The present application claims priority under 35 U.S.C. 119 and 35 U.S.C. 365 to Korean Patent Application No. 10-2011-0110253, filed in Korea on Oct. 27, 2011, which is hereby incorporated by reference in its entirety.
1. Field
An air conditioner is disclosed herein.
2. Background
Air conditioners are known. However, they suffer from various disadvantages.
Embodiments will be described in detail with reference to the following drawings in which like reference numerals refer to like elements, and wherein:
Hereinafter, embodiments will be described with reference to the accompanying drawings. Regarding the reference numerals assigned to the elements in the drawings, it should be noted that the same elements will be designated by the same reference numerals, wherever possible, even though they are shown in different drawings. Also, in the description of embodiments, detailed description of well-known related structures or functions has been omitted.
Also, in the description of embodiments, terms such as first, second, A, B, (a), or (b), for example, may be used herein when describing components of the present invention. Each of these terminologies is not used to define an essence, order, or sequence of a corresponding component, but used merely to distinguish the corresponding component from other component(s). It should be noted that if it is described in the specification that one component is “connected,” “coupled,” or “joined” to another component, the former may be directly “connected,” “coupled,” and “joined” to the latter or “connected,” “coupled,” and “joined” to the latter via another component.
Air conditioners may include a refrigerant cycle including a compressor, a condenser, an expansion mechanism, and an evaporator that heats/cools an indoor space or purifies air. Air conditioners may be classified as a single type air conditioner, in which a single indoor unit or device is connected to a single outdoor unit or device, or a multi-type air conditioner, in which a plurality of indoor units or devices is connected to a single outdoor or device to provide the effect of a plurality of air conditioners.
The indoor device 20 may include a plurality of indoor devices 21 and 22. Although one outdoor device is shown connected to two indoor devices herein for convenience in description, embodiments are not limited to this number of outdoor and indoor devices. For example, two or more indoor devices may be connected to two or more outdoor devices.
The outdoor device 10 may include a compression device 110 that compresses refrigerant, and an outdoor heat exchanger 130, in which outdoor air exchanges heat with the refrigerant. The compression device 110 may include one or more compressors. For example, the compression device 110 may include a plurality of compressors 111 and 112. The compressors 111 and 112 may include an inverter compressor having a variable capacity, and a constant-speed compressor. Alternatively, the compressors 111 and 112 may all be inverter compressors or constant-speed compressors. The compressors 111 and 112 may be arranged in parallel. At least one portion of the compressors 111 and 112 may operate according to a capacity of the indoor device 20.
Discharge tubes of the compressors 111 and 112 may include individual tubes 115 and a joint tube 116. That is, the individual tubes 115 of the compressors 111 and 112 may join or be jointed to the joint tube 116. The individual tubes 115 may be provided with oil separators 113 and 114 that separate oil from the refrigerant. Oil separated from the refrigerant by the oil separators 113 and 114 may be recovered to the compressors 111 and 112.
The joint tube 116 may be connected to a valve 120, which may be a four-way valve, that switches refrigerant flow. The valve 120 may be connected to the outdoor heat exchanger 130 through a connecting tube. The connecting tube may include a common connection tube 122, a first connection tube 123, and a second connection tube 124. The valve 120 may be connected to an accumulator 117, which may be connected to the compression device 110.
The outdoor heat exchanger 130 may include a first heat exchange part 131 and a second heat exchange part 132. The first and second heat exchange parts 131 and 132 may be separate heat exchangers, or a single outdoor heat exchanger divided into the first and second heat exchange parts 131 and 132 according to refrigerant flow. The first and second heat exchange parts 131 and 132 may be disposed horizontally or vertically. The first and second heat exchange parts 131 and 132 may have different or the same heat exchange capacity. The first heat exchange part 131 may communicate with the first connection tube 123, and the second heat exchange part 132 may communicate with the second connection tube 124.
The second connection tube 124 may be provided with a check valve 125 that allows the refrigerant to flow only in one direction. The check valve 125 may allow the refrigerant discharged from the second heat exchange part 132 to flow from the common connection tube 122 through the second connection tube 124.
A first manifold 133 may be connected to a side of the first heat exchange part 131, and a second manifold 134 may be connected to another side of the first heat exchange part 131. The first manifold 133 may distribute the refrigerant to the first heat exchange part 131 when the air conditioner 1 is in a cooling operation. The second manifold 134 may distribute the refrigerant to the first heat exchange part 131 when the air conditioner 1 is in a heating operation.
