The invention relates to air conditioning, humidification, and dehumidification.
A major deficiency of most existing air conditioning systems is their inability to remove high levels of humidity such as those associated with the significant quantities of outside air that are required by the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) standards (mandatory in the U.S.) and for health reasons. A number of desiccant systems have been tried in order to solve this problem economically but none has achieved high market penetration.
The energy used in buildings for heating and cooling comprises more than 30% of all energy used in the USA. Much of this energy is from fossil fuel sources, and the level of usage of fossil fuels is currently causing much concern. In particular, air conditioning is almost entirely powered by electricity, most of which is from fossil fuels. Electricity used for air conditioning also contributes to a large peak of electrical consumption that requires a high level of expensive peak power generation plant capacity. It would therefore be desirable if air conditioning were much more efficient in its use of electric power or were powered by non-electric or non-fossil fuel sources.
Air conditioning by compressors can remove only a fraction of the humidity from the air in humid climates. This leads to a provision of excess capacity and low refrigeration temperatures for humidity removal and the need to re-heat the air supplied to buildings. Both of these factors require considerable power usage and energy wastage. U.S. Department of Energy sources indicate that this could be as high as 60% of energy used in air conditioning. A large quantity (about 31% globally) of primary energy supplied results in waste heat that could be collected and used for low temperature energy use such as the air conditioner described below.
Desiccant-based dehumidifiers and air conditioners have been introduced to the market on a number of occasions over the past 75 years but they have not been well received for a number of reasons. Firstly, they have been expensive to buy and any energy savings from their use have not been sufficient to pay back the capital cost on a time-scale considered economic to most building owners and operators. Secondly, some liquid desiccant systems were prone to allow droplets of the liquid desiccant to carry over into the conditioned space, which is highly undesirable.
U.S. Pat. No. 5,123,481 to Albers et al. describes a process of air-cooling and dehumidification. In U.S. Pat. No. 5,123,481, Albers, et al. use sectors in an air stream and partitions or heat exchangers to transfer the heat to an airstream in a second chamber in which water is evaporated as a heat sink.
U.S. Pat. Nos. 4,982,782, 5,020,335 and 5,020,588, also to Albers et al., use a heat connecting partition and a plurality of gas streams.
Lowenstein U.S. Pat. No. 5,351,497 uses a low flow desiccant system that does not use turbulent heat exchange nor multiple sectors.
Hargis U.S. Pat. No. 8,268,060 B2 discloses a device using liquid desiccant and a compressor and heat exchangers. Hargis splits the desiccant streams into two components only one of which is passed through a heat exchanger. Thus Hargis is exposing the air streams to two (or more) desiccant stages that are at different temperatures rather than different relative humidities. Hargis also regenerates the desiccant using an outside airstream rather than the drier exhaust air from the building.
Forkosh has U.S. Pat. Nos. 6,487,872, 6,494,053, 6,575,228 and 6,976,365 that use a liquid desiccant and usually a compressor to provide the heat sink and source. Forkosh uses a single sump in either the dehumidifier or regenerator and the desiccant therefore mixes to a single concentration. Thus the “stages” described by Forkosh do not enable the separation of the desiccant into differing concentrations.
Albers and Yuan filed application US 2005/0109052 A1 for a device using a compressor and liquid desiccant. Although that device had distinct sectors, it was not arranged for separate heat input and output in each of these sectors. The heat transfer from the heat source (compressor) to the heat and mass transfer substance (desiccant) takes place at only one of the sectors, and the objective of the method is stated to be to induce a “temperature gradient” in the desiccant between the sectors rather than a concentration gradient.
There is a need for a dehumidification and/or air conditioning device that enables the use of lower temperature regeneration heat sources and less-cold cooling sources.
