This application is a United States national stage application of International Application No. PCT/JP2018/008814, filed Mar. 7, 2018, which designates the United States, and claims priority to Japan Patent Application No. 2017-198583, filed Oct. 12, 2017, and the entire contents of each of the above applications are hereby incorporated herein by reference in entirety.
The present disclosure relates to an air-conditioning apparatus that performs a heating operation.
Recently, in terms of global environment protection, more heat pump air-conditioning apparatuses using air as a heat source have been introduced to regions in a cold climate instead of boiler heating devices that perform heating by burning fossil fuel. Heat pump air-conditioning apparatuses can perform heating more efficiently by the amount of heat supplied from air in addition to an electrical input to a compressor.
However, in a heat pump air-conditioning apparatus, an outdoor heat exchanger functioning as an evaporator frosts over when the outside air temperature becomes low, and thus defrosting needs to be performed to melt frost formed on the outdoor heat exchanger. As a defrosting method, there is a method for reversing the refrigeration cycle; however, by using this method, heating of the indoor space is stopped during defrosting and the degree of comfort is reduced.
Thus, as a device that can perform heating even during defrosting, an air-conditioning apparatus has been proposed that performs heating by dividing an outdoor heat exchanger and causing, while defrosting some of the divided outdoor heat exchangers, the other portion of the heat exchanger to operate as an evaporator (for example, see Patent Literature 1 and Patent Literature 2).
In an air-conditioning apparatus disclosed in Patent Literature 1, an outdoor heat exchanger is divided into two parallel heat exchangers, a portion of refrigerant discharged from a compressor is caused to flow into the two parallel heat exchangers alternately, and the two parallel heat exchangers are alternately defrosted. Consequently, heating is continuously performed without reversing the refrigeration cycle.
In an air-conditioning apparatus disclosed in Patent Literature 2, an outdoor heat exchanger is divided into a plurality of parallel heat exchangers, and after a portion of refrigerant discharged from a compressor is caused to flow in order into the plurality of parallel heat exchangers to perform defrosting, the air-conditioning apparatus returns to a heating operation. When returning to the heating operation, this air-conditioning apparatus detects a parallel heat exchanger on which a large amount of frost is formed, defrosts again only the parallel heat exchanger, on which a large amount of frost is formed, and then returns to the heating operation.
Patent Literature 1: International Publication No. 2014/083867
Patent Literature 2: Japanese Unexamined Patent Application Publication No. 2009-281698
In the air-conditioning apparatus disclosed in Patent Literature 1, while one of the two parallel heat exchangers is being defrosted, the frost state of the parallel heat exchanger functioning as an evaporator changes. Accordingly, a state occurs in which the heat exchange performance differs between the parallel heat exchanger on which a large amount of frost is formed and the parallel heat exchanger on which a small amount of frost is formed. When refrigerant is caused to flow through the two parallel heat exchangers having different heat exchange performance at almost the same flow rate, the heat exchangers as a whole cannot be efficiently used, the heating capacity is reduced, and the degree of comfort in the indoor space is reduced.
When the air-conditioning apparatus disclosed in Patent Literature 2 returns to the heating operation from the defrosting operation, variations in the amount of frost formed are reduced by defrosting again the parallel heat exchanger on which a large amount of frost is formed; however, since defrosting is performed two times, it takes a longer time to return to the heating operation. In addition, variations in the amount of frost formed occur also while the defrosting operation is being performed on one or more of the plurality of parallel heat exchangers, and thus substantially the same problem as that of Patent Literature 1 arises, the heating capacity is reduced, and the degree of comfort in the indoor space is reduced.
The present air-conditioning apparatus of the present disclosure has been made to overcome the problems as described above, and provides an air-conditioning apparatus that efficiently performs defrosting without stopping heating and that increases the degree of comfort in the air-conditioned space.
An air-conditioning apparatus according to an embodiment of the present disclosure includes a main circuit in which a compressor, a load side heat exchanger, a first pressure reducing device, and a plurality of parallel heat exchangers connected in parallel with each other are connected by pipes and through which refrigerant circulates; a bypass pipe diverting a portion of refrigerant discharged by the compressor; a flow switching unit connecting, from among the plurality of parallel heat exchangers, a parallel heat exchanger to be defrosted to the bypass pipe; a plurality of flow rate control devices connected to the plurality of parallel heat exchangers and controlling flow rates of refrigerant flowing through the plurality of parallel heat exchangers; and a controller being configured to control the flow switching unit and the plurality of flow rate control devices, the air-conditioning apparatus being configured to operate in a heating operation mode for causing the plurality of parallel heat exchangers to function as an evaporator, and a heating-defrosting operation mode for causing one or more of the plurality of parallel heat exchangers to function as a target to be defrosted and for causing an other parallel heat exchanger to function as an evaporator, wherein the controller is configured to control in the heating-defrosting operation mode or in the heating operation mode after execution of the heating-defrosting operation mode, the flow rate control devices to control, in accordance with a frost state of the parallel heat exchanger functioning as an evaporator from among the plurality of parallel heat exchangers, the flow rate of refrigerant flowing through the parallel heat exchanger.
According to embodiments of the present disclosure, since the flow rate of refrigerant flowing through a parallel heat exchanger functioning as an evaporator is controlled in accordance with the frost state of the parallel heat exchanger, defrosting can be efficiently performed without stopping heating, and the degree of comfort in the air-conditioned space can be increased.
Embodiments of the present disclosure will be described with reference to the drawings. In the individual drawings, configurations denoted by the same reference numerals are the same or substantially the same, and this applies to all of Embodiments described in the following. In addition, forms of individual structural elements described in Embodiments are mere examples and are not limited to those described in Embodiments.
The configuration of an air-conditioning apparatus according to Embodiment 1 will be described.
The outdoor unit A and the indoor unit B are connected by first extension pipes 32-1 and 32-2b and second extension pipes 33-1 and 33-2b. The outdoor unit A and the indoor unit C are connected by the first extension pipe 32-1, a first extension pipe 32-2c, the second extension pipe 33-1, and a second extension pipe 33-2c.
The air-conditioning apparatus 100 is provided with a controller 90, which controls a cooling operation and a heating operation of the indoor units B and C. In addition, the air-conditioning apparatus 100 is provided with an outside air temperature detector 94, which detects the temperature of air around the outdoor unit A.
As refrigerant circulating between the outdoor unit A and the indoor units B and C, a fluorocarbon refrigerant or a HFO refrigerant is used. The fluorocarbon refrigerant is, for example, an HFC based refrigerant R32, R125, or R134a or R410A, R407c, or R404A that are refrigerant mixtures of these HFC based refrigerants. In addition, the HFO refrigerant is, for example, HFO-1234yf, HFO-1234ze (E), or HFO-1234ze (Z). In addition, as other refrigerants, refrigerants used in vapor compression heat pumps such as CO2 refrigerant, HC refrigerants, ammonia refrigerant, and refrigerants obtained by mixing refrigerants described above an example of which is refrigerant obtained by mixing R32 and HFO-1234yf are used. HC refrigerants include, for example, propane refrigerant and isobutane refrigerant.
Note that, in Embodiment 1, the configuration in which two indoor units, which are the indoor units B and C, are connected to one outdoor unit, which is the outdoor unit A, is described as an example; however, the number of indoor units provided in the air-conditioning apparatus 100 is not limited to two, and may also be one or three or more. In addition, the air-conditioning apparatus 100 may also be provided with two or more outdoor units A. In this case, the two or more outdoor units A may also be connected in parallel. In addition, by providing three extension pipes in parallel to connect the outdoor unit A to the indoor units B and C or by providing on the indoor unit side a refrigerant flow switching device, each of the indoor units B and C may have a refrigerant circuit configuration with which a cooling-heating simultaneous operation can be performed in which both cooling and heating can be selected.