Each of the first and second manifolds 133 and 134 may include a common tube (no reference number) and a plurality of branch tubes (no reference number). The branch tubes may be connected to refrigerant tubes of the first and second heat exchange parts 131 and 132. As the first and second manifolds 133 and 134 may have a well-known structure, a detailed description thereof has been omitted.
The first connection tube 123 may be connected to the common tube of the first manifold 133. First capillaries 135 may be connected to the second manifold 134. The first capillaries 135 may uniformly divide the refrigerant flow when the air conditioner 1 is in the heating operation. Then, the divided refrigerant may be introduced to the second manifold 134, and distributed to the first heat exchange part 131. The first capillaries 135 may be connected to the common tube of the second manifold 134, or to the branch tubes, respectively. In this case, the number of the branch tubes may be equal to the number of the first capillaries 135.
A third manifold 137 may be connected to a side of the second heat exchange part 132, and second capillaries 138 may be connected to another side of the second heat exchange part 132. The third manifold 137 may distribute the refrigerant to the second heat exchange part 132 when the air conditioner 1 is in the cooling operation. The second capillaries 138 may uniformly divide the refrigerant flow when the air conditioner 1 is in the heating operation.
A pass variable tube 161 may be connected to the second connection tube 124 and the second manifold 134. The pass variable tube 161 may be provided with a pass variable valve 162. The pass variable valve 162 may be a solenoid valve; however, embodiments are not limited thereto.
The pass variable tube 161 may be connected to the common tube of the second manifold 134, or to one of the branch tubes thereof. The pass variable tube 161 may be connected to the second connection tube 124 between the check valve 125 and the third manifold 137.
The pass variable tube 161 and the pass variable valve 162 may vary refrigerant flow within the outdoor heat exchanger 130. The pass variable tube 161 and the pass variable valve 162 may control the refrigerant to simultaneously flow to the first and second heat exchange parts 131 and 132 (that is, to flow in parallel thereto), or control the refrigerant to flow to one of the first and second heat exchange parts 131 and 132, and then, to the other. Alternatively, flows of the refrigerant under different conditions (for example, in temperature, in pressure, or in a state such as vapor and liquid states) may be introduced to the first and second heat exchange parts 131 and 132.
In the outdoor heat exchanger 130, the refrigerant may exchange heat with outdoor air blown by a fan motor assembly 140 that includes an outdoor fan and a fan motor. A plurality of fan motor assemblies 140 may be provided. The number of fan motor assemblies 140 provided may be equal in number to the number of the first and second heat exchange parts 131 and 132. One fan motor assembly 140 is shown in
The outdoor device 10 may include an outdoor expansion mechanism 150. The outdoor expansion mechanism 150 does not expand the refrigerant discharged from the outdoor heat exchanger 130, bur rather, expands the refrigerant entering the outdoor heat exchanger 130.
The outdoor expansion mechanism 150 may include a first outdoor expansion valve 151 (or a first outdoor expansion part) connected to the first capillaries 135 through a third connection tube 136, and a second outdoor expansion valve 152 (or a second outdoor expansion part) connected to the second capillaries 138 through a fourth connection tube 139. Diameters of the third and fourth connection tubes 136 and 139 may be greater than diameters of the first and second capillaries 135 and 138. Diameters of the common tubes and branch tubes of the second and third manifolds 134 and 137 may be greater than diameters of the first and second capillaries 135 and 138.
The refrigerant expanded by the first outdoor expansion valve 151 may flow to the first heat exchange part 131. The refrigerant expanded by the second outdoor expansion valve 152 may flow to the second heat exchange part 132. The first and second outdoor expansion valves 151 and 152 may be electronic expansion valves (EEVs), for example.
The outdoor device 10 may be connected to the indoor device 20 through a gas tube 31 and a liquid tube 34. The gas tube 31 may be connected to the valve 120, and the liquid tube 34 may be connected to the outdoor expansion mechanism 150.
The indoor device 21 may include an indoor heat exchanger 211, an indoor fan 212, and an indoor expansion mechanism 213. The indoor device 22 may include indoor heat exchanger 221, an indoor fan 222, and an indoor expansion mechanism 223. The indoor expansion mechanisms 213 and 223 may be electronic expansion valves (EEVs), for example.
Hereinafter, cooling and heating operations of an air conditioner, and refrigerant flow during the cooling and heating operations will now be described according to this embodiment.
Then, the refrigerant may flow to the outdoor device 10 through the liquid tube 34. The refrigerant arriving at the outdoor device 10 may be expanded by the first and second outdoor expansion valves 151 and 152, and then, flow to the first and second heat exchange parts 131 and 132. When the air conditioner 1 performs the heating operation, the pass variable valve 162 may be closed.
