1. Field of the Invention
The present invention relates to the heating and cooling of living spaces. More particularly, this invention relates to an air-conditioning register assembly and method for augmenting the flow of conditioned air from a central air-conditioning unit to a room.
2. Description of Prior Art
Modern homes use central air-conditioning units to provide conditioned (heated or cooled) air for environmental control through a system of ducts and vents into the rooms of the homes. However, many homes end up with rooms that are not adequately controlled because the conditioned air being delivered through the ducts and vents in the room has an inadequate flow to support the thermal load. These “slow vents” often result from expansion of the living space, like a basement, garage, or attic or other unfinished area being converted into standard living space by the installation of insulation, sheetrock, carpet, and other materials used to create standard living spaces. Often, the homeowner or contractor connects the vents in the new living space to existing air-conditioning units within the home, resulting in inadequate flow of air to maintain a comfortable environment in the new living space. Other times, the home is constructed with very long runs on the supply ducts, again resulting in a “slow vent” within some rooms. Currently, the home owner has few options when these “slow vents” occur. They include the installation of a new central unit, changing the supply vent size to increase the flow, or adding a window air-conditioning unit to the room. (Often, this is a cooling option only, and additional heating elements have to be added to the room.)
The invention described herein meets these needs and others, providing an air-conditioning register assembly and method for augmenting the flow of conditioned air from a central air-conditioning unit to a room. Advantageously, the system and method of the invention are independent of the central air-conditioning unit, and therefore do not have to be electrically attached to the central air-conditioning unit to control the fan when the central air-conditioning unit is delivering either heated or cooled air to the room.
Generally described, the invention is a register assembly and method for augmenting the flow of conditioned air from a central air-conditioning unit to a room. The register assembly includes at least one fan, a temperature sensor, and a processing means. The fan is operably positioned for increasing air flow through the register assembly. The temperature sensor is for measuring the temperature of air in the register assembly and for outputting a measured temperature signal. The processing means is for: receiving the measured temperature signal; using the measured temperature signal in determining whether the central air-conditioning unit is providing conditioned air to the room; and activating the fan to augment the conditioned air flow if the central air-conditioning unit is providing conditioned air to the room. The processing means may further use the measured temperature signal in determining whether the central air-conditioning unit is not providing conditioned air to the room, and deactivate the fan if the central air-conditioning unit is not providing conditioned air to the room.
According to one aspect of the invention, the processing means determines whether the central air-conditioning unit is providing conditioned air to the room by monitoring the measured temperature signal for a maximum value, a minimum value, and transition values characteristic of a conditioned air cycle, and determining whether the central air-conditioning unit is in a heating mode or a cooling mode. The processing means determines that the central air-conditioning unit is providing conditioned air to the room when the central air-conditioning unit is in a heating mode and the measured temperature signal transitions from a minimum value to a value that is a predetermined amount more than the minimum value, and when the central air-conditioning unit is in a cooling mode and the measured temperature signal transitions from a maximum value to a value that is a predetermined amount less than the maximum value. Further, the processing means determines that the central air-conditioning unit is not providing conditioned air to the room when the central air-conditioning unit is in a heating mode and the measured temperature signal transitions from a maximum value to a value that is a predetermined amount less than the maximum value, and when the central air-conditioning unit is in a cooling mode and the measured temperature signal transitions from a minimum value to a value that is a predetermined amount more than the minimum value.
More specifically, the processing means may determine whether the central air-conditioning unit is in a heating or cooling mode by: determining that the central air-conditioning unit is in a heating mode when the difference between the maximum value and a fixed ambient temperature value is greater than the difference between the minimum value and the fixed ambient temperature value; and determining that the central air-conditioning unit is in a cooling mode when the difference between the minimum value and the fixed ambient temperature value is greater than the difference between the maximum value and the fixed ambient temperature value.
According to another aspect of the invention, the processing means provides drift compensation to prevent unwanted operation of the fan due to long-term temperature drifts. More specifically, the processing means may provide drift compensation by: determining that the measured temperature signal is a value that has changed from the previous measured temperature signal value and that the previous measured temperature signal value had remained constant for a predetermined amount of time. If so, then: resetting the minimum temperature value to be the measured temperature signal value when the previous measured temperature signal value was the minimum temperature value and the measured temperature signal value is higher than the previous minimum temperature value; or resetting the maximum temperature value to be the measured temperature signal value when the previous measured temperature signal value was the maximum temperature value and the measured temperature signal value is lower than the previous maximum temperature value.