The configuration of a refrigerant circuit in the air-conditioning apparatus 100 illustrated in
The cooling-heating switching device 2 is connected between a discharge pipe 31 of the compressor 1 and a suction pipe 36. The cooling-heating switching device 2 switches an operation state of the indoor units B and C by switching the direction of refrigerant flow. Connection established by the cooling-heating switching device 2 in a case where the indoor units B and C perform a heating operation is illustrated with a solid line in the cooling-heating switching device 2 of
In the configuration illustrated in
The fins 5b illustrated in
In the configuration illustrated in
The configuration in which the outdoor heat exchanger 5 is divided in the up-down direction has the advantage of facilitating pipe connection but also has the disadvantage that water generated in the upper parallel heat exchangers flows down to the lower parallel heat exchangers. In this case, when the upper parallel heat exchangers perform defrosting, if the lower parallel heat exchangers function as an evaporator, water generated by defrosting performed by the upper parallel heat exchangers may be frozen at the lower parallel heat exchangers, and heat exchange may be hindered. In contrast, in the configuration in which the outdoor heat exchanger 5 is divided in the right-left direction, pipe connection becomes complicated because a refrigerant inlet of each of the parallel heat exchangers 5-1 to 5-4 needs to be provided at both of the left and right ends of the outdoor unit A or a refrigerant inlet and a refrigerant outlet need to be provided on the same ZY plane; however, the adhesion of water generated by defrosting to the other parallel heat exchangers can be prevented.
The arrangement of the heat transfer tubes 5a will be described while focusing on the lower heat transfer tube 5a of the parallel heat exchanger 5-4 among the parallel heat exchangers 5-1 to 5-4 illustrated in
Among two branch pipes of a second connection pipe 35-4, one of the branch pipes is connected to the opening port 51a. The heat transfer tube 5a connected to the branch pipe at the opening port 51a extends parallel to the Y axis from the opening port 51a to the fin 5bn. The heat transfer tube 5a is folded back on itself at the fin 5bn and then extends parallel to the Y axis from the fin 5bn to the opening port 51b of the fin 5b. Next, the heat transfer tube 5a extends from the opening port 51b to the opening port 51c at the fin 5b, and extends parallel to the Y axis from the opening port 51c to the fin 5bn. Furthermore, the heat transfer tube 5a is folded back on itself at the fin 5bn and then extends parallel to the Y axis from the fin 5bn to the opening port 51d of the fin 5b. Among two branch pipes of a first connection pipe 34-4, the heat transfer tube 5a is connected to one of the branch pipes at the opening port 51d.
Note that, in the configuration illustrated in
By dividing the plurality of fins 5b to correspond to the number of parallel heat exchangers or by providing the fins 5b with a mechanism for reducing heat leakage or a heat transfer tube through which high temperature refrigerant flows, heat leakage from the parallel heat exchanger to be defrosted to the parallel heat exchanger serving as an evaporator can be suppressed. Accordingly, it can be prevented that defrosting becomes difficult at the division boundaries due to heat leakage. Note that the number of divisions for the parallel heat exchangers in the outdoor heat exchanger 5 is not limited to four and may be any number greater than or equal to two.
As illustrated in
First connection pipes 34-1 to 34-4 connect between the parallel heat exchangers 5-1 to 5-4 and the first pressure reducing devices 4b and 4c within a part of the refrigerant circuit being connection of the parallel heat exchangers 5-1 to 5-4, first flow control devices 7-1 to 7-4 and the first pressure reducing devices 4b and 4c. The first connection pipes 34-1 to 34-4 are connected in parallel with each other to main pipes extending from the first pressure reducing devices 4b and 4c. The first connection pipes 34-1 to 34-4 are respectively provided with first flow control devices 7-1 to 7-4, which control the flow rate of circulating refrigerant. The first flow control devices 7-1 to 7-4 change their opening degrees in accordance with a control signal input from the controller 90. The first flow control devices 7-1 to 7-4 are, for example, an electronic control expansion valve.
Second connection pipes 35-1 to 35-4 connect between the parallel heat exchangers 5-1 to 5-4 and the cooling-heating switching device 2 within a part of the refrigerant circuit being connection of the parallel heat exchangers 5-1 to 5-4, second connection pipes 35-1 to 35-4, the cooling-heating switching device 2 and the compressor 1. The second connection pipes 35-1 to 35-4 are respectively provided with first open-close devices 8-1 to 8-4. The parallel heat exchangers 5-1 to 5-4 are connected to the cooling-heating switching device 2 with the second connection pipes 35-1 to 35-4 and the first open-close devices 8-1 to 8-4 therebetween.
In addition, the refrigerant circuit is provided with a bypass pipe 37, which diverts a portion of high-temperature high-pressure refrigerant discharged from the compressor 1 and supplies the diverted refrigerant to the parallel heat exchangers 5-1 to 5-4. One end of the bypass pipe 37 is connected to the discharge pipe 31, and the other end thereof splits up into four and connected to the second connection pipes 35-1 to 35-4. In the configuration illustrated in
The one end of the bypass pipe 37 connected to the discharge pipe 31 is provided with a third pressure reducing device 10. On the side where the bypass pipe 37 splits up to realize connection to the second connection pipes 35-1 to 35-4, second open-close devices 9-1 to 9-4 are provided. The first open-close devices 8-1 to 8-4 and the second open-close devices 9-1 to 9-4 function as a flow switching unit 52, which connects, among the parallel heat exchangers 5-1 to 5-4, a parallel heat exchanger to be defrosted to the bypass pipe 37.
Note that, in the configuration illustrated in
The second connection pipes 35-1 to 35-4 are provided with temperature detectors 92-1 to 92-4 for detecting refrigerant temperature. The suction pipe 36 is provided with a first pressure detector 91 for detecting the pressure of refrigerant. The temperature detectors 92-1 to 92-4 and the first pressure detector 91 function as a detection device for detecting a value for determining a frost state of each parallel heat exchanger functioning as an evaporator among the parallel heat exchangers 5-1 to 5-4.
In the configuration illustrated in
The controller 90 is, for example, a microcomputer. The controller 90 is connected to the temperature detectors 92-1 to 92-4 and the first pressure detector 91 by a signal line, and receives a measurement value from each detector. The controller 90 is connected to each device that is a control target by a signal line, and outputs a control signal through the signal line. Specifically, in accordance with an operation mode set in the air-conditioning apparatus 100, the controller 90 controls flow path switching performed by the cooling-heating switching device 2, the opening degrees of the first pressure reducing devices 4b and 4c, and an operating frequency of the compressor 1. In addition, the controller 90 controls opening-closing of the first open-close devices 8-1 to 8-4 and the second open-close devices 9-1 to 9-4 and the opening degrees of the first flow control devices 7-1 to 7-4 and the third pressure reducing device 10.
Next, the operation of the air-conditioning apparatus 100 in individual operation states will be described. The air-conditioning apparatus 100 has two kinds of operation mode, which are a cooling operation and a heating operation. The heating operation has a heating operation mode and a heating-defrosting operation mode. The heating operation mode corresponds to an operation in which all the parallel heat exchangers 5-1 to 5-4 constituting the outdoor heat exchanger 5 function as a normal evaporator.
The heating-defrosting operation mode corresponds to an operation in which one or more of the parallel heat exchangers 5-1 to 5-4 are treated as targets to be defrosted and the other parallel heat exchangers are caused to function as an evaporator. In the heating-defrosting operation mode, while one or more of the parallel heat exchangers 5-1 to 5-4 are being defrosted, the other parallel heat exchangers can continue the heating operation.
In addition, in the heating-defrosting operation mode, the air-conditioning apparatus 100 may defrost the parallel heat exchangers 5-1 to 5-4 in order, one at a time. For example, while performing the heating operation by causing the parallel heat exchangers 5-1 to 5-3 to function as an evaporator, the air-conditioning apparatus 100 defrosts the other parallel heat exchanger 5-4. After defrosting of the parallel heat exchanger 5-4 is completed, the air-conditioning apparatus 100 subsequently performs the heating operation by causing the parallel heat exchangers 5-1, 5-2, and 5-4 to operate as an evaporator, and defrosts the other parallel heat exchanger 5-3. In this manner, while continuing the heating operation, the air-conditioning apparatus 100 can defrost all the parallel heat exchangers 5-1 to 5-4 by sequentially changing the parallel heat exchangers to be defrosted. The heating-defrosting operation is also called a continuous heating operation since the heating operation is not stopped by sequentially defrosting the parallel heat exchangers 5-1 to 5-4. About the following heating operations, the operation in the heating operation mode will be called a heating normal operation to be distinguished from a case where the heating operation is performed while one or more of the parallel heat exchangers are being defrosted.