In an embodiment of the air conditioner, an air stream, which may be 100% outside air, is humidity controlled by contact with a liquid desiccant of progressively changing concentration in a number of sectors. If the air is more humid than desired, it is dehumidified by contact with concentrated liquid desiccant distributed on a medium with a large wetted surface area in a number of sectors. If the air is less humid than desired (in winter mode) water is added to the desiccant in the air conditioner. The concentration of the desiccant supplied to the device determines the humidity content of the air supplied to the conditioned space. Passing a cooling fluid through heat exchangers cools the air by contact with the cooled desiccant. Thus, in all seasons the air humidity and temperature may be controlled by supplying the air conditioner with a suitable heating or cooling fluid and a suitable desiccant concentration.
The cooling fluids are supplied in parallel to each heat exchanger in each sector of the air conditioner and at essentially the same temperature to maximize the heat transfer out of the desiccant and thus from the treated air. This maximizes the enthalpy change in each sector and enables a lower source temperature to be used than if the cooling fluid is supplied in series to each heat exchanger. As will be evident and can be seen on the psychrometric chart in
A contributing feature to the effectiveness of certain of the described apparatus and methods is separation of the desiccant by concentration into multiple sectors in which the air is first treated by the most dilute desiccant. This causes a temperature rise in that sector. The amount of dehumidification of the air in that sector is limited by the concentration of the desiccant and by the amount of heat that can be removed by the cooling fluid, as can be seen on the psychrometric chart,
Some of the previously proposed air conditioners mentioned above use heat transfer partitions or other heat exchangers that do not allow the creation of full turbulent flow (a Reynolds number of at least 300 and preferably 500 or more) and thus limit the rate of heat transfer between the fluids. When heat exchangers are used in the present apparatus and methods, pumping the fluids at the designed rate to cause turbulent flow gives a high heat transfer coefficient and thus minimizes the size and cost of the heat exchangers.
The method proposed can generally use components that are relatively easy to obtain at a reasonable cost rather than requiring highly specialized components that would make the cost of the apparatus high.
The significance of the claims that involve performance of the apparatus using the proposed method is that other methods do not achieve such low humidity conditions in the cooled supply air while using a relatively high temperature cooling source. For example, it is believed to be possible to operate embodiments of the present apparatus with a cooling liquid at 62 degrees F. (17° C.) in conditions where a cooling fluid at 50 degrees F. (10° C.) or below would be required in a conventional air conditioner, e.g. 43 degrees F. (6° C.) is typical in a chiller system. Similarly, the significance of the claims concerning the performance of the regenerator is that other methods do not achieve such a concentrated desiccant solution while using a relatively low-temperature heating source. The method of achieving these high performances can be demonstrated by reference to the psychrometric chart
The method proposed enables the supply to the conditioned space of an airstream that has a relative humidity close to the equilibrium level of the air in contact with the concentrated liquid desiccant while using a cooling fluid that is fairly close in temperature to the supply air (for example 9 degrees F. (5° C.) cooler).
The method also enables the reconcentration of the liquid desiccant by an airstream that is heated minimally above ambient temperature (for example, 30 degrees F. (17° C.) warmer) compared with most other methods that require either a large and expensive apparatus or high temperatures to achieve the same result.
In an embodiment, a simple control device is provided to control the concentration of the desiccant.
The method proposed also allows the humidification of the supply air in winter mode by diluting the desiccant. Diluting the desiccant increases its volume and thus would require the provision of surplus volume in one or more of the desiccant sumps. However, in many embodiments it is not desirable to have large sumps or volumes of desiccant in the apparatus and so a separate inexpensive reservoir may be provided. This serves three purposes: 1. Ability to accommodate changing desiccant volumes; 2. Separation of concentrated and dilute desiccant within a single or multiple containers; 3. Storage of desiccant so that the air conditioner may be operated for a period of time when the heating sources are not available (so long as auxiliary power to operate pumps and fans is still available).
