Information
-
Patent Grant
-
6481228
-
Patent Number
6,481,228
-
Date Filed
Thursday, August 23, 200123 years ago
-
Date Issued
Tuesday, November 19, 200222 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Esquivel; Denise L.
- Norman; Marc
Agents
- Birch, Stewart, Kolasch & Birch, LLP
-
CPC
-
US Classifications
Field of Search
US
- 062 263
- 062 223
- 062 262
- 062 160
- 062 229
- 062 150
- 062 175
- 062 185
- 062 198
- 062 179
- 062 224
- 062 225
-
International Classifications
-
Abstract
An air conditioning module applicable to a partition panel is disclosed herein. The air conditioning module includes a heat exchanger and a blower mounted inside the panel. The partition panel is suitable for assembling a modular personal working compartment in an office. A heat transfer medium is provided to the air conditioning module for generating cooled or heated air for the personal working space. The operation of the air conditioning module can accommodate individual needs, as well as save energy.
Description
BACKGROUND OF THE INVENTION
1. Field of Invention
The present invention generally relates to an air conditioning module built in a room partition unit, and more particularly relates to an air conditioning module built in a modular partition panel for a personal working compartment, in which a heat exchanger, conduits for a heat transfer medium and a blower are incorporated into the partition panel.
2. Related Art
A conventional air conditioning system mainly includes several air vents located in the ceiling at different positions for spreading conditioned air to certain portions of a room or rooms. This kind of system has the following disadvantages:
a) Unnecessary power consumption is caused by the system because a temperature is preset to manage the operation purpose without considering the number of people in the room;
b) The efficiency of the refrigeration system is relative low since the supply air-flow rate is smaller and the temperature difference is larger at the exit, so that the temperature of the discharged and returned water is lower, or the evaporation temperature of the refrigerant is lower;
c) The load and power consumption of the system will increase because the radiation heat from the lighting devices,the ceiling and the walls is brought into the room.
SUMMARY OF THE INVENTION
It is therefore an object of the invention to provide an air conditioning module built in a room partition panel. The panel can be freely assembled, and meets the requirements of air-conditioning in a personal working compartment.
Another object of the present invention is to provide an air conditioning module built in a room partition panel, which can base on the actual needs of an individual in a specific working compartment, and prevent from wasting electrical energy.
To achieve the aforesaid objects, an air conditioning module built in a room partition panel according to the present invention includes at least a heatexchanger and a slim blower incorporated into a vertically standing partition panel. The air conditioning module can be applied as an individual element, or combined with a plurality same type modules, Then the modules can match with the ducts of heat transfer mediums to form office partitions. Furthermore, it can assemble with office desks and chairs to become office furniture.
The partition panel with air conditioning module is thus applicable to construct a personal working compartment in a room. By using the heattransfer medium from a supply system through ducts to the air conditioning module, the partition panel can provide cool or warm air to the person who uses the working compartment.
An embodiment of the partition panel with air conditioning module according to the invention further includes the air filters, the activated charcoal and the ozone cleaning apparatus inside the partition panel for removing particles dust, and some harmful airborne materials, in order to achieve the air cleaning effect.
Further scope of applicability of the invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention will become more fully understood from the detailed description and drawings provided below. However these drawings are for the purposes of illustration only, and thus are not limitative of the present invention, and wherein:
FIG. 1
is an embodiment of an air conditioning module built in a partition panel according to the invention;
FIG. 2
is a configuration of a partition panel with air conditioning module according to the invention;
FIG. 3
is another embodiment of an air conditioning module built in a partition panel according to the invention;
FIGS. 4 through 8
are sectional views of the invention showing embodiments of interior structure thereof;
FIG. 9
is a further embodiment of an air conditioning module built in a partition panel according to the invention, showing a detachable return-air panel and filter;
FIGS. 10A and 10B
are sectional views of an air-conditioning module built in a partition panel according to the invention, showing a structure of the guide vans at the air outlet;
FIGS. 11 and 12
are sectional views, each showing an air-conditioning module built in a partition panel and incorporating a filter;
FIGS. 13A and 13B
are sectional views of an air-conditioning module built in a partition panel connecting with an outside air supply apparatus;
FIG. 14
is a applied example of the air-conditioning modules of the invention, showing the partitions of an office;
FIG. 15
is a applied example of two air-conditioning modules of the same type in parallel;
FIGS. 16A and 16B
are partial views of an air-conditioning module of the invention, showing the configurations for connecting and sealing ducts of air or heattransfer mediums;
FIG. 17
is a partial view of an air-conditioning module of the invention, showing a comer connector built in a comer column for connecting and sealing ducts with an angle;
FIG. 18
is a sectional view of an air-conditioning module of the invention connecting with a refrigerant supply system;
FIG. 19
is a sectional view of an air-conditioning module of the invention connecting with an chilled water supply system;
FIG. 20
is a sectional view of an air-conditioning module of the invention connecting with a hot water supply system;
FIGS. 21A through 21C
are flow control methods for refrigerant, applied to an air-conditioning module of the invention;
FIGS. 22A through 22C
are flow control methods for icy or hot water, applied to an air-conditioning module of the invention;
FIG. 23
is a sectional view showing a controller for adjusting the temperature of discharged air of an air-conditioning module of the invention; and
FIG. 24
is a further embodiment of an air-conditioning module built in a partition panel according to the invention, showing a human detector incorporated.