In a case where the cooling-heating switching device 2 is to be controlled, the on state of
[Cooling Operation]
When the compressor 1 starts operating, low-temperature low-pressure gas refrigerant is compressed by the compressor 1, and high-temperature high-pressure gas refrigerant is discharged from the compressor 1. In this refrigerant compression process of the compressor 1, compared with a case where adiabatic compression is performed along an isentropic line, compression is performed such that heating is performed by an amount corresponding to the adiabatic efficiency of the compressor 1, and the refrigerant compression process is represented by the line from point (a) to point (b) of
The refrigerant that has flowed into each of the parallel heat exchangers 5-1 to 5-4 is cooled while heating outside air and becomes middle-temperature high-pressure liquid refrigerant. When pressure loss is taken into consideration, the changes in the refrigerant at the parallel heat exchangers 5-1 to 5-4 are represented by the straight line from point (b) to point (c) of
The flows of the middle-temperature high-pressure liquid refrigerant flowing out from the parallel heat exchangers 5-1 to 5-4 flow into the first connection pipes 34-1 to 34-4, pass through the first flow control devices 7-1 to 7-4, which are in a fully open state, and then merge. The resulting flow of refrigerant passes through the second extension pipe 33-1, and is then divided among and flows into the second extension pipes 33-2b and 33-2c. The refrigerant flowing through the second extension pipe 33-2b flows into the first pressure reducing device 4b, and the refrigerant flowing through the second extension pipe 33-2c flows into the first pressure reducing device 4c. At each of the first pressure reducing devices 4b and 4c, the refrigerant is expanded, the pressure thereof is reduced, and the refrigerant expands and enters a low-temperature low-pressure two-phase gas-liquid state. The changes in the refrigerant at the first pressure reducing devices 4b and 4c occur under constant enthalpy. The changes in the refrigerant in this case are represented by the vertical line from point (c) to point (d) of
The refrigerant that has flowed out from the first pressure reducing device 4b and that is in the low-temperature low-pressure two-phase gas-liquid state flows into the load side heat exchanger 3b. The refrigerant that has flowed out from the first pressure reducing device 4c and that is in the low-temperature low-pressure two-phase gas-liquid state flows into the load side heat exchanger 3c. The refrigerant flowing into each of the load side heat exchangers 3b and 3c is heated while cooling indoor air, and becomes low-temperature low-pressure gas refrigerant.
The controller 90 controls the opening degrees of the first pressure reducing devices 4b and 4c such that, for example, the degree of superheat (superheat) of the low-temperature low-pressure gas refrigerant is of the order of 2 degrees K to 5 degrees K. When pressure loss is taken into consideration, the changes in the refrigerant at the load side heat exchangers 3b and 3c are represented by the straight line from point (d) to point (a) of
The low-temperature low-pressure gas refrigerant that has flowed out from the load side heat exchanger 3b and passed through the first extension pipe 32-2b and the low-temperature low-pressure gas refrigerant that has flowed out from the load side heat exchanger 3c and passed through the first extension pipe 32-2c merge and flow into the first extension pipe 32-1. The refrigerant that has passed through the first extension pipe 32-1 flows into the compressor 1 via the cooling-heating switching device 2 and the accumulator 6, and is compressed again.
[Heating Normal Operation]
When the compressor 1 starts operating, low-temperature low-pressure gas refrigerant is compressed by the compressor 1, and high-temperature high-pressure gas refrigerant is discharged from the compressor 1. In this refrigerant compression process of the compressor 1, compared with a case where adiabatic compression is performed along an isentropic line, compression is performed such that heating is performed by an amount corresponding to the adiabatic efficiency of the compressor 1, and the refrigerant compression process is represented by the line from point (a) to point (b) of
The gas refrigerant that has flowed through the first extension pipe 32-2b flows into the load side heat exchanger 3b of the indoor unit B. The gas refrigerant that has flowed through the first extension pipe 32-2c flows into the load side heat exchanger 3c of the indoor unit C. The refrigerant flowing into each of the load side heat exchangers 3b and 3c is cooled while heating indoor air, and becomes middle-temperature high-pressure liquid refrigerant. The load side heat exchangers 3b and 3c function as a condenser. When pressure loss is taken into consideration, the changes in the refrigerant at the load side heat exchangers 3b and 3c are represented by the straight line from point (b) to point (c) of
The middle-temperature high-pressure liquid refrigerant that has flowed out from the load side heat exchanger 3b flows into the first pressure reducing device 4b, and the middle-temperature high-pressure liquid refrigerant that has flowed out from the load side heat exchanger 3c flows into the first pressure reducing device 4c. At each of the first pressure reducing devices 4b and 4c, the refrigerant is expanded, the pressure thereof is reduced, and the refrigerant expands and enters a low-temperature low-pressure two-phase gas-liquid state. The changes in the refrigerant at the first pressure reducing devices 4b and 4c occur under constant enthalpy. The changes in the refrigerant in this case are represented by the vertical line from point (c) to point (e) of
The refrigerant that has flowed out from the first pressure reducing devices 4b and 4c and that is in a middle-pressure two-phase gas-liquid state returns to the outdoor unit A via the second extension pipes 33-2b, 33-2c, and 33-1. The refrigerant that has returned to the outdoor unit A flows into the first connection pipes 34-1 to 34-4. The refrigerant that has flowed into the first connection pipes 34-1 to 34-4 is expanded by the first flow control devices 7-1 to 7-4 and expands, the pressure thereof is reduced, and the refrigerant enters a low-temperature low-pressure two-phase gas-liquid state. The changes in the refrigerant at the first flow control devices 7-1 to 7-4 occur under constant enthalpy. The changes in the refrigerant in this case are represented by the line from point (e) to point (d) of
The refrigerant that has flowed out from the first flow control devices 7-1 to 7-4 flows into the parallel heat exchangers 5-1 to 5-4, is heated while cooling outside air, and becomes low-temperature low-pressure gas refrigerant. When pressure loss is taken into consideration, the changes in the refrigerant at the parallel heat exchangers 5-1 to 5-4 are represented by the straight line from point (d) to point (a) of
[Heating-Defrosting Operation (Continuous Heating Operation)]
The heating-defrosting operation is performed in a case where the outdoor heat exchanger 5 becomes frosted over during the heating normal operation. The controller 90 determines the presence or absence of frost formed on the outdoor heat exchanger 5, and determines whether the heating-defrosting operation needs to be performed. The presence or absence of frost formed is determined, for example, on the basis of the saturation temperature of the refrigerant converted from the suction pressure of the compressor 1. In a case where the saturation temperature of the refrigerant becomes substantially lower than a set outside air temperature and smaller than a threshold, the controller 90 determines that frost is formed on the outdoor heat exchanger 5 that needs to be defrosted. As another example, in a case where the temperature difference between the outside air temperature and the evaporating temperature becomes greater than or equal to a preset value and where at least a predetermined time has elapsed in the state, the controller 90 determines that frost is formed on the outdoor heat exchanger 5 that needs to be defrosted. The presence or absence of frost does not have to be determined necessarily by using these methods and may also be determined by using other methods. When determining that frost is formed on the outdoor heat exchanger 5, the controller 90 determines that the conditions for starting the heating-defrosting operation are met.
In Embodiment 1, a case where one of the parallel heat exchangers 5-1 to 5-4 is selected to be defrosted and is defrosted and heating is continued by causing the other three parallel heat exchangers to function as an evaporator is not the only case where the heating-defrosting operation is performed. The heating-defrosting operation may be performed in a case where two of the parallel heat exchangers 5-1 to 5-4 are selected as targets to be defrosted and the other two parallel heat exchangers are caused to function as an evaporator. In addition, the heating-defrosting operation may also be performed in a case where three of the parallel heat exchangers 5-1 to 5-4 are selected to be defrosted and the other parallel heat exchanger is caused to function as an evaporator.