In an embodiment, the appropriate increase in concentration of the desiccant, when required or desired, may be carried out by a regenerator that is configured similarly to the air conditioner but used to evaporate water from the desiccant. The regenerator uses an airflow to reconcentrate the desiccant where the air is preferably taken from the conditioned space or another source that is drier than outside air. Since building exhaust air is typically lower in volume than the supply air because of losses due to leakage and extract fans in bathrooms, for example, from which the air cannot be economically collected, the regenerator may be designed so that it may use a lower flow than the airflow of the air conditioner by applying greater heating to remove the required mass of moisture from the desiccant. The building exhaust air is first heated in the regenerator using a heating fluid (such as the exhaust air) passed through a heat exchanger to recover waste heat. The air is then heated at each stage by contact with the desiccant heated in the heat exchanger at each stage, thus lowering the relative humidity of the exhaust air, and enabling it to evaporate water from the desiccant in a step-wise manner with progressively lower relative humidity air at each step. The maximum concentration of the desiccant obtained is directly related to the minimum relative humidity of the air and the equilibrium relative humidity of the desiccant should be within 2 to 5% of the relative humidity of the air and in a preferred embodiment be within 2% of the relative humidity of the air. Once reconcentrated, the liquid desiccant is reused in the air conditioner to remove humidity from outside air. In winter some of the energy and moisture in the air leaving the building is recovered in the regenerator using the desiccant to absorb heat and humidity that is then reused in the air conditioner to add to the incoming air.
In an embodiment, the air conditioner and the regenerator are modular in construction and the modules in the air conditioner and the regenerator may be identical, or similar but with altered dimensions to suit the air flow in each device. The number of modules comprising the sectors and the contained desiccant pads may be varied to suit the climate and operating requirements for which the whole apparatus is built. Having more modules in the air conditioner enables the relative humidity of the air to more closely match the relative humidity of the desiccant supplied to the air conditioner. Having more modules in the regenerator enables the relative humidity obtained by the liquid desiccant to approach more closely the minimum relative humidity of the air used for regeneration.
An embodiment of a complete air conditioner comprises a system including: an air conditioner; a desiccant regenerator; optionally, a desiccant storage device with spare capacity to accommodate the volume of water added to the system when operated in humidification mode; and when the system is in use sufficient liquid desiccant to fill the system to the required levels.
External to the apparatus, that embodiment of a system also includes: a source of cooling fluid to remove sensible and latent energy from the system in the cooling season; a source of heating fluid to heat and humidify the outside air in the heating season; a source of heating fluid to evaporate moisture from the desiccant; a supply of electricity or other motive power to drive the pumps and fans and operate the controls; and a source of water treated to remove most of the salts to provide humidification when required.
In an embodiment, there is provided a method of cooling and dehumidifying an outside airstream that comprises: contacting the air stream with a liquid desiccant absorber in each of at least two stages; cooling the desiccant for each said stage externally to the absorber using an external source of cooling supplied with a common cooling fluid at each stage; causing the desiccant to flow between the stages counter-current to the flow of the airstream such that at each step the humidity of the air is reduced by contact with the desiccant and the concentration in each stage is distinctly higher than the concentration of the desiccant in the previous stages.
In an embodiment, there is provided a method of heating and humidifying an outside airstream that comprises: contacting the airstream in at least two distinct stages of contact with dilute liquid desiccant evaporators; during each of said stages, heating the desiccant externally to the evaporator using a common external source of heating at each stage; causing the desiccant to flow between the stages counter-current to the flow of the airstream such that at each step the humidity of the air is increased by contact with the dilute desiccant.
In an embodiment, there is provided a method of reconcentrating a liquid desiccant that comprises: contacting an airstream with liquid desiccant evaporators in each of at least two stages; heating the desiccant at each said stage externally to the absorber using an external source of heating supplied with a common heating fluid at each stage; and causing the desiccant to flow between the stages counter-current to the airstream, such that at each stage the concentration of the desiccant is distinctly higher than the concentration of the desiccant in the other stages.