DETAILED DESCRIPTION OF THE INVENTION
As shown in
FIGS. 1 and 2
, an air conditioning module built in a room partition panel according to the invention includes a partition panel
10
composed of a side frame
101
and two opposite vertical panels
11
a
,
11
b
. The side frame
101
and the vertical panels
11
a
,
11
b
form the partition panel
10
with an interior cavity. The partition panel
10
further includes at least an air outlet
12
, a return air inlet
13
and an air passage linked the air outlet with the air inlet inside the partition panel
10
. A supplying duct
20
is used for delivering the heattransfer medium, such as refrigerant, chill water or hot water, into the partition panel
10
. The ends of the supplying duct
20
are defined as an inlet port
201
for connecting to a supplier of the heat transfer medium, and a connecting port
202
for linking to an inlet port
201
a
of a supplying duct
20
a
of a same type partition panel (as shown in FIG.
15
). Thus, a plurality of the same type partition panels
10
can share the heat transfer medium from the same supplier. A returning duct
21
is used for delivering the heat transfer medium back to the supplier. The ends of the returning duct
21
are defined as an outlet port
211
for connecting to a suction end of the supplier, and a connecting port
212
for linking to an outlet port
211
a
of a same type returning duct
21
a
(as shown in FIGS.
15
and
16
A). Thus, a plurality of the same type partition panels
10
can return the heat transfer medium to the same supplier. A heat exchanger
30
installed inside the partition panel
10
includes an entrance
301
connecting to the supplying duct
20
, and an outlet
302
connecting to the returning duct
21
. Therefore, the heat transfer medium coming from the supplier will pass through the supplying duct
20
, the heat exchanger
30
, the returning duct
21
, and finally return to the supplier. A blower
40
suck air from a return air inlet
13
, and delivers them through the surface of the heat exchanger
30
, then discharges cool or warm air into the room via an air outlet
12
.
FIG. 3
is another embodiment of an air conditioning module built in a partition panel according to the invention. This embodiment is based on the first embodiment as shown in
FIG. 1
, but including a water reservoir
31
and a drain
32
located under the heat exchanger
30
. When the air conditioning module operates, water will condense on the surface of the heat exchanger
30
. The condensed water will then be collected in the water reservoir
31
and discharged from the drain
32
.
The partition panel
10
is composed of a side frame
101
and two opposite vertical panels
11
a
and
11
b
. Stands
14
are formed in the bottom of the partition panel
10
so as to stand it on the ground. Of course, if necessary, the partition panel
10
can be fixed or lean against a wall.
The return air inlet
13
and the air outlet
12
are basically openings connected between the interior and the exterior of the partition panel
10
. They can be located on one of the following:
a) They can both be placed on a single panel, such as on the vertical panel
11
a
, as shown in
FIG. 4
, or on the two vertical panels
11
a
and
11
b
respectively, as shown in FIG.
5
.
b) The return air inlet
13
can be located on one of the vertical panels
11
a
or
11
b
, while the air outlet
12
is located on top of the partition panel
10
, i.e., on the top rim of the frame
101
a
(as shown in FIG.