According to yet another aspect of the invention, the register assembly, further includes a rectangular housing, a screen, and a rectangular shaped top member. The rectangular housing is positioned around the fan, temperature sensor, and processing means, and has side walls, an upper flange extending outward along a top edge of the side walls, and a bottom flange extending inward along a bottom edge of the side walls. The bottom flange supports the fan. The side walls define a rectangular cavity. The screen is sandwiched between the bottom flange and the fan to prevent foreign objects from entering the fan while maximizing air flow. The rectangular shaped top member has a top flange extending outward from a top louvered surface and a rectangular boss extending below the top flange. The top flange mates with the housing upper flange. The rectangular boss mates with housing rectangular cavity.
Alternatively, the fan may be a centrifugal fan, and the register assembly may further include a housing positioned around the centrifugal fan, temperature sensor, and processing means. In this case, the housing adapts a floor vent to the centrifugal fan.
The invention will be better understood by reference to the following detailed description and the appended information.
The air-conditioning register assembly 5 is comprised of fans 6, a temperature sensor 7, a processing means 8, an housing 11 and a power supply 12. First connecting wires 9 connect the processing means 8 to the fans 6. Second connecting wires 10 connect the processing means 8 to the temperature sensor 7. The power supply 12 is operably connected to power the fans 6, the temperature sensor 7 and the processing means 8 for supplying all power needs to the air-conditioning register assembly 5. The fans 6 are mounted within the housing 11 to augment the flow of conditioned air 4A, 4B from the air-conditioning unit 1 through the register assembly 5 to the room. The temperature sensor 7 is an electronic temperature sensor that reads the temperature of the air in the register assembly 5. The processing means 8 is a microcontroller, microprocessor, or other appropriate processor that contains sufficient resources such as random access memory, input/output interfaces, and read only memory code storage cells and is capable of executing the steps of the method described herein. The housing 11 shown encloses the fans 6, temperature sensor 7, and processing means 8, and allows conditioned air 4A, 4B to flow through the air-conditioning register assembly 5.
The housing 211 is rectangular in shape, having rectangular side walls defining a rectangular cavity. The housing 211 has an upper flange 215 extending outward along a top edge. The upper flange 215 supports the register assembly 205 when it is located in a floor. The upper flange 215 has sufficient strength to support the register assembly 205 in the event that someone steps on the register assembly 205 while it is in the floor cavity. There is also a bottom flange (not shown) extending inward along the bottom edge. The bottom flange provides a mounting surface for both the screen 213 and the fans 206.
The screen 213 is sandwiched between the bottom flange and the fans 206. The screen 213 serves as a safety shield to prevent anyone from being injured by the rotating fan blades and to prevent foreign objects from damaging the fans 206. Selection of the screen material and the size of the openings is a design choice that one makes to satisfying the safety objectives.
The size, type and number of fans 206 are determined by the intended use of the exemplary register assembly 205. The selection of a specific fan is based on achieving the maximum air flow rate (standard cubic feet per minute (“CFM”)) while being subjected to the size limiting constraints. The long and narrow shape of the first exemplary register assembly 205 requires one to utilize multiple small fans in order to achieve maximum flow rates. By connecting the fans 206 in parallel to the control module 208 there is a redundancy effect gained, since if one fan fails the others will still operate.
The control module 208 consists of a circuit board which incorporates a processor integrated circuit (not shown) which contains a control algorithm; multiple pairs of terminals for connecting fan wires, a temperature chip which measures the temperature of the air in the housing 211 at the exit surface of the fans 206; a switch 219 for setting the operational mode (on, off and automatic); and a receptacle for connection of the power supply 212.
The top member 214 is rectangular in shape with a top flange 216 on a top louvered surface 218. The dimensions of the top flange 216 are the same as the dimensions of the housing upper flange 215. The top flange 216 and the housing upper flange 215 mate together at assembly. A rectangular boss 217 extends below the top flange 216 and is sized to fit within a cavity defined by the housing 211. The top member 214 also defines a rectangular cavity that extends from the boss 217 to the top louvered surface 218.
