This application claims priority and benefits of Chinese Patent Application No. 201610122428.2, filed with State Intellectual Property Office on Mar. 3, 2016, the entire content of which is incorporated herein by reference.
The present disclosure relates to a technical field of refrigeration equipment, and more particularly to an air conditioning system and a method for controlling the same.
People make a higher requirement for a household air conditioner, along with social developments and popularization of household inverter air conditioners. For example, people need the air conditioner to quickly regulate a room temperature in an energy conservation way, for powerful refrigeration at a high temperature and powerful heating at a low temperature and so on. However, single-rotor compressors are adopted by most of common inverter air conditioners because of costs. Vibration and noises are large because a one-way force is applied on a rotor, and the vibration is too large especially in a case of a low frequency, which seriously influences the reliability of a whole machine. The highest operation frequency of the air conditioner cannot be too high due to the noise limitation, and the maximum capacity of the air conditioner cannot be reached. If a common double-rotor compressor is adopted, the whole machine is poor in performance because of an increased leakage of the air cylinder, which goes against energy conversation. In addition, the common double-rotor compressor having double modes can solve some of the above issues, however the performance of the system sharply degrades because of an increased compression ratio of the compressor, when the air conditioner is used for refrigeration at an ultra-high temperature and heating at an ultra-low temperature.
Embodiments of the present disclosure seek to solve at least one of the problems existing in the related art to at least some extent. Therefore, the present disclosure provides an air conditioning system, which has advantages of a large power output in a case of a high frequency and a high compression ratio, and low power and vibration in a case of a low frequency.
The present disclosure further provides a method for controlling the air conditioning system above.
An air conditioning system according to the present disclosure includes an enhanced vapor injection compressor including a housing, a liquid accumulator and a compression mechanism disposed in the housing, in which the housing is provided with an air discharge port, an air supplement port, a first air suction port and a second air suction port, the liquid accumulator is provided with an air return port, the air return port is in communication with the first air suction port, the first air suction port and the second air suction port are in communication with air suction channels of two air cylinders of the compression mechanism, respectively, and a pressure in a sliding vane chamber of one air cylinder, corresponding to the second air suction port, of the compression mechanism is equal to a discharge pressure at the air discharge port; a first direction switching assembly including a first pipe port, a second pipe port and a third pipe port, in which the first pipe port is connected to the second air suction port, the second pipe port is connected to the air discharge port, the third pipe port is connected to the liquid accumulator, and the first pipe port is in communication with one of the second pipe port and the third pipe port; a second direction switching assembly having a first valve port, a second valve port, a third valve port and a fourth valve port, in which the first valve port is in communication with one of the second valve port and the third valve port, the fourth valve port is in communication with the other one of the second valve port and the third valve port, and the first valve port and the fourth valve port are connected to the air discharge port and the air return port, respectively; a first heat exchanger having a first end connected with the second valve port and a second end; a second heat exchanger having a first end connected with the third valve port and a second end; and a flash evaporator having an air outlet, a first port and a second port, in which the air outlet is connected to the air supplement port, the first port is connected with the second end of the first heat exchanger, the second port is connected with the second end of the second heat exchanger, a first throttling element is connected in series between the first port and the first heat exchanger, and a second throttling element is connected in series between the second port and the second heat exchanger.
An operation mode of the air conditioning system according to the present disclosure can be freely switched between a single-rotor operation mode and a double-rotor operation mode, by using an enhanced vapor injection compressor having a variable capacity. Thus, the double-rotor operation mode can be adopted to raise refrigerating and heating speeds, when the air conditioning system needs large power output for refrigeration at a high temperature and heating at a low temperature. Furthermore, the single-rotor operation mode can be adopted by bypassing one rotor, when the air conditioning system is used for refrigeration at a low temperature and heating at a high temperature, thus achieving low vibration, low power and high energy efficiency.
In some embodiments of the present disclosure, the second direction switching assembly is a four-way valve.