6
), for discharging air in an upward direction.
c) The return air inlet
13
can be located on one of the vertical panels
11
a
or
11
b
. The air outlet
12
can then be located on the upper portion of the partition panel
10
, i.e., on the top rim of frame
101
a
and on the upper portions of the two vertical panels
11
a
and
11
b
(as shown in FIG.
7
), in order to discharge air in a eadiaut direction.
For providing cool air, the air outlet
12
is preferably located in a higher position, while the return air inlet
13
is located in a lower position. Because of the principle of natural convection currents, the discharged cool air willful and spread in the room. When providing warm air, however, the air outlet
12
is preferably located in a lower position, while the return air inlet
13
is located in a higher position. Thus, the discharged warm air can rise naturally and spread in the room, as shown in FIG.
8
.
The air outlet
12
and the return air inlet
13
can be made as detachable panels mounted on the vertical panels
11
a
and
11
b
. For example, as shown in
FIG. 9
, an air outlet panel
12
a
and an air inlet panel
13
a
are mounted on one of the vertical panels
11
a
or
11
b
by means of screws or fasteners. Therefore, they can be easily removed for cleaning.
The air outlet
12
and the return air inlet
13
can be formed with the guide vans
15
. An automatic swinging mechanism, such as that driven by a small size motor
161
and worm gear
162
, can be used to operate the guide vans
15
, as shown in
FIGS. 10A and 10B
. Or, manually operated guide vans can also be used. Therefore, the discharged air can be guided in desired directions to avoid directly blowing to a person and causing discomfort.
The blower
40
is substantially a fan, such as a centrifugal fan or an axial fan, mounted inside the partition panel
10
. The blower
40
sucks air from the return air inlet
13
, and delivers them through the heat exchanger
30
, then discharges the conditioned air into the room via the air outlet
12
. In the air passage inside the partition panel
10
, there is an air cleaning device, such as the air filters
17
, the activated charcoal or the ozone cleaning apparatus
18
(as shown in FIG.
7
), for removing particles and some harmful airborne materials, in order to achieve the air cleaning effect. The filter
17
is preferably mounted on the return air inlet
13
, as shown in
FIG. 11
, so as to keep the interior of the partition panel
10
clean. Or, the filter
17
can also be mounted on the air outlet
12
, as shown in FIG.
12
. When a detachable air outlet panel
12
a
or air inlet panel
13
a
is applied, the filter
17
can be mounted on or near the panel
12
a
or
13
a
so that it can be easily replaced or cleaned after the panel is removed.
FIGS. 13A and 13B
illustrate another embodiment of the invention in which an outside air supplying duct
19
is incorporated with the partition panel
10
. The room or building is equipped with an outside air import duct
50
and other required devices, such as a blower
51
and an air filter
52
, so as to provide fresh air to the room. The fresh air is delivered through the outside air import duct
50
to the outside air supplying duct
19
, then it passes through the heat exchanger
30
, and is discharged into the room from the air outlet
12
. The outside air supplying duct
19
is located at the bottom of the partition panel
10
. The cross-sectional dimension of the outside air supplying duct
19
is as large as possible when fitting with the partition panel
10
, so as to obtain the largest quantity of fresh outdoor air. As shown in
FIG. 13B
, the supplying duct
20
and the returning duct
21
for the heat exchanger
30
can also be included in the outside air supplying
19
, so as to save the space inside the partition panel
10
.
The air conditioning module of the invention mainly satisfies the requirements of personal air conditioning, and is suitable for the application of office partitions and for separating personal working spaces. According to the actual space requirements, a plurality of partition panels with air conditioning modules can be assembled to partition several personal working spaces, as shown in FIG.
14
. In addition, considering the location of the air outlet
12
, the partition panel
10
can link with a desk board
60
on either of the vertical panels
11
a
or
11
b
to form a desk. Therefore, a person sitting in front of the desk can enjoy the cool or warm air coming from the air outlet
12
of the air condition module built in a room partition unit.
In the modular design, the ducts of the partition panel can be suitably located so as to make two adjacent partition panels use common ducts for the air or heat transfer medium. As shown in
FIG. 15
, when two partition panels
10
are adjacently mounted, the two supplying ducts
20
, returning ducts
21
, condensed water drains
32
and outside air supplying ducts
19
link together respectively, so that the two partition panels
10
share the same heat transfer medium, the same fresh outside air, and the same condensed water drain.