In these operations, only switching is @performed on the open-close states of the first open-close devices 8-1 to 8-4 and the second open-close devices 9-1 to 9-4 and the control states of the first flow control devices 7-1 to 7-4 every time defrosting-target switching is performed on the parallel heat exchangers. Specifically, switching is performed at the devices connected to the parallel heat exchanger or exchangers to be defrosted and at the devices connected to the parallel heat exchanger or exchangers functioning as an evaporator such that high-temperature high-pressure gas refrigerant flows into the parallel heat exchanger or exchangers to be defrosted, and the rest of the operations does not change. Thus, in the following, an operation performed in a case where one parallel heat exchanger is selected to be defrosted will be described. Specifically, a case where the parallel heat exchanger 5-4 is to be defrosted and the heating operation is performed by causing the parallel heat exchangers 5-1 to 5-3 to function as an evaporator will be described. This similarly applies to a description about the heating-defrosting operation, which is to be described in the following.
In a case where, while performing the heating normal operation, the controller 90 determines that defrosting to clear the frost state is necessary, the controller 90 closes the first open-close device 8-4, corresponding to the parallel heat exchanger 5-4, which is to be defrosted. Subsequently, the controller 90 opens the second open-close device 9-4, and opens the third pressure reducing device 10 to achieve a set opening degree. In addition, the controller 90 maintains the first open-close devices 8-1 to 8-3, corresponding to the parallel heat exchangers 5-1 to 5-3, which function as an evaporator, in the open state, and maintains the second open-close devices 9-1 to 9-3 in the closed state. As a result, a defrost circuit is formed in which refrigerant flow paths are connected in the order of the compressor 1, the third pressure reducing device 10, the second open-close device 9-4, the parallel heat exchanger 5-4, and the first flow control device 7-4, and the heating-defrosting operation is started.
When the air-conditioning apparatus 100 starts the heating-defrosting operation, a portion of the high-temperature high-pressure gas refrigerant discharged from the compressor 1 flows into the bypass pipe 37 and the pressure thereof is reduced to middle pressure by the third pressure reducing device 10. The change in the refrigerant in this case is represented by the line from point (b) to point (f) illustrated in
The refrigerant used to defrost the parallel heat exchanger 5-4 flows out from the parallel heat exchanger 5-4 and then flows through the first flow control device 7-4, and the flow of the refrigerant merges with that of refrigerant in the main circuit. The resulting flow of the refrigerant in the main circuit flows through the first flow control devices 7-1 to 7-3, flows into the parallel heat exchangers 5-1 to 5-3, which function as an evaporator, and evaporates.
Here, an example of the operation of the first flow control devices 7-1 to 7-4 and the third pressure reducing device 10 during the heating-defrosting operation will be described. During the heating-defrosting operation, the controller 90 controls the opening degree of the first flow control device 7-4, which is connected to the parallel heat exchanger 5-4, which is to be defrosted, such that the saturation temperature converted from the pressure of the parallel heat exchanger 5-4, which is to be defrosted, is of the order of 0 degrees C. to 10 degrees C. In this case, the first flow control device 7-4 functions as a second pressure reducing device that reduces the pressure of the refrigerant such that the saturation temperature of the refrigerant at the parallel heat exchanger 5-4 falls within a set range.
In a case where the saturation temperature converted from the pressure of the refrigerant of the parallel heat exchanger 5-4, which is to be defrosted, is less than or equal to 0 degrees C., the saturation temperature is lower than the melting temperature (0 degrees C.) of frost, and thus the refrigerant does not condense and defrosting is performed using only sensible heat having a small quantity of heat. In this case, the flow rate of refrigerant flowing into the parallel heat exchanger 5-4 needs to be increased to ensure the heating capacity, the flow rate of refrigerant to be used for heating is decreased, and consequently the heat addition capacity decreases and the degree of comfort decreases in an indoor space that is to be air-conditioned.
In contrast, in a case where the pressure of the refrigerant of the parallel heat exchanger 5-4, which is to be defrosted, is high, the temperature difference between the melting temperature (0 degrees C.) of frost and the saturation temperature of the refrigerant is large, the refrigerant that has flowed into the parallel heat exchanger 5-4 immediately liquifies, and thus the amount of liquid refrigerant present inside the parallel heat exchanger 5-4 increases. In this case, the flow rate of refrigerant to be used for heating becomes insufficient, and consequently the heating capacity decreases and the degree of comfort decreases in the indoor space.
From the description above, by causing the saturation temperature converted from the pressure of the refrigerant of the parallel heat exchanger 5-4, which is to be defrosted, to be greater than or equal to 0 degrees C. (for example, on the order of 0 degrees C. to 10 degrees C.), refrigerant can be sufficiently supplied for heating while condensation latent heat having a large amount of heat is being used for defrosting. As a result, the heating capacity is ensured and the degree of comfort in the indoor space can be increased. Note that, in a system having a large amount of refrigerant, in a case where the amount of refrigerant necessary for heating is sufficiently present even when the amount of refrigerant of the parallel heat exchanger 5-4, which is to be defrosted, increases, the saturation temperature of refrigerant of the parallel heat exchanger 5-4, which is to be defrosted, may be higher than 10 degrees C.
In addition, the controller 90 may also control, on the basis of the order in which defrosting is executed, the opening degrees of the first flow control devices 7-1 to 7-3, which are connected to the parallel heat exchangers 5-1 to 5-3, which function as an evaporator, such that refrigerant flows at a higher flow rate in the parallel heat exchanger that is defrosted later in the order of defrosting.
An example of this control will be described with reference to
In
In the case of controlling the opening degrees of the first flow control devices 7-1 to 7-4 on the basis of the order of defrosting, the controller 90 causes, for example, the opening degree of the first flow control device 7-4 to be the largest in the state S2, the first flow control device 7-4 being connected to the parallel heat exchanger 5-4, which is the target to be defrosted in the previous state S1. This is because since the parallel heat exchanger 5-4 is the target to be defrosted in the previous state S1, the amount of frost formed thereon is the smallest and the heat exchange efficiency between the refrigerant and outside air is the highest among the parallel heat exchangers 5-1, 5-2, and 5-4, which function as an evaporator, in the state S2. In the state S2, the controller 90 increases the flow rate of refrigerant flowing through the parallel heat exchanger 5-4 by causing the opening degree of the first flow control device 7-4 to be the largest.
In the state S3, the controller 90 causes the opening degree of the first flow control device 7-3 to be the largest, the first flow control device 7-3 being connected to the parallel heat exchanger 5-3, which is the target to be defrosted in the previous state S2. As a result, as described above, the flow rate of refrigerant flowing through the parallel heat exchanger 5-3, on which the smallest amount of frost is formed, becomes the highest, and the heat exchange efficiency between the refrigerant and outside air is increased. In the state S3, as illustrated in
Note that it is sufficient that, among the first flow control devices 7-1 to 7-4, the opening degrees of the first flow control devices connected to parallel heat exchangers functioning as an evaporator have a magnitude relationship as illustrated in
In addition, the controller 90 may also control the opening degrees of the first flow control devices 7-1 to 7-3 using the degrees of superheat of refrigerant. Specifically, the controller 90 calculates the degree of superheat of refrigerant downstream of each of the parallel heat exchangers 5-1 to 5-3 from the pressure of refrigerant detected by the first pressure detector 91 and refrigerant temperatures detected by the temperature detectors 92-1 to 92-3. The controller 90 then controls the opening degrees of the first flow control devices 7-1 to 7-3 such that the degrees of superheat of refrigerant of the parallel heat exchangers 5-1 to 5-3 are of the order of 0 to 3 degrees K or these degrees of superheat of refrigerant are substantially the same as each other. For example, in a case where the degree of superheat of refrigerant of the parallel heat exchanger 5-1 is greater than those of the other parallel heat exchangers 5-2 and 5-3, the controller 90 may increase the opening degree of the first flow control device 7-1 or decrease the opening degrees of the first flow control devices 7-2 and 7-3. The controller 90 controls the flow rates of refrigerant on the basis of the frost states obtained from the detection device and in accordance with the magnitudes of the amounts of frost formed on the parallel heat exchangers 5-1 to 5-3, which function as an evaporator, and thus the outdoor heat exchanger 5 can be efficiently used and the heating capacity during the continuous operation can be increased. In addition, the amount of frost formed on each parallel heat exchanger can be simply obtained by using the pressure detectors and temperature detectors in the detection device.