In some embodiments of the present disclosure, the first direction switching assembly is a three-way valve.
In some embodiments of the present disclosure, each throttling element is an electronic expansion valve.
The method for controlling the air conditioning system according to embodiments of the present disclosure includes:
detecting an operation mode of the air conditioning system, an indoor temperature T1, an outdoor temperature T4 and a user-set temperature TS;
detecting whether the outdoor temperature T4 is larger than a first set temperature T2, when the air conditioning system is in a refrigerating mode, controlling the first direction switching assembly to communicate the first pipe port with the third pipe port if the outdoor temperature T4 is larger than the first set temperature T2; controlling the direction switching assembly to communicate the first pipe port with the third pipe port, if T4 is less than or equal to the first set temperature T2 and it is detected that a first difference value T1−TS between the indoor temperature T1 and the user-set temperature TS is larger than or equal to a second set temperature T3; and controlling the first direction switching assembly to communicate the first pipe port with the second pipe port, if the outdoor temperature T4 is less than or equal to the first set temperature T2 and it is detected that the first difference value T1−TS is less than the second set temperature T3; and
detecting whether the outdoor temperature T4 is larger than a third set temperature T5, when the air conditioning system is in a heating mode, controlling the first direction switching assembly to communicate the first pipe port with the third pipe port, if the outdoor temperature T4 is less than or equal to the third set temperature T5; controlling the first direction switching assembly to communicate the first pipe port with the third pipe port, if the outdoor temperature T4 is larger than the third set temperature T5 and it is detected that a second difference value TS−T1 between the user-set temperature TS and the indoor temperature T1 is larger than or equal to a fourth set temperature T6; and controlling the first direction switching assembly to communicate the first pipe port with the second pipe port, if the outdoor temperature T4 is larger than the third set temperature T5 and it is detected that TS−T1 is less than T6.
In some embodiments of the present disclosure, a value range of the second set temperature T3 is the same with a value range of the fourth set temperature T6.
Furthermore, the value range of the second set temperature T3 is from 3° C. to 5° C., and the value range of the fourth set temperature T6 is from 3° C. to 5° C.
In some embodiments of the present disclosure, a value range of the first set temperature T2 is from 30° C. to 40° C.
In some embodiments of the present disclosure, a value range of the third set temperature T5 is from 10° C. below zero to 5° C. below zero.
Additional aspects and advantages of embodiments of present disclosure will be given in part in the following descriptions, become apparent in part from the following descriptions, or be learned from the practice of the embodiments of the present disclosure.
Reference will be made in detail to embodiments of the present disclosure. The same or similar elements and the elements having same or similar functions are denoted by like reference numerals throughout the descriptions. The embodiments described herein with reference to drawings are explanatory, illustrative, and used to generally understand the present disclosure. The embodiments shall not be construed to limit the present disclosure.
Various embodiments and examples are provided in the following description to implement different structures of the present disclosure. In order to simplify the present disclosure, certain elements and settings will be described. However, these elements and settings are only by way of example and are not intended to limit the present disclosure. In addition, reference numerals and/or letters may be repeated in different examples in the present disclosure. This repeating is for the purpose of simplification and clarity and does not refer to relations between different embodiments and/or settings. Furthermore, examples of different processes and materials are provided in the present disclosure. However, it would be appreciated by those skilled in the art that other processes and/or materials may be also applied.
An air conditioning system 100 according to embodiments of the present disclosure is described below with reference to
As shown in
Specifically, the enhanced vapor injection compressor 1 includes a housing, a liquid accumulator 11, and a compression mechanism disposed in the housing. The housing is provided with an air discharge port a, an air supplement port b, a first air suction port c and a second air suction port d. The liquid accumulator 11 is provided with an air return port n, and the air return port n is in communication with the first air suction port c. The first air suction port c and the second air suction port d are in communication with air suction channels of two air cylinders (i.e., a first air cylinder and a second air cylinder) of the compression mechanism, respectively. A pressure in a sliding vane chamber of one air cylinder (i.e., the second air cylinder), corresponding to the second air suction port d, of the compression mechanism is equal to a discharge pressure at the air discharge port a, so that the pressure in the sliding vane chamber of the air cylinder corresponding to the second air suction port d is always a high pressure.