The connection of supplying ducts
20
, returning ducts
21
, and condensed water drains
32
of two partition panels can be fulfilled in different ways. For example, as shown in
FIG. 16A
, when two partition panels
10
link sequentially in a plane, a common duct
33
can be used to link them, e.g., two returning ducts
21
and
21
a
. On the other hand, as shown in
FIG. 16B
, when only one partition panel
10
is used, or at the end of the dust, a closed element
35
is used to seal the returning duct
21
(or the supplying duct
20
or drain
32
, which are not shown). For the convenience of the installation, a removable cover
36
, as shown in
FIG. 15
, is installed in a suitable position on the vertical panel
11
a
or
11
b
, so that a worker can easily install the common duct
33
or the closed element
35
. As shown in
FIG. 17
, when two partition panels
10
link at an angle, e.g., in a corner, a corner column
102
and a bended connector
37
located in the corner column can be used to connect the two supplying ducts
20
, returning ducts
21
and drains
32
. At the bottom of the corner column
102
, a passage
103
is designed to connect the two outside air supplying ducts
19
of the partition panels
10
.
Since the partition panel of the invention does not include a built-in heat transfer medium supply system, the heat transfer medium has to be delivered from a separate source. The embodiments of the heat transfer medium supply system will be described below.
a) Using a refrigerant supply system
70
: when it is required to provide the function of cold air and dehumidification, the heat exchanger
30
of the air conditioning module of the invention serves as an evaporator for the refrigerant supply system
70
. As shown in
FIG. 13A
, the refrigerant is compressed by a compressor
71
into hightemperature refrigerant vapor, then it discharges its heat at a condenser, to become liquid refrigerant and passes through piping
81
to the partition panel
10
. After that, the liquid refrigerant passesthrough the supplying duct
20
and the expansion valve or capillary
38
to the heat exchanger
30
, the liquid refrigerant absorbs heat and evaporates at the heat exchanger
30
, so as to cool down the air passing through the surface of the heat exchanger
30
. The evaporated refrigerant then returns to the refrigerant sypply system
70
via the returning duct
21
and the piping
81
.The water condensed on the surface of the heat exchanger
30
can drop into a reservoir
31
and discharges from the drain
32
to the drainpipes
82
of the building. On the other hand, when the heating function is required, the heat exchanger
30
of the air conditioning module of the invention serves as a condenser of the refrigerant supply system
70
, as shown in FIG.
18
. The compressed refrigerant discharges its heat at the heat exchanger
30
, so as to heat up the airflow passing through the surface of the heat exchanger
30
. The heated air then comes out from the air outlet
12
.
b) Using achilled water system
72
: as shown in
FIG. 19
, the chilled water system
72
provides the chilled water which flows through the heat exchanger
30
,so that the cold air can come out from the supply air outlet
12
.
c) Using a hot water system
73
: as shown in
FIG. 20
, the hot water system
73
provides the chilled water which flows through the heat exchanger
30
, so that the warm air can come out from the supply air outlet
12
.
In general, the aforesaid heat transfer medium supply system are located outside, the buildings, they can deliver the heat transfer medium to each partition panel through the piping
81
installed under the floor
80
, as shown in FIG.
18
. According to the location of the partition panel, the piping
81
is arranged in order to meet the requirements of each partition panel
10
. Furthermore, the pipings can from a supply network.
In addition, the piping
81
can also be located in the ceiling
83
, as shown in
FIGS. 19 and 20
. The piping
81
is extended in the ceiling to the preset positions, and is connected to each partition panel
10
via conduits in the wall or dummy hollow columns
84
.
The heat exchanger
30
can be designed with different capacities to meet different requirements of air conditioning. The supply air temperature is controlled by using a temperature sensor
41
and a controller
42
, as shown in FIG.