In an embodiment, there is provided an apparatus for exchange of heat and moisture between an airstream forced through the apparatus, an external energy fluid source, and a liquid desiccant flow that comprises: at least two separate but connected modules that are essentially identical, each module comprising: an absorber/evaporator for contacting liquid desiccant with air, a liquid desiccant distributor for distributing liquid desiccant over the absorber/evaporator, a heat exchanger external to the absorber/evaporator to cool/heat the liquid desiccant with fluid from the external energy fluid source, a pump operative to recirculate the liquid desiccant between the absorber/evaporator and the heat exchanger; an outer shell to direct the airstream through the absorber/evaporator; and a sump below the absorber/evaporator to collect the liquid desiccant distributed over the absorber/evaporator.
The above and other aspects, features, and advantages of the disclosed embodiments may be more apparent from the following more particular description of embodiments thereof, presented in conjunction with the following drawings. In the drawings:
A better understanding of various features and advantages of the present methods and devices may be obtained by reference to the following detailed description of illustrative embodiments and accompanying drawings. Although these drawings depict embodiments of the contemplated methods and devices, they should not be construed as foreclosing alternative or equivalent embodiments apparent to those of ordinary skill in the subject art.
Referring to the drawings, and initially to
Referring now to
Thus, either a single reservoir or two reservoirs or other similar embodiments may be used to receive flow 9 or 11 from Device 1 or 2, respectively, and may return flow 8 or 10 to Device 1 or 2, respectively. In this way, either of Devices 1 and 2 may operate independently for a time provided there is sufficient concentrated or dilute desiccant available in the reservoir.
As shown in
The cooling fluid 5 is supplied to the Device 1 from an external source 51 and may be returned to that source via flow 6 for re-cooling or used for some other purpose. The cooling fluid to optional coil 36 may be from the same source and may flow either in parallel or serially following the flows to the heat exchangers. In the preferred embodiment the heat exchanger 22 is a plate heat exchanger made of a material resistant to the desiccant but other devices than a plate heat exchanger may be used to cool the desiccant. For example, a geo-exchange loop or other forms of heat exchanger such as used for refrigerants or absorbing fluids when the apparatus is used in conjunction with a heat pump as the cooling source 51. Typical sources of cooling for fluids 5 going to the heat exchangers may be for example, a geo-exchange loop, a return cold-water stream from a chiller, or cold refrigerant from a compressor, so long as the source fluid is, say, 9 degrees F. (5° C.) cooler than the desired supply airflow 3 to the conditioned space.
A flow of desiccant through Device 1 is caused by the removal of a flow 9 that is part of the output of pump 24 in Sector 1. The flow 9 of desiccant causes a fall in the level of desiccant in Device 1. When the level in Device 1 falls to a pre-set level, a float switch, or switches, 28 activates a flow of desiccant 8 into Device 1 into the sector furthest from Sector 1 shown in
In the preferred embodiment of Device 2, an air stream 4 is caused by a fan or other air movement device 32 to flow through a number of modular sectors that are connected together in an airtight fashion from the air inlet 29 to an outlet 33 as airstream 4 where it is discharged to atmosphere away from the inlet of airstream 3. The air movement device may be situated at any convenient and effective position in the device or connected to it at either end in such a way as to cause the air stream 4 to flow through the device. In most applications, the air stream 4 will be taken from the building exhaust air because this is the air with the lowest humidity ratio available and will thus better concentrate the desiccant. The airstream 4 may be optionally pre-heated using the sensible heat from airstream 4 leaving Device 2 by means of heat recovery coils or an air-to-air plate heat exchanger (not shown here and which are standard HVAC practices).
Device 2 is essentially the same as Device 1 if the optional items 26 and 36 are omitted. The operation of the sectors in Device 2 is essentially the same as Device 1 except that in Device 1 the action of the liquid desiccant on the air is generally to cool and dehumidify and in Device 2 it is to heat and humidify the air thus reconcentrating the liquid desiccant.