The first direction switching assembly 2 includes a first pipe port e, a second pipe port f and a third pipe port g. The first pipe port e is connected to the second air suction port d, the second pipe port f is connected to the air discharge port a, the third pipe port g is connected to the liquid accumulator 11, and the first pipe port e is in communication with one of the second pipe port f and the third pipe port g. As shown in
In short, an operation mode of the enhanced vapor injection compressor 1 can be controlled by communicating the first pipe port e of the first direction switching assembly 2 with the second pipe port f of the first direction switching assembly 2, or communicating the first pipe port e of the first direction switching assembly 2 with the third pipe port g of the first direction switching assembly 2, i.e., only one air cylinder may be adopted for compression, or two air cylinders may be adopted for compression at the same time. In this way, the operation mode of the enhanced vapor injection compressor 1 can be switched between the single-rotor operation mode and the double-rotor operation mode.
The second direction switching assembly 3 has a first valve port h, a second valve port i, a third valve port j and a fourth valve port k. The first valve port h is in communication with one of the second valve port i and the third valve port j, and the fourth valve port k is in communication with the other one of the second valve port i and the third valve port j. That is, the fourth valve port k is in communication with the third valve port j when the first valve port h is in communication with the second valve port i, and the fourth valve port k is in communication with the second valve port i when the first valve port h is in communication with the third valve port j.
Preferably, the second direction switching assembly 3 is a four-way valve. The first valve port h is in communication with the second valve port i, and the third valve port j is in communication with the fourth valve port k, when the air conditioning system 100 operates in a refrigerating mode. The first valve port h is in communication with the third valve port j, and the second valve port i is in communication with the fourth valve port k, when the air conditioning system 100 operates in a heating mode. Of course, the present disclosure is not limited to this, and the second direction switching assembly 3 may be another element, as long as the second direction switching assembly has the first valve port h to the fourth valve port k and the direction switch among these ports can be realized.
The first valve port h and the fourth valve port k are connected to the air discharge port a and the air return port n, respectively. A refrigerant enters the liquid accumulator 11 after passing through the fourth valve port k of the second direction switching assembly 3 and the air return port n in turn, and then returns into the enhanced vapor injection compressor 1. The refrigerant in the air cylinder is compressed into a refrigerant having a high temperature and a high pressure, and then the refrigerant having the high temperature and the high pressure is discharged from the air discharge port a to the first valve port h. It should be pointed out that, a principle of compressing the refrigerant by the enhanced vapor injection compressor 1 is known from the prior art, and thus will not be described in detail herein.
The first heat exchanger (i.e. the outdoor heat exchanger 4 shown in
The flash evaporator 6 has an air outlet r and two inlets/outlets (such as a first port s and a second port t shown in
The two ports are connected to second ends of the first and second heat exchangers, respectively. A throttling element (such as a first throttling element 7 or a second throttling element 8 shown in
Preferably, each throttling element is an electronic expansion valve. Of course, the present disclosure is not limited to this, and the throttling element may be a capillary or a combination of the capillary tube and the electronic expansion valve, as long as the throttling element can be used for throttling and reducing pressure.
An operation mode of the air conditioning system 100 according to the embodiment of the present disclosure can be freely switched between the single-rotor operation mode and the double-rotor operation mode, by using the enhanced vapor injection compressor 1 having a variable capacity. Thus, a double-rotor mode can be adopted to raise refrigerating and heating speeds, when the air conditioning system 100 needs large power output for refrigeration at a high temperature and heating at a low temperature. Furthermore, a single-rotor mode can be adopted by bypassing one rotor, when the air conditioning system 100 is used for refrigerating at a low temperature and heating at a high temperature, thus achieving low vibration, low power and high energy efficiency.