23
. By regulating the speed of the blower
40
, the flow rate of the heat transfer medium or the speed of the compressor
71
, (for example: the inverter-type compress)the supply air temperature can be controlled. To take a refrigeration system with a compressor
71
as an example, the flow rate of refrigerant can be controlled in one of the following ways.
a) As shown in
FIG. 21A
, a thermostat expansion valve
38
a
is fixed on the supplying duct
20
for controlling the flow rate of the refrigerant. The expansion valve
38
a
is controlled by the temperature at the outlet
302
of the heat exchanger
30
. An on/off valve
91
, such as solenoid valve, is installed before the expansion valve
38
a
to control the flow of the refrigerant.
b) As shown in
FIG. 21B
, a throttle valve
92
is connected between the supplying duct
20
and the heat exchanger
30
,in order to control the flow rate of refrigerant passing through a capillary or an expansion device
38
to the heat exchanger
30
.
c) As shown in
FIG. 21C
, the refrigerant in the supplying duct
20
is selectively provided to a plurality of branch tubes
30
a
1
,
30
a
2
,
30
a
3
, each branch tube is respectively the necessary equipped with expansion devices
38
a
,
38
b
,
38
c
and an on/off valves
91
a
,
91
b
,
91
c
at the inlet, in order to control the flow rate of the refrigerant flowing into the branch tubes
30
a
1
,
30
a
2
,
30
a
3
.
FIGS. 22A
,
22
B and
22
C are examples for the air conditioning modules using hot water or chilled water as heattransfer mediums. In these examples, the temperature of the supply air is completely controlled by the flow rate of the heat transfer medium in the heat exchanger
30
.
In
FIG. 22A
, a three-way valve
93
is used to control the flow rate of heat transfer medium in the heat exchanger
30
. The three ports of the three-way valve
93
respectively connect with the supplying duct
20
, the returning duct
21
and the inlet
301
of the heat exchanger
30
. If the heat transfer medium is partially guided into the returning duct
21
, the flow rate of the heat transfer medium is decreased in the heat exchanger
30
Otherwise, the flow rate of the heat transfer medium is increased in the heat exchanger
30
.
In
FIG. 22B
, a two-way valve
94
is used to control the flow rate of the transfer medium in the heat exchanger
30
.
In
FIG. 22C
, the heat transfer medium in the supplying duct
20
is selectively provided to a plurality of branch tubes
30
a
1
,
30
a
2
,
30
a
3
each branch tube is respectively equipped with the on/off valves
91
a
,
91
b
,
91
c
at the inlet, in order to control the flow rate of the heat transfermedium in the branch tubes
30
a
1
,
30
a
2
,
30
a
3
.
The temperature of the supply air can also be controlled by adjusting the airflow rate at the air outlet
12
, such as by adjusting the flow rate of the blower
40
or by adjusting the area of the air outlet
12
. In a preferable embodiment of the invention, as shown in
FIG. 23
, a controller
42
is mounted on the vertical panel
11
a
of the partition panel
10
. The controller
42
includes at least: a start button
421
for turning on the air conditioning module; a flow rate control button
422
for adjusting the flow rate of the blower
40
; and a temperature control circuit unshown in
FIG. 23
for adjusting the temperature of supply air by controlling the speed of the blower
40
, the speed of the compressor
71
, or the flow rate of the heat transfer medium, as shown in
FIGS. 21A
to
21
C, and
FIGS. 22A
to
22
C.
Of course, if an ozone cleaning apparatus
18
or an automatic guide vane
15
is incorporated, the relative control buttons have to be included in the controller
42
. A temperature display
43
can also be incorporated for providing better operation.
In
FIG. 24
, a partition panel
10
with an air conditioning module according to the invention further includes a human occupied sensor
44
, in order to detect the working space covered by the supply air whether it is occupied by a person. If there is a person, the air conditioning function is turned on, and it is shut off when the person leaves. The human occupied sensor
44
automatically controls the air conditioning function based on the appropriate responses in order to save the energy and the costs.
In conclusion, a partition panel with air conditioning module according to the invention has at least the following advantages.
a) It is a modular unit suitable for the assembly of personal working compartments. The air conditioning module in the partition panel can accommodate individual requirements.
b) The air conditioning module is designed only for the personal working space. No extra heat load from the ceiling or the wall need to cover, so it saves energy.
c) Fresh supply air can be provided by equipped for the air conditioning module, so that the person in the working space can enjoy the best quality air.
