 from second oil return tubes 82a and 82b of separator-with-oil-tank 71 of outdoor unit B2a. This operation can maintain the oil level of compressors 11 and 12 in outdoor unit B2a without the influence of the replenishment of the refrigerant gas, and can also maintain the required oil dilution ratio so as to improve the reliability.
In the case where a decrease in the oil dilution ratio cannot be avoided only by supplying the extra oil of separator-with-oil-tank 71 of outdoor unit B2a, extra oil is also supplied to compressors 11 and 12 of outdoor unit B2b through opening valve 91 from second oil return tubes 82a and 82b of separator-with-oil-tank 71 of outdoor unit B2b. This operation can prevent a decrease in the oil dilution ratio, and can also maintain the oil level of compressors 11 and 12 in outdoor unit B2b so as to improve the reliability.
Although one or two compressors are provided in the aforementioned embodiments, three or more compressors may be provided. These compressors may have different abilities from each other.
The aforementioned embodiments are on the condition of using refrigerant R22 currently used for air conditioners, and oil that can be dissolved in it. However, instead of these, HFC mixture refrigerants and oil that can be dissolved in them can be used.
As described hereinbefore, in the air conditioner according to the present invention, separator with an oil tank is disposed between the outlet of the compressor and the inlet of the condenser. As a result, even when the refrigerant gas is replenished to cope with a change in the type or number of the indoor units or a change in the number of the outdoor units, it becomes possible to securely return the oil to the highly versatile general compressor in the refrigeration cycle while maintaining the required oil dilution ratio.
Number | Date | Country | Kind |
---|---|---|---|
2004-201521 | Jul 2004 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3138007 | Friedman et al. | Jun 1964 | A |
3633377 | Quick | Jan 1972 | A |
4589263 | DiCarlo et al. | May 1986 | A |
5361595 | Shimura et al. | Nov 1994 | A |
5509273 | Lakowske et al. | Apr 1996 | A |
5542499 | Westermeyer | Aug 1996 | A |
5553460 | Isaacs | Sep 1996 | A |
5605058 | Kurachi et al. | Feb 1997 | A |
5634345 | Alsenz | Jun 1997 | A |
5673567 | Dube | Oct 1997 | A |
5692389 | Lord et al. | Dec 1997 | A |
5694784 | Frey et al. | Dec 1997 | A |
5768903 | Sekigami et al. | Jun 1998 | A |
Number | Date | Country |
---|---|---|
11-117884 | Apr 1999 | JP |
2001-82815 | Mar 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20060005570 A1 | Jan 2006 | US |