Claims
- 1. Apparatus for conditioning air comprising in combination, a chemical dehumidifier including means for spraying a hygroscopic solution in contact with air circulated therethrough, a thin film vapor compressor comprising at least one evaporating surface, a condensing surface opposite each evaporating surface, an enclosure for said evaporating and condensing surfaces, said enclosure being operable to form at least one lower pressure chamber containing said evaporating surface and at least one higher pressure chamber containing said condensing surface, a vapor pump having an inlet operatively connected to each of said lower pressure chambers and a discharge operatively connected to each of said higher pressure chambers, means for circulating dilute hygroscopic solution from said chemical dehumidifier to said vapor compressor and for flowing the dilute solution in a thin film on said evaporating surface, means for collecting concentrated hygroscopic solution which is not vaporized from said evaporating surface, for withdrawing the concentrated solution from said lower pressure chamber and for circulating the withdrawn concentrated solution to said chemical dehumidifier for spraying therein, and means for transferring heat from said chemical dehumidifier to a heat sink.
- 2. Apparatus for conditioning air, as set forth in claim 1, wherein said hygroscopic solution is a lithium salt, and wherein said means for circulating the withdrawn concentrated solution includes means for blending concentrated lithium salt solution circulated to said chemical dehumidifier with dilute solution recirculated therefrom and for delivering the resulting blend for spraying therein.
- 3. Apparatus for conditioning air, as set forth in claim 1, wherein said condensing surface condenses water vapor evaporated from the dilute hygroscopic solution in said lower pressure chamber, and further including means for circulating said condensed water for indirect heat transfer with the dilute hygroscopic solution circulated from said chemical dehumidifier to said lower pressure chamber.
- 4. Apparatus for conditioning air comprising in combination, an evaporator including means for spraying water through an air space, an absorber having an air space in closed communication with the air space of said evaporator, said absorber including means for spraying a hygroscopic solution through the air space therein, a thin film vapor compressor comprising at least one evaporating surface, a condensing surface opposite and in thermal conduction with each evaporating surface, an enclosure for said evaporating and condensing surfaces, said enclosure being operable to form at least one lower pressure chamber containing said evaporating surface and at least one higher pressure chamber containing said condensing surface, a vapor pump having an inlet operatively connected to each of said lower pressure chambers and a discharge operatively connected to each of said higher pressure chambers, means for circulating dilute hygroscopic solution from said absorber to said vapor compressor and for flowing the dilute solution in a thin film on said evaporating surface, means for collecting concentrated hygroscopic solution which is not vaporized from said evaporating surface, for withdrawing the concentrated solution from said enclosure and for circulating the withdrawn concentrated solution to said absorber for spraying therein and means for transferring heat from said absorber to a heat sink.
- 5. Apparatus for conditioning air, as set forth in claim 4, wherein said heat transferring means includes an indirect heat exchanger located within said absorber air space, cooling tower means for transferring heat from a coil to a fluent discharge therefrom, and means for circulating a heat transfer fluid from said indirect heat exchanger to said coil and said cooling tower.
- 6. Apparatus for conditioning air, as set forth in claim 4, wherein said evaporator further includes an indirect heat exchange coil within said air space, means for circulating a heat transfer fluid to be chilled through said heat exchange coil, and indirect heat exchange means for transferring heat from air circulated therethrough to the chilled heat transfer fluid.
- 7. Apparatus for conditioning air, as set forth in claim 4, wherein said condensing surface condenses water vapor evaporated from the dilute hygroscopic solution in said lower pressure chamber, and further including means for circulating said condensed water for indirect heat transfer with the dilute hygroscopic solution circulated from said absorber and thence to said evaporator for spraying therein.