More particularly, the refrigerant expanded by the first outdoor expansion valve 151 may flow through the third connection tube 136, and then, may be distributed by the first capillaries 135. Thus, the refrigerant from the third connection tube 136 may be evenly distributed by the first capillaries 135, and depressurized in the first capillaries 135. Further, the pressure of the refrigerant discharged from the first outdoor expansion valve 151 may be decreased by the first capillaries 135, to thereby improve heating performance.
Next, the refrigerant may be introduced to the second manifold 134. At this point, when the first capillaries 135 are connected to the common tube 136 of the second manifold 134, the refrigerant discharged from the first capillaries 135 may be introduced to the common tube 136 of the second manifold 134, then, flow through the branch tubes, and then, through the first heat exchange part 131. Because the pass variable valve 162 is closed, the refrigerant introduced to the second manifold 134 may be prevented from flowing through the pass variable tube 161.
The refrigerant may be evaporated in the first heat exchange part 131, and then, flow of the evaporated refrigerant may be joined in the first manifold 133, and introduced to the first connection tube 123. The refrigerant expanded by the second outdoor expansion valve 152 may flow through the fourth connection tube 139, and then, may be distributed by the second capillaries 138. Thus, the refrigerant from the fourth connection tube 139 may be evenly distributed by the second capillaries 138, and then, flow to the second heat exchange part 132. The refrigerant may be evenly distributed to the second heat exchange part 132 through the second capillaries 138, and may be depressurized by the second capillaries 138, to thereby improve heating performance.
The refrigerant may be evaporated in the second heat exchange part 132, and then, flow of the evaporated refrigerant may be joined in the third manifold 137, and introduced to the second connection tube 124. At this point, because the pass variable valve 162 is closed, the refrigerant introduced to the second connection tube 124 may be prevented from flowing through the pass variable tube 161. The refrigerant discharged from the second connection tube 124 may pass through the check valve 125, then, may be introduced to the common connection tube 122 to join the refrigerant discharged from the first connection tube 123, and next, may be introduced to the accumulator 117 through the valve 120. Finally, vapor refrigerant of the refrigerant introduced to the accumulator 117 may be introduced to the compression device 110.
As such, when the air conditioner 1 performs the heating operation, the pass variable valve 162 may be closed, and the distributed refrigerant introduced to the first and second heat exchange parts 131 and 132. Accordingly, a passing amount of refrigerant increases to improve evaporating performance, thus, improving heating performance.
When the air conditioner 1 performs the cooling operation, the pass variable valve 162 may be opened, the first outdoor expansion valve 151 closed, and the second outdoor expansion valve 152 fully opened (a degree of opening is 100). More particularly, the refrigerant discharged from the common connection tube 122 may be introduced to the first manifold 133 through the first connection tube 123. However, the refrigerant discharged from the common connection tube 122 may not pass through the check valve 125 of the second connection tube 124.
The refrigerant introduced to the first manifold 133 may be distributed to the first heat exchange part 131 by the first manifold 133. The refrigerant may be condensed in the first heat exchange part 131, and then flow to the second manifold 134. At this point, the first outdoor expansion valve 151 may be closed, and the pass variable tube 161 opened. Thus, the refrigerant discharged from the second manifold 134 may flow to the pass variable tube 161, without flowing to the first capillaries 135. Then, the refrigerant may be introduced to the third manifold 137. The refrigerant introduced to the third manifold 137 may be distributed to the second heat exchange part 132 by the third manifold 137. The refrigerant may be condensed in the second heat exchange part 132, and then flow to the second capillaries 138. Then, the refrigerant may flow through the fourth connection tube 139, and then pass through the second outdoor expansion valve 152, without expansion. After that, the refrigerant may be introduced to the indoor devices 21 and 22 through the liquid tube 34.
The refrigerant introduced to the indoor devices 21 and 22 may be expanded by the indoor expansion mechanisms 213 and 223, and then, may be introduced to the indoor heat exchangers 211 and 221. The refrigerant may be evaporated in the indoor heat exchangers 211 and 221, and then, flow to the outdoor device 10 through the gas tube 31. Next, the refrigerant may be introduced to the accumulator 117 through the valve 120. Vapor refrigerant of the refrigerant introduced to the accumulator 135 may be introduced to the compression device 110.
As such, when the air conditioner 1 performs the cooling operation, the refrigerant may sequentially flow through the first and second heat exchange parts 131 and 132. Accordingly, a flowing length of the refrigerant increases, and thus, condensing performance of the refrigerant may be improved. That is, a heat exchange time and area of the refrigerant may be increased, to thereby may improve condensing performance, thus improving cooling performance.