In operation, with reference to
The processing means 8 determines that the central air-conditioning unit 1 is providing conditioned air to said room by monitoring the measured temperature signal for a maximum value (Tmax), a minimum value (Tmin), and transition values characteristic of a conditioned air cycle (Tmax−n, Tmin+n); and determining whether the central air-conditioning unit 1 is in a heating mode or a cooling mode. The processing means 8 determines that the central air-conditioning unit 1 is providing conditioned air to said room when the central air-conditioning unit 1 is in a heating mode and the measured temperature signal transitions from a minimum value (Tmin) to a value that is a predetermined amount more than said minimum value (Tmin+n), and when the central air-conditioning unit 1 is in a cooling mode and the measured temperature signal transitions from a maximum value (Tmax) to a value that is a predetermined amount less than said maximum value (Tmax−n). The processing means 8 determines that the central air-conditioning unit 1 is not providing conditioned air to the room when the central air-conditioning unit 1 is in a heating mode and the measured temperature signal transitions from a maximum value (Tmax) to a value that is a predetermined amount less than said maximum value (Tmax−n), and when the central air-conditioning unit 1 is in a cooling mode and the measured temperature signal transitions from a minimum value (Tmin) to a value that is a predetermined amount more than said minimum value (Tmin+n). The processing means 8 determines whether the central air-conditioning unit 1 is in a heating mode or a cooling mode by determining that said central air-conditioning unit 1 is in a heating mode when the difference between the maximum value (Tmax) and a fixed ambient temperature value (Tamb) is greater than the difference between the minimum value (Tmin) and the fixed ambient temperature value (Tamb); and by determining that the central air-conditioning unit 1 is in a cooling mode when the difference between the minimum value (Tmin) and the fixed ambient temperature value (Tamb) is greater than the difference between the maximum value (Tmax) and the fixed ambient temperature value (Tamb). The value, “n,” is a sensitivity factor that is utilized to positively establish that a state transition (on-to-off, or off-to-on) has occurred. For instance, a value of five-degrees Fahrenheit has been empirically derived to work well with most air-conditioning systems. However, the value of “n” could be adjusted for more or less sensitivity in identifying a transition.
The processing means 8 reads the temperature from the sensor 7 and executes program instructions to determine the lowest temperature (Tmin) and highest temperature (Tmax) of a air-conditioning cycle, and then determines when the central air-conditioning unit 1 transitions from on to off and from off to on using the sensitivity factor, “n”. At these points it will turn on or off the fans 6 to provide maximum heating or cooling to the room.
The time is plotted on the X axis, and the temperature within the register assembly 5 is plotted on the Y axis. At time T0, the air-conditioner unit 1 begins to provide cooled air to the register assembly 5. At time T1, the temperature stabilizes at its lowest point. The processing means 8 will continuously monitor and the temperature and continuously replace Tmin with any temperature that is lower. (This becomes a low peak detector, that is, the lowest temperature seen is stored in Tmin.) When the air-conditioning unit 1 stops cooling, the temperature within the register assembly 5 will begin to rise. At time T2, the temperature has risen n degrees above Tmin. At this point, the processing means 8 stores Tmin as the minimum, and recognizes that a transition has occurred and it needs to adjust the fans 6 accordingly. Thus the transitions occur as shown in
At each transition point identified by the processing means 8, the processing means 8 calculates the difference between Tmax and Tamb (Fixed ambient temperature of 25 degrees centigrade) and also the difference between Tmin and Tamb. These differences are shown on
As shown in
Referring to
As the cycles are repeated, Tmax and Tmin are continually updated, and only the last two points are used by the processing means 8. Thus, as the temperatures within the air-conditioning register assembly 5 changes, the processing means 8 compensates and continually monitors the temperature to derive the actions required to control the fans 6, completely independent of the air-conditioning unit 1.
The Checkpeaks subroutine is called in block 60.
Referring to
The Calcdiff subroutine flow chart is shown in
As described above, the algorithm repeats approximately every two seconds.