Preferably, the first direction switching assembly 2 is a three-way valve. Of course, it is to be understood that the first direction switching assembly 2 may be another structure, as long as the first direction switching assembly 2 has the first pipe port e to the third pipe port g and the direction switch among these ports can be realized.
It is to be understood that the three-way valve also may be replaced by other valves having the same functions, such as a four-way valve. A commonly used four-way valve has four ports (a port A, a port B, a port C and a port D), and the four-way valve can be changed into a three-way valve by adopting the following methods in the present disclosure.
1. The port D of the four-way valve is blocked, the port B is connected to the second air suction port d of the enhanced vapor injection compressor 1 having the variable capacity, the port A and the port C are connected to the air discharge port a and the liquid accumulator 11 of the enhanced vapor injection compressor 1 having the variable capacity without a specific connection sequence, respectively.
2. The port B of the four-way valve is blocked, the port D is connected to the second air suction port d of the enhanced vapor injection compressor 1 having the variable capacity, the port A and the port C are connected to the air discharge port a and the liquid accumulator 11 of the enhanced vapor injection compressor 1 having the variable capacity without a specific connection sequence, respectively.
3. The port A of the four-way valve is blocked, the port C is connected to the second air suction port d of the enhanced vapor injection compressor 1 having the variable capacity, the port B and the port D are connected to the air discharge port a and the liquid accumulator 11 of the enhanced vapor injection compressor 1 having the variable capacity without a specific connection sequence, respectively.
4. The port C of the four-way valve is blocked, the port A is connected to the second air suction port d of the enhanced vapor injection compressor 1 having the variable capacity, the port B and the port D are connected to the air discharge port a and the liquid accumulator 11 of the enhanced vapor injection compressor 1 having the variable capacity without a specific connection sequence, respectively.
A method for controlling the air conditioning system 100 according to the embodiments of the present disclosure is described below with reference to
As shown in
An operation mode of the air conditioning system 100, an indoor temperature T1, an outdoor temperature T4 and a user-set temperature TS are detected.
It is detected whether the outdoor temperature T4 is larger than a first set temperature T2, when the air conditioning system 100 is in a refrigerating mode, and the first direction switching assembly 2 is controlled to communicate the first pipe port e with the third pipe port g, if the outdoor temperature T4 is larger than the first set temperature T2, so as to adopt a double-rotor enhanced vapor injection operation mode; the direction switching assembly 2 is controlled to communicate the first pipe port e with the third pipe port g, if the outdoor temperature T4 is less than or equal to the first set temperature T2 and it is detected that a first difference value T1−TS between the indoor temperature T1 and the user-set temperature TS is larger than or equal to a second set temperature T3, so as to adopt the double-rotor enhanced vapor injection operation mode; and the first direction switching assembly 2 is controlled to communicate the first pipe port e with the second pipe port f, if the outdoor temperature T4 is less than or equal to the first set temperature T2 and it is detected that the first difference value T1−TS is less than the second set temperature T3, so as to adopt a single-rotor enhanced vapor injection operation mode.
It is detected whether the outdoor temperature T4 is larger than a third set temperature T5, when the air conditioning system 100 operates in a heating mode, and the first direction switching assembly 2 is controlled to communicate the first pipe port e with the third pipe port g, if the outdoor temperature T4 is less than or equal to the third set temperature T5, so as to adopt the double-rotor enhanced vapor injection operation mode; the first direction switching assembly 2 is controlled to communicate the first pipe port e with the third pipe port g, if the outdoor temperature T4 is larger than the third set temperature T5 and it is detected that a second difference TS−T1 between the user-set temperature TS and the indoor temperature T1 is larger than or equal to a fourth set temperature T6, so as to adopt the double-rotor enhanced vapor injection operation mode; and the first direction switching assembly 2 is controlled to communicate the first pipe port e with the second pipe port f, if the outdoor temperature T4 is larger than the third set temperature T5 and it is detected that the second difference value TS−T1 is less than the fourth set temperature T6, so as to adopt the single-rotor enhanced vapor injection operation mode.