In addition, the controller 90 controls the opening degree of the third pressure reducing device 10 such that the flow rate of refrigerant flowing into the parallel heat exchanger 5-4, which is to be defrosted, and the necessary flow rate designed in advance for defrosting fall in a certain range, meaning that the flow rate of refrigerant matches the necessary flow rate. During the heating-defrosting operation, the difference between the discharge pressure of the compressor 1 and the pressure of the parallel heat exchanger 5-4, which is to be defrosted, does not change greatly, and thus the controller 90 may keep fixing the opening degree of the third pressure reducing device 10. The heating capacity can be increased by changing the pressure of refrigerant for performing defrosting to middle pressure and using condensation latent heat and also by reducing the amount of refrigerant for the parallel heat exchanger 5-4, which is to be defrosted.
Note that heat emitted from refrigerant for performing defrosting is not always transferred to frost formed on the parallel heat exchanger 5-4, and a portion of the heat may be emitted to outside air. Thus, the controller 90 may control the third pressure reducing device 10 and the first flow control device 7-4 such that the flow rate for defrosting increases as the outside air temperature decreases. As a result, regardless of changes in the outside air temperature, the amount of heat to be added to frost can be maintained constant and the time required for defrosting can be maintained constant.
Here, advantageous effects obtained by controlling the first flow control device connected to a parallel heat exchanger functioning as an evaporator among the parallel heat exchangers 5-1 to 5-4 will be described.
In
When referring to
In a case where the frost states of parallel heat exchangers functioning as an evaporator vary, when refrigerant flows at the same flow rate through all of these parallel heat exchangers, refrigerant tends to evaporate at the parallel heat exchanger on which a small amount of frost is formed and which has high heat exchange performance. Thus, in the parallel heat exchanger having high heat exchange performance, two-phase gas-liquid refrigerant that has flowed thereinto becomes single-phase gas refrigerant at a shorter heat transfer tube length than the other parallel heat exchangers, a single-phase gas region increases, and the degree of superheat of refrigerant increases. Single-phase gas has a lower heat transfer rate than two-phase gas-liquid, and cannot efficiently receive heat from outside air. In contrast, in the parallel heat exchanger on which a large amount of frost is formed and which has low heat exchange performance, two-phase gas-liquid refrigerant that has flowed thereinto cannot be changed to single-phase gas, a portion of liquid refrigerant, which can be effectively used to exchange heat, remains and refrigerant still in the form of two-phase gas-liquid flows out from the heat exchanger. In this case, too, heat cannot be efficiently removed from outside air.
This is why the controller 90 controls the opening degrees of the first flow control devices 7-1 to 7-4, changes the flow resistance of the first flow control devices connected to parallel heat exchangers functioning as an evaporator, and controls the flow rates of refrigerant in accordance with the frost states of the parallel heat exchangers. Specifically, the controller 90 increases the flow rate of refrigerant of the parallel heat exchanger on which a small amount of frost is formed and which has high heat exchange performance and decreases the flow rate of refrigerant of the parallel heat exchanger on which a large amount of frost is formed and which has low heat exchange performance. As a result, a larger amount of liquid refrigerant evaporates at the parallel heat exchanger having high heat exchange performance, and heat can be efficiently removed from outside air. As a result, the heating capacity can be increased.
When controlling the first flow control devices 7-1 to 7-4, the controller 90 may determine the magnitudes of the amounts of frost formed on the parallel heat exchangers 5-1 to 5-4, in the order of defrosting or in accordance with the magnitude relationship of the degrees of superheat of refrigerant. In a case where a determination is made in the order of defrosting, the controller 90 determines the magnitude relationship of the amounts of frost formed, by considering that the parallel heat exchanger that has just been defrosted has the smallest amount of frost formed and the parallel heat exchanger that has been defrosted immediately before the parallel heat exchanger has the next smallest amount of frost formed. That is, the controller 90 determines that the latter the order of defrosting of the parallel heat exchanger is, the smaller amount of frost is formed thereon. In this case, the controller 90 can determine the magnitude relationship of the amounts of frost formed, by using a simple method even if measurement values from the first pressure detector 91 and the temperature detectors 92-1 to 92-4 are not used.
In contrast, in a case where the magnitudes of the amounts of frost formed are determined in accordance with the magnitude relationship of the degrees of superheat of refrigerant, the controller 90 determines the magnitude relationship of the amounts of frost formed, such that the parallel heat exchanger having the highest degree of superheat of refrigerant has the smallest amount of frost formed and the parallel heat exchanger having the lowest degree of superheat of refrigerant has the largest amount of frost formed. In this case, even when the amounts of frost formed change due to factors other than the order of defrosting such as the difference in the volume of air flow at each parallel heat exchanger, the controller 90 can more accurately determine the magnitude relationship of the amounts of frost formed.
As described above, the controller 90 controls, using the first flow control devices connected to parallel heat exchangers functioning as an evaporator among the parallel heat exchangers 5-1 to 5-4, the flow rates of refrigerant flowing into the parallel heat exchangers in accordance with the frost states of the parallel heat exchangers. As a result, the heating capacity is increased and the degree of comfort in the indoor space can be increased.
Note that there may be a case where even during the heating normal operation after the air-conditioning apparatus 100 has performed the heating-defrosting operation, the frost states of the parallel heat exchangers 5-1 to 5-4 are different. Thus, the controller 90 may control the opening degrees of the first flow control devices 7-1 to 7-4 such that the flow rates of refrigerant change in accordance with the frost states of the parallel heat exchangers 5-1 to 5-4. For example, since the parallel heat exchanger selected as the last target to be defrosted in the last heating-defrosting operation has the smallest amount of frost formed compared with the other parallel heat exchangers, the controller 90 sets the flow rate of refrigerant of this parallel heat exchanger to be higher than those of the other parallel heat exchangers.
In addition, the controller 90 may also control the opening degrees of the first flow control devices 7-1 to 7-4 using the degrees of superheat of refrigerant. Specifically, the controller 90 calculates the degree of superheat of refrigerant downstream of each of the parallel heat exchangers 5-1 to 5-4 from measurement values from the first pressure detector 91 and the temperature detectors 92-1 to 92-4. The controller 90 may then control the opening degrees of the first flow control devices 7-1 to 7-4 such that the degrees of superheat of refrigerant of the parallel heat exchangers 5-1 to 5-4 are of the order of 0 to 3 degrees K or these degrees of superheat of refrigerant are substantially the same as each other.
In this manner, also during the heating normal operation, advantageous effects similar to those of the case where the first flow control devices connected to the parallel heat exchangers functioning as an evaporator at the time of the heating-defrosting operation are controlled are obtained, the heating capacity is increased, and the degree of comfort in an indoor space that is to be an air-conditioned space can be increased.
In addition, the controller 90 may also change, for example, a threshold for the saturation temperature of refrigerant and used when the presence or absence of frost formed is determined in accordance with outside air temperature or a time for the heating normal operation. That is, an operation time is shortened to reduce the amount of frost formed and present at the time when defrosting is started as the outside air temperature decreases such that the amount of heat for defrosting and supplied from refrigerant is maintained constant during defrosting. As a result, the resistance of the third pressure reducing device 10 is maintained constant and inexpensive capillary tubes can be used.
In addition, the controller 90 may change, in accordance with outside air temperature, the number of parallel heat exchangers to be defrosted. In a case where the outside air temperature is high, a smaller amount of heat is emitted into outside air from the parallel heat exchanger to be defrosted, and defrosting is performed more easily. Thus, even when the number of heat exchangers to be defrosted is increased, defrosting can be performed, and the time necessary for defrosting all the parallel heat exchangers to be defrosted can be shortened by increasing the number of parallel heat exchanger that are simultaneously defrosted. In addition, in a case where the necessary heating capacity is low, the controller 90 can shorten the time necessary for defrosting all the parallel heat exchangers to be defrosted, by increasing the number of parallel heat exchangers to be defrosted.