The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Claims
- 1. An air conditioning module applicable to a partition panel, comprising:a partition panel, having a hollow formed with a side frame and two opposite vertical panels; said partition comprises a supply air outlet and a return air inlet, and an air passage formed in the hollow and linking between said supply air outlet and said return air inlet; a heat transfer medium supply system for supplying a heat transfer medium to said air conditioning module, the heat transfer medium supply system including a refrigerant compressor, a condenser and an expansion device; a supplying duct for directing said heat transfer medium from said supply system to said air conditioning module; said supplying duct having one end for sharing said heat transfer medium to another similar partition panel linking adjacent to said partition panel; a returning duct, for returning said heat transfer medium from said air conditioning module to said supply system after the function of heat exchange; said returning duct having one end for also returning the heat transfer medium from said another similar partition panel linking adjacent to said partition panel; a heat exchanger, locating in said partition panel at said air passage between said return air inlet and said supply air outlet, linking between said supplying duct and said returning duct for utilizing said heat transfer medium passing through said heat exchanger to make heat exchange with the air passing through said air passage, the heat exchanger being connected to the supplying duct via the expansion device and serving as an evaporator for cooling down the air passing through the air passage; a blower, locating in said partition panel, for propelling the air coming from said return air inlet to pass through said air passage for the function with said heat exchanger and releasing from said supply air outlet; a temperature sensor for detecting air temperature at said returning air inlet; and a controller for controlling the temperature of air released from said supply air outlet according to said temperature detection of said temperature sensor.
- 2. An air conditioning module applicable to a partition panel according to claim 1 further comprises a water reservoir locating under said heat exchanger for collecting condensed water, and a drain connecting to said water reservoir for draining water out of said partition panel.
- 3. An air conditioning module applicable to a partition panel according to claim 1 wherein said heat transfer medium supply system is a chilled water system.
- 4. An air conditioning module applicable to a partition panel according to claim 3 further comprises a water reservoir locating under said heat exchanger for collecting condensed water, and a drain connecting to said water reservoir for draining water out of said partition panel.
- 5. An air conditioning module applicable to a partition panel according to claim 3 further comprises:a temperature sensor for detecting air temperature at said return air inlet; and a controller for controlling the temperature of air released from said supply air outlet according to said temperature detection of said temperature sensor.
- 6. An air conditioning module applicable to a partition panel according to claim 5 wherein said controller controls air temperature by modulating the speed of said blower.
- 7. An air conditioning module applicable to a partition panel according to claim 5 wherein said controller controls air temperature by modulating the flow rate of heat transfer medium passing through said heat exchanger with a two-way valve locating at inlet of said heat exchanger.
- 8. An air conditioning module applicable to a partition panel according to claim 5 wherein said controller controls air temperature by modulating the flow rate of heat transfer medium passing through said heat exchanger with a three-way valve locating at inlet of said heat exchanger.
- 9. An air conditioning module applicable to a partition panel according to claim 1 further comprises the guide vanes locating at said supply air outlet and said returning air inlet.
- 10. An air conditioning module applicable to a partition panel according to claim 1 further comprises an air filter locating in said air passage.
- 11. An air conditioning module applicable to a partition panel according to claim 1 further comprises an air cleaner locating in said air passage.
- 12. An air conditioning module applicable to a partition panel according to claim 1 wherein said heat transfer medium supply system comprises a refrigerant compressor, an evaporator and an expansion device; said heat exchanger serves as a condenser for heating up the air passing through said air passage.
- 13. An air conditioning module applicable to a partition panel according to claim 1 wherein said heat transfer medium supply system is a hot water system.
- 14. An air conditioning module applicable to a partition panel according to claim 1 wherein said controller controls air temperature by modulating the speed of said blower.
- 15. An air conditioning module applicable to a partition panel according to claim 1 wherein said controller controls air temperature by modulating the flow rate of refrigerant passing through said heat exchanger with an expansion device locating at inlet of said heat exchanger.
- 16. An air conditioning module applicable to a partition panel according to claim 1 wherein said controller controls air temperature by modulating the flow rate of refrigerant passing through said heat exchanger with a thermostat expansion valve locating at inlet of said heat exchanger and detecting temperature at outlet of said heat exchanger.
- 17. An air conditioning module applicable to a partition panel according to claim 1 wherein said controller controls air temperature by modulating the flow rate of refrigerant passing through said heat exchanger with changing the speed of said compressor.
- 18. An air conditioning module applicable to a partition panel according to claim 1 further comprises:an outside air supplying duct locating in said partition panel; supplying duct, prepared in a building for delivering outside air to said outside air supplying duct; and a blower and air filter, locating outside for providing fresh air to said supplying duct.
US Referenced Citations (8)