Further, the temperature in the average air-conditioning unit 1 rises during active heating at least one degree per every ten seconds and falls at least one degree every ten seconds during active cooling until the steady-state is reached. When the air-conditioning unit 1 is turned off for long periods of time, the measured temperature can drift many degrees due to external factors like night cooling or day heating, causing the exemplary air-conditioning register assembly 5 to “see” a false transition and turn the fans 6 on as a result of incorrectly determining that the air-conditioning unit is providing conditioned air. However, the temperature change resulting from a temperature “drift” is much slower that the heating or cooling cycle changes. The drift compensation method described herein tracks the slow changing temperatures and prevents the register assembly 5 from identifying a false transition due to temperature drift. The drift can occur in both heating and cooling situations, but the drift compensation method works identically in either case, so only the heating cycle will be described here.
If the temperature has changed in block 301 since the last time it was read, block 305 determines if the temperature has risen or fallen from the last recorded temperature. If the temperature has fallen, the Tmin value is updated to the new temperature in block 306, the count is set back to five minutes, and the program is returned to the calling program via block 304.
If the temperature in block 305 has risen from the previous temperature reading, the count is checked in block 308 to determine if it is zero. If the count is zero, at least five minutes has passed since the temperature changed last. If the count is zero, the Tmin value is updated with the new rising temperature value in block 306 thus tracking it up or providing compensation, the count is reset to five minutes in block 307, and the program is returned to the calling program via block 304. If the count is not zero in block 308, signifying that the temperature change occurred in less than five minutes, Tmin is not updated (normal operation), the count is set back to five minutes, and the program is returned to the calling program via block 304.
One of ordinary skill in the art will recognize that additional steps and configurations are possible without departing from the teachings of the invention. This detailed description, and particularly the specific details of the exemplary embodiment disclosed, is given primarily for illustration and no unnecessary limitations are to be understood therefrom, for modifications will become evident to those skilled in the art upon reading this disclosure and may be made without departing from the spirit or scope of the claimed invention.
Number | Name | Date | Kind |
---|---|---|---|
1295151 | Frank | Feb 1919 | A |
1743994 | Waterbury | Jan 1930 | A |
1875684 | Waterbury | Sep 1932 | A |
1886841 | Searles | Nov 1932 | A |
2011421 | Searles | Aug 1935 | A |
2043934 | Spear | Jun 1936 | A |
2055592 | Reed | Sep 1936 | A |
2679202 | Koff | May 1954 | A |
2694971 | Andrews | Nov 1954 | A |
2972941 | Bennett | Feb 1961 | A |
3099201 | Gottlieb | Jul 1963 | A |
4126268 | Vitale | Nov 1978 | A |
4126269 | Bruges | Nov 1978 | A |
4136606 | Wolbrink | Jan 1979 | A |
4449664 | Mithuhira | May 1984 | A |
D278362 | Rattray | Apr 1985 | S |
4589331 | Villamagna | May 1986 | A |
4722266 | Deckert | Feb 1988 | A |
4738188 | Nishida | Apr 1988 | A |
4754697 | Asselbergs | Jul 1988 | A |
4809593 | Asselbergs | Mar 1989 | A |
4846399 | Asselbergs | Jul 1989 | A |
4852470 | Corriveau | Aug 1989 | A |
5029451 | Imaiida | Jul 1991 | A |
5054380 | Hubbard | Oct 1991 | A |
5097674 | Imaiida | Mar 1992 | A |
5236393 | Milewski | Aug 1993 | A |
5395042 | Riley et al. | Mar 1995 | A |
5404934 | Carlson | Apr 1995 | A |
5413278 | Erikson | May 1995 | A |
5489238 | Asselbergs | Feb 1996 | A |
5497632 | Robinson | Mar 1996 | A |
D370969 | Ikeda | Jun 1996 | S |
5533668 | Erikson | Jul 1996 | A |
5632677 | Elkins | May 1997 | A |
5860858 | Wettergren | Jan 1999 | A |
5910045 | Aoki | Jun 1999 | A |
6196469 | Pearson | Mar 2001 | B1 |
6364211 | Saleh | Apr 2002 | B1 |
6468054 | Anthony | Oct 2002 | B1 |
6592449 | Cipolla | Jul 2003 | B2 |
6688384 | Eoga | Feb 2004 | B2 |
7168627 | Kates | Jan 2007 | B2 |
20050087614 | Ruise | Apr 2005 | A1 |
20060240764 | Pierce et al. | Oct 2006 | A1 |
Number | Date | Country |
---|---|---|
2004308563 | Nov 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20080242212 A1 | Oct 2008 | US |