In addition, the controller 90 may also change the number of parallel heat exchangers to be defrosted, in accordance with the heating load of the indoor space. In a case where the heating load of the indoor space is light, it is sufficient that the flow rate of refrigerant flowing through the indoor unit be low, and thus the flow rate of refrigerant flowing through the parallel heat exchanger to be defrosted can be increased. As a result, even when the number of heat exchangers to be defrosted is increased, a sufficient defrosting capacity can be obtained, and thus the entire defrosting time necessary for defrosting all the parallel heat exchangers to be defrosted can be shortened by increasing the number of parallel heat exchangers that are simultaneously defrosted. The heating load of the indoor space can be obtained through calculation, for example, by the controller 90 using at least one value from among the pressure of refrigerant discharged from the compressor, the capacity of the indoor unit in operation, the number of indoor units in operation, the temperature difference between an indoor set temperature and indoor temperature, and so on.
In addition, in a case where the parallel heat exchangers 5-1 to 5-4 are integrally formed as illustrated in
[Control Flow Chart]
When the air-conditioning apparatus 100 starts operating, the controller 90 determines whether the operation mode is the heating operation or the cooling operation (step ST1). In a case where the operation mode is the cooling operation, the controller 90 performs cooling operation control (step ST2). In contrast, in a case where the determination in step ST1 indicates that the operation mode is the heating operation, the controller 90 determines whether the conditions for starting the heating-defrosting operation are met (step ST3). In a case where the conditions for starting the heating-defrosting operation are not met, the controller 90 performs heating normal operation control (step ST4).
In a case where the determination in step ST3 indicates that the conditions for starting the heating-defrosting operation are met, the controller 90 starts the heating-defrosting operation (step ST5), and performs control to defrost the parallel heat exchanger 5-4 (step ST6). While defrosting the parallel heat exchanger 5-4, the controller 90 determines whether the conditions for ending defrosting are met (step ST7). In a case where the conditions for ending defrosting are not met, the controller 90 continues to defrost the parallel heat exchanger 5-4. In a case where the conditions for ending defrosting are met, the controller 90 performs control to defrost the parallel heat exchanger 5-3, which is to be defrosted next, (step ST8).
Thereafter, similarly to the case of defrosting of the parallel heat exchanger 5-4, the controller 90 determines whether the conditions for ending defrosting are met while defrosting the parallel heat exchanger 5-3 (step ST9 and step ST11). In a case where the conditions for ending defrosting are met, the controller 90 performs control to defrost the parallel heat exchanger that is to be defrosted next (steps ST10 and ST12). The controller 90 determines whether the conditions for ending are met for the parallel heat exchanger 5-1, which is to be defrosted last, (step ST13). In a case where the conditions for ending defrosting are met, the controller 90 ends the heating-defrosting operation (step ST14).
The air-conditioning apparatus 100 of Embodiment 1 controls, in the heating-defrosting mode or the heating operation mode, the flow rates of refrigerant flowing into the parallel heat exchangers functioning as an evaporator by controlling the first flow control devices connected to the parallel heat exchangers in accordance with the frost states of the parallel heat exchangers. In Embodiment 1, since the flow rates of refrigerant flowing through the parallel heat exchangers functioning as an evaporator are controlled in accordance with the frost states of the parallel heat exchangers, defrosting can be efficiently performed without stopping heating, and the outdoor heat exchanger 5 can be efficiently used. As a result, the heating capacity is increased, and the degree of comfort in the air-conditioned space can be increased.
The configuration of an air-conditioning apparatus according to Embodiment 2 will be described.
When compared with the air-conditioning apparatus 100 illustrated in
The second pressure reducing device 12-1 is connected between the parallel heat exchanger 5-1 and the second flow control device 11-1. The second pressure reducing device 12-2 is connected between the parallel heat exchanger 5-2 and the second flow control device 11-1. The second pressure reducing device 12-3 is connected between the parallel heat exchanger 5-3 and the second flow control device 11-2. The second pressure reducing device 12-4 is connected between the parallel heat exchanger 5-4 and the second flow control device 11-2.
In addition, the air-conditioning apparatus 101 is provided with temperature detectors 93-1 and 93-2 instead of the temperature detectors 92-1 to 92-4 illustrated in
The second flow control devices 11-1 and 11-2 are a valve that can change its opening degree in accordance with a control signal input from the controller 90. The second flow control devices 11-1 and 11-2 are constituted by, for example, an electronic control expansion valve. It is sufficient that the second pressure reducing devices 12-1 to 12-4 be devices that can reduce the pressure of refrigerant, and the second pressure reducing devices 12-1 to 12-4 may also be, for example, a capillary tube or an expansion valve.
The flow of refrigerant at the time of the heating-defrosting operation performed by the air-conditioning apparatus 101 of Embodiment 2 will be described. In Embodiment 2, operations that differ from those of Embodiment 1 are mainly described and a description of the operations similar to those of Embodiment 1 will be omitted.
In
In a case where, while performing the heating normal operation, the controller 90 determines that defrosting to solve the frost state is necessary, the controller 90 closes the first open-close device 8-4, corresponding to the parallel heat exchanger 5-4, which is to be defrosted. Subsequently, the controller 90 opens the second open-close device 9-4, and opens the third pressure reducing device 10 to achieve a set opening degree. As a result, a defrost circuit is formed in which refrigerant flow paths are connected in the order of the compressor 1, the third pressure reducing device 10, the second open-close device 9-4, the parallel heat exchanger 5-4, and the second pressure reducing device 12-4, and the heating-defrosting operation is started.
When the air-conditioning apparatus 101 starts the heating-defrosting operation, a portion of the refrigerant discharged from the compressor 1 flows into the bypass pipe 37, passes through the third pressure reducing device 10 and then through the second open-close device 9-4, and flows into the parallel heat exchanger 5-4. The refrigerant flowing out from the parallel heat exchanger 5-4 undergoes a reduction in pressure at the second pressure reducing device 12-4 and then merges with refrigerant flowing from the second flow control device 11-2 into the second pressure reducing device 12-3. The refrigerant that has passed through the second pressure reducing device 12-3 flows into the parallel heat exchanger 5-3, which functions as an evaporator, and evaporates.
In Embodiment 2, in the heating-defrosting operation or the heating normal operation, the controller 90 controls the opening degrees of the second flow control devices 11-1 and 11-2 such that the flow rate of refrigerant of the parallel heat exchanger that has just been defrosted is increased. For example, in a case where the controller 90 defrosts the parallel heat exchanger 5-4 after defrosting the parallel heat exchanger 5-3, the controller 90 performs control to increase the opening degree of the second flow control device 11-2, which is connected to the parallel heat exchanger 5-3. In that case, the controller 90 may perform control to reduce the opening degree of the second flow control device 11-1, which is connected to the parallel heat exchangers 5-1 and 5-2, instead of control to increase the opening degree of the second flow control device 11-2.
In addition, the controller 90 may also control the opening degrees of the second flow control devices 11-1 and 11-2 using the degrees of superheat of refrigerant. Specifically, the controller 90 calculates the degree of superheat of refrigerant into which the refrigerant from the parallel heat exchanger 5-1 and the refrigerant from the parallel heat exchanger 5-2 have merged and the degree of superheat of refrigerant of the parallel heat exchanger 5-3 from the pressure of refrigerant detected by the first pressure detector 91 and refrigerant temperatures detected by the temperature detectors 93-1 and 93-2. The controller 90 then controls the opening degrees of the second flow control devices 11-1 and 11-2 such that these degrees of superheat of refrigerant are of the order of 0 to 3 degrees K or these degrees of superheat of refrigerant are substantially the same as each other. For example, in a case where the degree of superheat of refrigerant after the refrigerant from the parallel heat exchanger 5-1 merges with the refrigerant from the parallel heat exchanger 5-2 is greater than that of the parallel heat exchanger 5-3, the controller 90 may increase the opening degree of the second flow control device 11-1 or decrease the opening degree of the second flow control device 11-2.