In Devices 1 and 2 the pump 24 causes a flow of the liquid desiccant 7 over the media pad at a rate of, say, 1.5 to 2 gallons per minute per square foot (60-80 liters per minute per square meter) of horizontal surface area. This is a satisfactory flow rate for a horizontal airstreams 3 and 4 rate of around 6 feet (2 meters) per second. If higher airstream rates are desired but still less than 10 feet (3 meters) per second, then the liquid flow rate 7 may have to be reduced to prevent the formation of droplets of desiccant that could carry over into the airstream. For best performance the airstream velocities should be as uniform as possible across the face of the pads to prevent localized carryover. The distribution of desiccant onto the top of the media pad 21 should be uniform, and this may be effected by a distributor 23 consisting of an array of tubes with holes at intervals such that there are 20 to 30 holes per square foot (200-300 per square meter) evenly spaced across the media pad horizontal surface. Such a device 23 is shown in
The material of the media pads 21 in either device 1 or 2 is such that it is resistant to the desiccant and that the pads remain un-deformed at the temperatures that may be used. Such media may be evaporative cooler media, for example, those sold under the Trade Mark CELDEK by Munters AB of Kista, Sweden, and higher temperature versions of such media, for example, those sold under the Trade Mark GLASDEK by Munters AB, and as used in chemical towers, such as those sold by Lantec Products Incorporated, of Agoura Hills, Calif., where needed.
The heat exchangers in Device 2 receive flows of heated fluid 15, shown in
The outer surface of the sector enclosures 20 and heat exchangers 22 should be insulated, as is good practice with most HVAC devices, to reduce the loss of heat to atmosphere. The insulation may be conventional and, in the interests of conciseness and clarity, is not further illustrated or described.
The liquid desiccant may be a concentrated solution in water of either Lithium Bromide or Lithium Chloride or a mixture of the two or another liquid desiccant capable of producing a low relative humidity when in contact with an airstream. The use of Lithium Bromide enables a lower relative humidity to be achieved in the airstream 3 than does Lithium Chloride although either can produce when in equilibrium a relative humidity in the air of 12%. The liquid desiccant must be suitable to remove the moisture from the airstream 3 to the level required for the particular application. Other liquid desiccants are possible such as Calcium Chloride but some others have disadvantages of toxicity and/or insufficient temperature and humidity range. The solutions of Lithium salts chosen as preferred desiccants do not freeze in the normal concentration/temperature range and have beneficial biocidal action on all tested bacteria and viruses including the Severe Acute Respiratory Syndrome (SARS) virus. Device 1 also serves as an air-cleaning device for fine particles, pollens and spores that can bypass a normal air filter. Material removed from the air is washed into the desiccant and collected by a cartridge filter 31 in the recirculating line (flow 7) from pump 24 to heat exchanger 22.
In the preferred embodiment of the whole apparatus, concentrated desiccant flow 11 from Device 2 flows to a reservoir as shown in
The more concentrated desiccant is kept separate from the dilute desiccant in the desiccant reservoir. However, in alternative embodiments the desiccant reservoir may be omitted and the desiccant flow 9 may go directly to Device 2 as flow 10 and desiccant flow 11 may go directly to Device 1 as flow 8 provided that minimum and maximum working levels of desiccant are maintained in the sumps 30 of each sector of each device as required to maintain the flow of desiccant through the heat exchangers 22 and over the pads 21 in each sector.
Increasing or decreasing the flow 11 controls the desiccant concentration from Device 2 via sensor 35 or by calculation from the difference in the humidity of airflow 4 entering and leaving Device 2. In one embodiment of such a sensor 35, part of the concentrated desiccant in Sector 1 of Device 2 flows from the pad 21 into a small basin that overflows into the sump 30. Thus, the desiccant in the sensor basin is a sample of the most concentrated desiccant being produced by Device 2. Sensor 35 contains a mechanism such as a float connected to a pressure sensitive device calibrated to read the specific gravity and therefore the concentration of the desiccant. Valve 50 operates with sensor 35 or by calculation to maintain the concentration of the desiccant at a level consistent with the relative humidity required in airstream 3 and the temperature of heating source 15.