- 8. Apparatus for conditioning air comprising in combination, a chemical dehumidifier including means for spraying a hygroscopic solution in contact with air circulated therethrough, an evaporator including means for spraying water through an air space, an absorber having an air space in closed communication with the air space of said evaporator, said absorber including means for spraying a hygroscopic solution through the air space therein, a thin film vapor compressor comprising at least one evaporating surface, a condensing surface opposite each evaporating surface, an enclosure for said evaporating and condensing surfaces, said enclosure being operable to form at least one lower pressure chamber containing said evaporating surface and at least one higher pressure chamber containing said condensing surface, a pump having an inlet operatively connected to each of said lower pressure chambers and a discharge operatively connected to each of said higher pressure chambers, means for circulating dilute hygroscopic solution from said chemical dehumidifier and from said absorber to said vapor compressor and for flowing the dilute solution in a thin film on said evaporating surfaces, means for collecting concentrated hygroscopic solution which is not vaporized from said evaporating surfaces, for withdrawing the concentrated solution from said enclosure and for circulating the withdrawn concentrated solution to said chemical dehumidifier and to said absorber for spraying therein, and means for transferring heat from said absorber to a heat sink.
- 9. Apparatus for conditioning air, as set forth in claim 8, and further including means for transferring heat from said chemical dehumidifier to said evaporator.
- 10. Apparatus for conditioning air, as set forth in claim 8, and further including means for transferring heat from said chemical dehumidifier to a heat sink.
- 11. Apparatus for conditioning air, as set forth in claim 10, and further including means for transferring heat from dehumidified air circulated through said chemical dehumidifier to said evaporator.
- 12. Apparatus for conditioning air, as set forth in claim 11, wherein said condensing surface condenses water vapor evaporated from the dilute hygroscopic solution in said lower pressure chamber, and further including means for circulating said condensed water for indirect heat transfer with the dilute hygroscopic solution circulated from said absorber and said chemical dehumidifier and thence to said evaporator for spraying therein.
- 13. Apparatus for regenerating a dilute aqueous sorbent solution circulated from a chemical dehumidifier comprising an evaporating surface area enclosed within a lower pressure chamber for heating and concentrating the dilute aqueous sorbent solution, a condensing surface area enclosed within a higher pressure substantially chamber in heat transfer relationship through a thermally conducting separator with said evaporating surface area, means for flowing a dilute sorbent on said lower pressure area, and means for withdrawing vapor phase material from said lower pressure chamber at a first given pressure less than atmospheric and for introducing the withdrawn vapor phase material into said higher pressure chamber at a second given pressure higher than the first given pressure, the first given pressure being sufficiently low that water is vaporized from the dilute aqueous sorbent solution on said evaporating surface area, and the second given pressure being sufficiently high that water vapor is condensed on said condensing surface area therein, whereby substantially all of the latent heat of vaporization of water condensed on said condensing surface area is transferred from said condensing area to said evaporating surface area and, from thence, to the aqueous sorbent solution being concentrated.
- 14. Apparatus, as set forth in claim 13, and further including an indirect heat exchanger through which the dilute aqueous sorbent solution is circulated prior to heating and concentrating in said lower pressure chamber, and means for circulating condensed water from said higher pressure chamber through said indirect heat exchanger for preheating the dilute aqueous sorbent solution.
- 15. Air conditioning apparatus comprising an area enclosed within a first chamber for heating and concentrating a cool dilute aqueous sorbent solution, a condensing area enclosed within a second chamber in heat transfer relationship through a thermally conducting heat exchange surface with said first-mentioned area, means for flowing a dilute sorbent on said first area, and means for withdrawing vapor phase material from the first chamber at a first given pressure less than atmospheric and for introducing the withdrawn vapor phase material into the second chamber at a second given pressure higher than the first given pressure, the first given pressure being sufficiently low that water is vaporized from the dilute aqueous sorbent solution on said heating and concentrating area, and the pressure in the second chamber being sufficiently high that water vapor is condensed on said condensing area therein, whereby substantially all of the latent heat of vaporization of water condensed on said condensing area is transferred from said condensing area to said first area and, from thence, to dilute aqueous sorbent solution.
Parent Case Info
This is a continuation of application Ser. No. 677,694 filed Apr. 16, 1976, now abandoned.
US Referenced Citations (6)
Continuations (1)
|
Number |
Date |
Country |
Parent |
677694 |
Apr 1976 |
|