In the air-conditioning apparatus 101 of Embodiment 2, in accordance with the operation state, the parallel heat exchangers 5-1 and 5-2 are combined as one evaporator and the parallel heat exchangers 5-3 and 5-4 are combined as one evaporator. The parallel heat exchangers 5-1 and 5-2, which are combined as one evaporator, are provided with the second flow control device 11-1 and the temperature detector 93-1. In addition, the parallel heat exchangers 5-3 and 5-4, which are combined as one evaporator, are provided with the second flow control device 11-2 and temperature detector 93-2. According to Embodiment 2, the heating capacity is increased by flow rate control performed in accordance with the frost states of the parallel heat exchangers, and not only the degree of comfort in the indoor space can be increased but also the number of flow rate control devices that need to be controlled is reduced compared with Embodiment 1. Thus, the control can be simplified. In addition, the number of flow rate control devices and the number of temperature detectors are reduced, and thus the manufacturing cost is lower than that of Embodiment 1. Furthermore, in a case where the controller 90 determines the magnitude relationship of the frost states using the degrees of superheat of refrigerant, it is sufficient that measurement values detected by the temperature detectors 93-1 and 93-2 be used as refrigerant temperatures, and thus the arithmetic processing load is lighter than that of Embodiment 1.
In Embodiment 2, the case where, depending on the operation state, the combination of the parallel heat exchangers 5-1 and 5-2 is treated as one evaporator and the combination of the parallel heat exchangers 5-3 and 5-4 is treated as one evaporator has been described; however, either of the two combinations may have substantially the same configuration as that of Embodiment 1. For example, the first flow control device 7-3 may be connected to the parallel heat exchanger 5-3, and the first flow control device 7-4 may be connected to the parallel heat exchanger 5-4. Even in this case, the number of flow rate control devices is reduced by one from that of Embodiment 1, and thus the control can be simplified and the manufacturing cost can be reduced.
Furthermore, in Embodiment 2, when to-be-defrosted target switching is performed, it is desirable that the parallel heat exchanger connected to the second flow control device to which the parallel heat exchanger that has just been defrosted is connected be selected in a prioritized manner. For example, in a case where the controller 90 has defrosted the parallel heat exchanger 5-1, the controller 90 selects the parallel heat exchanger 5-2 as the next target to be defrosted. Subsequently, after defrosting the parallel heat exchanger 5-2, the controller 90 selects the parallel heat exchanger 5-3 or 5-4 as the next target to be defrosted. Accordingly, after the parallel heat exchanger 5-2 is defrosted, the amounts of frost formed on the parallel heat exchangers 5-1 and 5-2 are smaller than the amounts of frost formed on the parallel heat exchangers 5-3 and 5-4. When the parallel heat exchangers 5-1 and 5-2 are considered to be one evaporator, variations in each of the magnitude relationship of the amounts of frost formed and the magnitude relationship of the flow rates of refrigerant can be reduced between evaporators.
The configuration of an air-conditioning apparatus according to Embodiment 3 will be described.
Compared with the air-conditioning apparatus 100 illustrated in
On the side where the injection pipe 38 is connected to the compressor 1, as in
In addition, in the air-conditioning apparatus 102, a second pressure detector 95 for detecting the pressure of refrigerant is provided between the second extension pipe 33-1 and the first flow control devices 7-1 to 7-4. It is sufficient that the second pressure detector 95 detect the pressure of refrigerant at the branching portion of the injection pipe 38, and the second pressure detector 95 may also be provided between the branching portion and the fourth pressure reducing device 13. Instead of the pressure detector, a temperature detector that can detect refrigerant temperature may be provided at a pipe portion where refrigerant enters a two-phase gas-liquid state. A value detected by the temperature detector is treated as the saturation temperature of refrigerant, and the pressure of refrigerant may be converted from the saturation temperature of refrigerant.
It is sufficient that the fourth pressure reducing device 13 be a device that can reduce the pressure of refrigerant that has flowed into the injection pipe, and thus the fourth pressure reducing device 13 may also be a capillary tube or a solenoid valve, or may also be, for example, an electronic control expansion valve, which can change its opening degree in accordance with a control signal input from the controller 90.
The flow of refrigerant at the time of the heating-defrosting operation performed by the air-conditioning apparatus 102 of Embodiment 3 will be described. In Embodiment 3, operations that differ from those of Embodiment 1 are mainly described and a description of the operations similar to those of Embodiment 1 will be omitted.
In
In a case where, while performing the heating normal operation, the controller 90 determines that defrosting to solve the frost state is necessary, the controller 90 closes the first open-close device 8-4, corresponding to the parallel heat exchanger 5-4, which is to be defrosted. Subsequently, the controller 90 opens the second open-close device 9-4, and opens the third pressure reducing device 10 to achieve a set opening degree. As a result, a defrost circuit is formed in which refrigerant flow paths are connected in the order of the compressor 1, the third pressure reducing device 10, the second open-close device 9-4, the parallel heat exchanger 5-4, and the first flow control device 7-4, and the heating-defrosting operation is started.
In the air-conditioning apparatus 102, the refrigerant that has flowed into the outdoor unit A through the second extension pipes is divided at the branching portion, and a portion of the refrigerant flows into the injection pipe 38 and another portion of the refrigerant flows into the first flow control devices 7-1 to 7-3, which are connected to the parallel heat exchangers 5-1 to 5-3, which function as an evaporator. The refrigerant flowing into the first flow control devices 7-1 to 7-3 is the main-stream refrigerant.
The refrigerant that has flowed into the injection pipe 38 flows through the fourth pressure reducing device 13 to undergo a reduction in pressure. The change in the refrigerant in this case is represented by the line from point (h) to point (j) illustrated in
The main-stream refrigerant, which is not diverted at the branching portion and flows into the first flow control devices 7-1 to 7-3, is cooled by the low-pressure refrigerant in the injection pipe 38 at the refrigerant-refrigerant heat exchanger 14. This change is represented by the line from point (h) to point (i) illustrated in
Note that in a case where the refrigerant-refrigerant heat exchanger 14 is not provided, the change caused by heating the refrigerant in the injection pipe 38 and cooling the main-stream refrigerant does not occur, and the refrigerant that has flowed into the injection pipe 38 undergoes a reduction in pressure at the fourth pressure reducing device 13 and flows into the compressor 1.
In Embodiment 3, in the heating-defrosting operation or the heating normal operation, the controller 90 controls the total opening degree of the first flow control devices 7-1 to 7-3 so that the pressure of refrigerant at the branching portion and detected by the second pressure detector 95 becomes a predetermined value, and controls, while satisfying the total opening degree, the opening degree of each of the first flow control devices 7-1 to 7-3 such that the flow rate of refrigerant of the parallel heat exchanger that has just been defrosted is increased. For example, in a case where the controller 90 defrosts the parallel heat exchanger 5-4 after defrosting the parallel heat exchanger 5-3, first, the controller 90 determines the total opening degree of the first flow control devices 7-1 to 7-3 so that the pressure of refrigerant at the branching portion becomes the predetermined value. Next, with the determined total opening degree, the controller 90 performs control such that the opening degree of the first flow control device 7-1, which is connected to the parallel heat exchanger 5-3, becomes larger than the opening degrees of the first flow control devices 7-2 and 7-3, which are other first flow control devices. In that case, the controller 90 may perform control to reduce the opening degrees of the first flow control devices 7-2 and 7-3 instead of control to increase the opening degree of the first flow control device 7-1.