In Device 1, a similar sensor 37 or calculation method described is used with valve 48 to ensure that desiccant flow 9 has been sufficiently diluted since the flow of desiccant to the reservoir and to Device 2 should be dilute for proper and economic operation of the regenerator.
The Apparatus Functions as Follows:
In cooling/dehumidification mode, which is defined as when the airstream 3 is required to be dehumidified by Device 1, heat source fluid 5 is cool and when the system is in operation, i.e. the pumps and air movement devices are functioning as described above, the airstream 3 is cooled and partially dehumidified by contact with the optional cold coil 36, then dehumidified and cooled by passage through the desiccant modules 54, 55 and 56 of Device 1 and flows to its required application of conditioning a space. The desiccant flow 8 will normally be required to be concentrated in order for the Device 1 to simultaneously cool and remove humidity from the air. This process progressively dilutes the desiccant in the sectors as described above and the dilute desiccant exits Device 1 via flow 9.
Device 2 receives diluted desiccant either from a reservoir or directly from Device 1 via flow 10 which flows into the sector of Device 2 nearest the airflow outlet 33 shown in
The change of temperature and humidity in the air in each of the sectors of each Device is shown on the psychrometric chart in
The amount of dehumidification and cooling of the airstream is limited by vapor pressure of the desiccant (which is a function of its concentration) in that sector and the amount of heat transferred to the desiccant via the heat exchanger 22 in that module. The desiccant that the air is in contact with in Sector 1 has already passed through the other sectors and so is relatively dilute but the rate of flow of desiccant between the sectors is such that the desiccant is sufficiently concentrated to remove a fraction of the moisture in the airstream 3. The air enters Sector 2 and is treated in the same way by desiccant that enters Sector 2 more concentrated than that in Sector 1.
In
The reconcentration of the desiccant in Device 2 is also shown in
In
Operation in winter mode, which is when the building controls are calling for heating of the incoming air, need not involve the use of Device 2 to alter the desiccant concentration although Device 2 may be used to recover heat and humidity from the building exhaust air. In winter the incoming air has low humidity and so humidification is desirable, which can be accomplished by a flow of water 12 into Device 1. This dilutes the desiccant in the last sector (in module 56) to the point where it humidifies airstream 3. Since water evaporates from the diluted desiccant under these circumstances, water flow 12 will operate as needed by level sensor 28 in module 56 to maintain the diluted desiccant level. The desiccant in Sector 1 of Device 1 will still remain sufficiently active as a biocide despite becoming partially diluted. A standard water treatment plant (not shown) is used where necessary to treat the flow of water 12 to remove impurities that could either affect the action of the desiccant or give rise to buildup of residue.
Heat and moisture recovery in winter mode using Device 2 may be accomplished by using Device 2 and Sector 1 of Device 1 as the two parts of an enthalpy run-around loop. Thus, Device 2 operates as in summer mode but without added heat from flow 15, which is shut off. The desiccant flow 10 enters as in summer mode and the desiccant picks up heat and moisture from the exhaust air from the building. The desiccant flow 11 exits Device 2 and valve 50 is fully open. The difference from summer mode operation is that flow 11 is routed to Sector 1 of Device 1 as flow 13, is pumped over the pad 21 and serves to pre-heat and pre-humidify the outdoor air flow 3.
Switching between summer and winter mode is achieved as above and by changing the flow into Device 1 from desiccant (flow 8) to water (flow 12), and the reverse switching involves changing back to desiccant and also reactivating Device 2. After activation of the winter mode and the desiccant has been diluted, flow 11 is switched to connect with flow 13 instead of going to the storage device.