In addition, as the refrigerant discharged from the first heat exchange part 131 flows through the pass variable tube 161, without passing through the first capillaries 135, pressure loss of the refrigerant discharged from the first heat exchange part 131 may be prevented.
The pass variable tube 161 may be a separate part from the second manifold 134, or may be a part thereof. That is, the second manifold 134 may include the pass variable tube 161.
The number of the first and second heat exchange parts 131 and 132 shown forming the outdoor heat exchanger 130 is two; however, embodiments are not limited thereto.
Embodiments disclosed provide an air conditioner. An air conditioner according to embodiments disclosed herein may include an indoor device, and an outdoor device connected to the indoor device. The outdoor device may include an outdoor heat exchanger including heat exchange parts; a plurality of outdoor expansion parts corresponding to the heat exchange parts; a pass variable tube configured to vary refrigerant flow in the outdoor heat exchanger; and a pass variable valve provided to the pass variable tube. The heat exchange parts may include a first heat exchange part. The first heat exchange part may be connected to a manifold that distributes refrigerant flow in a heating operation. The manifold may be connected to capillaries connected to a first outdoor expansion part of the plurality of outdoor expansion parts, and the pass variable tube may be connected to the manifold.
Embodiments disclosed herein further provide an air conditioner that may include an indoor device, and an outdoor device connected to the indoor device. The outdoor device may include an outdoor heat exchanger; an outdoor expansion mechanism that communicates with the outdoor heat exchanger; a pass variable tube that varies refrigerant flow in the outdoor heat exchanger; and a pass variable valve provided to the pass variable tube. The outdoor heat exchanger may include a first heat exchange part and a second heat exchange part. The first heat exchange part may be connected to a first manifold and a second manifold to distribute refrigerant flow. The second manifold may be connected to capillaries, and the pass variable tube may be connected to the second manifold.
Even though all the elements of the embodiments are coupled into one or operated in the combined state, the present disclosure is not limited to such an embodiment. That is, all the elements may be selectively combined with each other without departing the scope of the invention. Furthermore, when it is described that one comprises (or includes or has) some elements, it should be understood that it may comprise (or include or has) only those elements, or it may comprise (or include or have) other elements as well as those elements if there is no specific limitation. Unless otherwise specifically defined herein, all terms including technical or scientific terms are to be given meanings understood by those skilled in the art. Like terms defined in dictionaries, generally used terms needs to be construed as meaning used in technical contexts and are not construed as ideal or excessively formal meanings unless otherwise clearly defined herein.
Although embodiments have been described with reference to a number of illustrative embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. Therefore, the preferred embodiments should be considered in descriptive sense only and not for purposes of limitation, and also the technical scope of the invention is not limited to the embodiments. Furthermore, is defined not by the detailed description of the invention but by the appended claims, and all differences within the scope will be construed as being comprised in the present disclosure.
Any reference in this specification to “one embodiment,” “an embodiment,” “example embodiment,” etc., means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. The appearances of such phrases in various places in the specification are not necessarily all referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with any embodiment, it is submitted that it is within the purview of one skilled in the art to effect such feature, structure, or characteristic in connection with other ones of the embodiments.
Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure. More particularly, various variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
10-2011-0110253 | Oct 2011 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
2148415 | Labberton | Feb 1939 | A |
4057976 | del Toro et al. | Nov 1977 | A |
4173865 | Sawyer | Nov 1979 | A |
4240269 | Bussjager | Dec 1980 | A |
4262493 | Lackey et al. | Apr 1981 | A |
4306421 | Gucwa et al. | Dec 1981 | A |
20020194857 | Kato et al. | Dec 2002 | A1 |
20030230096 | Hwang, II | Dec 2003 | A1 |
20060162353 | Ha et al. | Jul 2006 | A1 |
20090272135 | Nishimura et al. | Nov 2009 | A1 |
Number | Date | Country |
---|---|---|
1477344 | Feb 2004 | CN |
101514855 | Aug 2009 | CN |
2013-06902 | Sep 2009 | CN |
1655555 | Aug 2011 | EP |
09-126595 | May 1997 | JP |
2000-146258 | May 2000 | JP |
2002-156167 | May 2002 | JP |
2002156167 | May 2002 | JP |
10-2005-0118450 | Dec 2005 | KR |
10-0741871 | Jul 2007 | KR |
Entry |
---|
Korean Office Action dated Jan. 18, 2013. |
Korean Office Action dated Jul. 9, 2013. |
Chinese Office Action dated Dec. 3, 2014, issued in Application No. 201210110821.1 (with English Translation). |
Number | Date | Country | |
---|---|---|---|
20130105118 A1 | May 2013 | US |