In addition, after determining the total opening degree of the first flow control devices 7-1 to 7-3 so that the pressure of refrigerant at the branching portion becomes the predetermined value, the controller 90 may control the opening degree of each of the first flow control devices 7-1 to 7-3 using the degrees of superheat of refrigerant calculated from the pressure of refrigerant detected by the first pressure detector 91 and refrigerant temperatures detected by the temperature detectors 92-1 to 92-3. Specifically, the controller 90 controls the opening degrees of the first flow control devices 7-1 to 7-3 such that the degrees of superheat of refrigerant of the parallel heat exchangers 5-1 to 5-3 are of the order of 0 to 3 degrees K or these degrees of superheat of refrigerant are substantially the same as each other. For example, in a case where the degree of superheat of refrigerant of the parallel heat exchanger 5-1 is greater than those of the parallel heat exchangers 5-2 and 5-3, which are other parallel heat exchangers, the controller 90 may increase the opening degree of the first flow control device 7-1, and close the first flow control devices 7-2 and 7-3 by the amount by which the first flow control device 7-1 is opened so that the determined total opening degree is achieved, or close the first flow control devices 7-2 and 7-3 and open the first flow control device by the amount by which the first flow control devices 7-2 and 7-3 are closed.
Here, advantageous effects obtained by controlling the total opening degree of the first flow control devices, which are connected to parallel heat exchangers functioning as an evaporator among the parallel heat exchangers 5-1 to 5-4 in Embodiment 3, will be described.
Compared with Embodiment 1, the heating capacity can be increased in Embodiment 3 by providing the injection pipe 38 and causing two-phase gas-liquid refrigerant or gas refrigerant to flow into the compressor 1. For example, by causing two-phase gas-liquid refrigerant or gas refrigerant to flow into the compression chamber of the compressor 1, the density of refrigerant in the compression chamber can be increased and the flow rate of refrigerant discharged from the compressor can be increased, and as a result the heating capacity is increased. In addition, in a case where an upper limit is set for the temperature of refrigerant discharged from the compressor 1 and the higher the frequency of the compressor 1, the more easily the refrigerant temperature increases, the temperature of the refrigerant can be reduced by causing two-phase gas-liquid refrigerant to flow into the compressor 1. As a result, the compressor 1 can be operated at higher frequency, and thus the flow rate of refrigerant can be increased and the heating capacity can be increased. However, to increase the heating capacity using the injection pipe 38, refrigerant needs to flow into the injection pipe 38 at a predetermined flow rate, and the pressure of refrigerant at the branching portion, which is an inlet of the injection pipe 38, needs to be maintained at a predetermined value to ensure the flow rate of refrigerant.
Thus, the flow rate of refrigerant necessary for the injection pipe 38 can be ensured by controlling the total opening degree of the first flow control devices, which are connected to the parallel heat exchangers, which function as an evaporator, and performing control so that the value from the second pressure detector 95, which is the pressure of refrigerant at the branching portion, becomes a predetermined value.
Note that, also in the heating normal operation after the air-conditioning apparatus 102 performs the heating-defrosting operation, the total opening degree of the first flow control devices 7-1 to 7-4 may be controlled as described above and the opening degree of each of the first flow control devices 7-1 to 7-4 may be controlled in accordance with the frost states of the parallel heat exchangers 5-1 to 5-4 while satisfying the total opening degree.
The air-conditioning apparatus 102 of Embodiment 3 is provided with the injection pipe 38, which diverts a portion of refrigerant flowing from the second extension pipe 33-1 to the first flow control devices 7-1 to 7-4 and causes the portion of the refrigerant to flow into the compressor 1, and the second pressure detector 95, which detects the pressure of refrigerant at the branching portion, controls the total opening degree of the first flow control devices 4, which are connected to the parallel heat exchangers, which function as an evaporator, and control, while satisfying the total opening degree, each first flow control device in accordance with the frost state of the evaporator. The total opening degree corresponds to, for example, the total flow resistance obtained by totalizing all the flow resistances of the first flow control devices connected to parallel heat exchangers functioning as an evaporator. According to Embodiment 3, not only the heating capacity is increased by flow control performed in accordance with the frost states of the parallel heat exchangers but also the heating capacity can further be increased compared with Embodiment 1 by causing refrigerant to flow into the injection pipe at the predetermined flow rate and the degree of comfort in the indoor space can be increased.
Note that in Embodiments 1 to 3 described above, the case where the outdoor heat exchanger 5 is divided into the four parallel heat exchangers 5-1 to 5-4 has been described; however, the number of divisions is not limited to four. The outdoor heat exchanger 5 may also be configured such that two or more parallel heat exchangers are provided and there are two or more evaporators at the time of the heating normal operation, or three or more parallel heat exchangers are provided and there are two or more evaporators at the time of the heating-defrosting operation. Even with such a configuration, by applying Embodiments described above, one or more of the parallel heat exchangers are treated as targets to be defrosted and the other parallel heat exchangers are operated to continue the heating operation, and the degree of comfort in the indoor space can be increased.
In addition, the case where the air-conditioning apparatus 100 according to Embodiment 1, the air-conditioning apparatus 101 according to Embodiment 2, and the air-conditioning apparatus 102 according to Embodiment 3 are devices that perform switching between the cooling operation and the heating operation has been described as an example; however, air-conditioning apparatuses are not limited to these devices. Embodiments 1 to 3 described above can also be applied to air-conditioning apparatuses having a circuit configuration with which a cooling-heating simultaneous operation can be performed. In addition, in Embodiments 1 to 3 described above, the cooling-heating switching device 2 may be omitted and the air-conditioning apparatuses may perform only the heating normal operation and the heating-defrosting operation.
1 compressor 2 cooling-heating switching device 3b, 3c load side heat exchanger 4b, 4c first pressure reducing device 5 outdoor heat exchanger 5-1 to 5-4 parallel heat exchanger 5a heat transfer tube 5b, 5bn fin 5f outdoor fan 6 accumulator 7-1 to 7-4 first flow control device 8-1 to 8-4 first open-close device 9-1 to 9-4 second open-close device 10 third pressure reducing device 11-1, 11-2 second flow control device 12-1 to 12-4 second pressure reducing device 13 fourth pressure reducing device 31 discharge pipe 32-1, 32-2b, 32-2c first extension pipe 33-1, 33-2b, 33-2c second extension pipe 34-1 to 34-4 first connection pipe 35-1 to 35-4 second connection pipe 36 suction pipe 37 bypass pipe 38 injection pipe 51a to 51d opening port 52 flow switching unit 90 controller 91 first pressure detector 92-1 to 92-4 temperature detector 93-1, 93-2 temperature detector 94 outside air temperature detector 95 second pressure detector 100, 101, 102 air-conditioning apparatus A outdoor unit B, C indoor unit.
Number | Date | Country | Kind |
---|---|---|---|
JP2017-198583 | Oct 2017 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2018/008814 | 3/7/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/073621 | 4/18/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20020043073 | Park | Apr 2002 | A1 |
20130312447 | Inaba | Nov 2013 | A1 |
20140245766 | Wakamoto et al. | Sep 2014 | A1 |
20150292789 | Takenaka et al. | Oct 2015 | A1 |
20150308701 | Yamashita et al. | Oct 2015 | A1 |
20160153697 | Hamamoto | Jun 2016 | A1 |
20190154321 | Takenaka et al. | May 2019 | A1 |
Number | Date | Country |
---|---|---|
104011485 | Aug 2014 | CN |
104813123 | Jul 2015 | CN |
3 282 208 | Feb 2018 | EP |
55-28459 | Feb 1980 | JP |
2008-157558 | Jul 2008 | JP |
2008-157588 | Oct 2008 | JP |
2008 249236 | Oct 2008 | JP |
2008-249236 | Oct 2008 | JP |
2009-281698 | Dec 2009 | JP |
2012 063033 | Feb 2012 | JP |
2012-63033 | Mar 2012 | JP |
2016-211839 | Dec 2016 | JP |
WO 2013128897 | Sep 2013 | WO |
WO 2014083867 | Jun 2014 | WO |
WO 2014128831 | Aug 2014 | WO |
2017006596 | Jan 2017 | WO |
Entry |
---|
International Search Report dated May 15, 2018 in PCT/JP2018/008814 filed on Mar. 7, 2018, 2 pages. |
Office Action dated Mar. 3, 2021, in corresponding Chinese patent Application No. 201880065316.5, 15 pages. |
Extended European Search Report dated Nov. 13, 2020 in European Patent Application No. 18866482.5, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20200232693 A1 | Jul 2020 | US |