In either Device 1 or 2, if gravity fed tubes 27 are used, the desiccant level may be controlled by turning the desiccant inflows 8 or 10 on or off according to a level sensor 28 that may be situated in a convenient location in one or more of the basins 30. Activation of the flows may be achieved either by turning on pump 43 or 44, or alternatively by opening a flow valve (not shown) in place of the pump if there is sufficient pressure to cause the flows 10 or 8.
In either device, if pumped desiccant flows are used between sectors the level control 28 is a float activated control valve that serves to directly control the inflow of desiccant except in the last sector where 28 controls a pump 43 or 44 in the reservoir.
It can be seen that one skilled in the art could construct and operate the apparatus described above to achieve cooling or heating and dehumidification or humidification of an air stream to provide controlled conditions in a building.
While the foregoing written description enables one of ordinary skill to make and use what is considered presently to be the best mode thereof, those of ordinary skill will understand and appreciate the existence of variations, combinations, and equivalents of the specific embodiment, method, and examples herein. The invention is therefore not limited by the above described embodiments, methods, and examples, but extends to all embodiments and methods within the scope and spirit of the disclosure.
Accordingly, reference should be made to the appended claims, rather than to the foregoing specification, as indicating the scope of the invention. Aspects of the invention include combinations of the features of any two or more of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4164125 | Griffiths | Aug 1979 | A |
4391321 | Thunberg | Jul 1983 | A |
4982782 | Albers et al. | Jan 1991 | A |
5020335 | Albers et al. | Jun 1991 | A |
5020588 | Albers et al. | Jun 1991 | A |
5123481 | Albers et al. | Jun 1992 | A |
5146978 | Albers et al. | Sep 1992 | A |
5351497 | Lowenstein | Oct 1994 | A |
5460004 | Tsimerman | Oct 1995 | A |
6138470 | Potnis et al. | Oct 2000 | A |
6216489 | Potnis et al. | Apr 2001 | B1 |
6513339 | Kopko | Feb 2003 | B1 |
6854279 | Digiovanni et al. | Feb 2005 | B1 |
7942387 | Forkosh | May 2011 | B2 |
8196907 | Zhang et al. | Jun 2012 | B2 |
8268060 | Hargis et al. | Sep 2012 | B2 |
20040211207 | Forkosh et al. | Oct 2004 | A1 |
20040261440 | Forkosh et al. | Dec 2004 | A1 |
20050109052 | Albers et al. | May 2005 | A1 |
20100000247 | Bhatti et al. | Jan 2010 | A1 |
20100175394 | Albers | Jul 2010 | A1 |
20110132027 | Gommed et al. | Jun 2011 | A1 |
20110138832 | Al-Hadhrami et al. | Jun 2011 | A1 |
20130186121 | Erb | Jul 2013 | A1 |
20130227982 | Forkosh | Sep 2013 | A1 |
20130255287 | Forkosh | Oct 2013 | A1 |
20130318790 | Becze et al. | Dec 2013 | A1 |
20130340449 | Kozubal et al. | Dec 2013 | A1 |
Number | Date | Country |
---|---|---|
203132011 | Aug 2013 | CN |
2004081462 | Sep 2004 | WO |
2004111557 | Dec 2004 | WO |
2013032969 | Mar 2013 | WO |
2013172789 | Nov 2013 | WO |
Entry |
---|
ISA, International Search Report, dated Jul. 20, 2015, 2 Pages. |
ISA, Written Opinion of International Search Report, dated Jul. 20, 2015, 4 pages. |
Mohammad et al., “Artificial Neural Network Analysis of Liquid Desiccant Dehumidifier Performance in a Solar Hybrid Air Conditioning System”, Applied Thermal Engineering, 59.1-2, Sep. 25, 2013, pp. 389-397, published in UK. |
Andrusiak et al., “Modeling of a Solar Thermally-Driven Liquid-Desiccant Air Conditioning System”, American Solar Energy Society 2010, pp. 7. |
Number | Date | Country | |
---|---|---|---|
20150292754 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
61979882 | Apr 2014 | US |