With the method for controlling the air conditioning system 100 according to the embodiments of the present disclosure, the double-rotor enhanced vapor injection operation mode is adopted for achieving large power output in a case of a high compression ratio to raise refrigerating and heating speeds, when the large power output is needed for refrigeration at a high temperature and heating at a low temperature; and the single-rotor enhanced vapor injection operation mode can be chosen by bypassing one rotor, when the low power output is needed for refrigeration at a low temperature and heating at a high temperature, thus achieving low vibration, low power and high energy efficiency, so that the air conditioning system 100 can operate without stop when bearing a low load, to keep stability of temperature along with low temperature fluctuation, which is energy efficient and comfortable.
In an embodiment of the present disclosure, a value range of the second set temperature T3 is the same with a value range of the fourth set temperature T6, to simplify a control program of the air conditioning system 100.
Furthermore, the value range of the second set temperature T3 is from 3° C. to 5° C., and the value range of the fourth set temperature T6 is from 3° C. to 5° C. So the single-rotor enhanced vapor injection operation mode is adopted when a difference value between the indoor temperature and the user-set temperature is less than the second set temperature T3 or the fourth set temperature T6 which ranges from 3° C. to 5° C., to keep the stability of temperature with low temperature fluctuation, which is energy efficient and comfortable.
In an embodiment of the present disclosure, because the first set temperature T2 corresponds to a case in which quick refrigeration at a high temperature is needed, and the third temperature T5 corresponds to a case in which quick heating at a low temperature is needed, a value range of the first set temperature T2 may be from 30° C. to 40° C., and a value range of the third set temperature T5 may be from 10° C. below zero to 5° C. below zero, so as to make the first set temperature T2 and the third set temperature T5 more reasonable.
An air conditioning system 100 according to a specific embodiment of the present disclosure is described below with reference to
Referring to
Specifically, as shown in
The first air suction port c is in communication with an air suction channel of a first air cylinder, and the second air suction port d is in communication with an air suction channel of a second air cylinder. The first valve port h of the four-way valve is connected to the air discharge port a, the second valve port i is connected to a first end 4a of the outdoor heat exchanger 4, the third valve port j is connected to a first end 5a of the indoor heat exchanger 5, the fourth valve port k is connected to the air return port n, and the air return port n is in communication with the first air suction port c. The first pipe port e of the three-way valve is in communication with the second air suction port d, the second pipe port f is in communication with the air discharge port a, and the third pipe port g is connected to the liquid accumulator 11. The air outlet r of the flash evaporator 6 is connected to the air supplement port b, the first throttling element 7 is connected in series between the first port s and a second end 4b of the outdoor heat exchanger 4, and the second throttling element 8 is connected in series between the second port t and a second end 5b of the indoor heat exchanger 5.
As shown in
A flow direction of refrigerant is shown as follows. The refrigerant discharged from the air discharge port a of the enhanced vapor injection compressor 1 enters the outdoor heat exchanger 4 after passing through the first valve port h and the second valve port i of the four-way valve, then is discharged from the second end 4b of the outdoor heat exchanger 4 after exchanging heat with an outdoor environment in the outdoor heat exchanger 4, and then enters the flash evaporator 6 through the first port s to be separated into a gaseous refrigerant and a liquid refrigerant, after being subjected to throttling and pressure reduction by the first throttling element 7.
The liquid refrigerant separated by the flash evaporator 6 flows out of the second port t, enters the indoor heat exchanger 5 after being subjected to throttling and pressure reduction by the second throttling element 8, and exchanges heat with an indoor environment in the indoor heat exchanger 5 to refrigerate the indoor environment. The refrigerant discharged from the indoor heat exchanger 5 enters the liquid accumulator 11 through the air return port n, after passing through the third valve port j and the fourth valve port k of the four-way valve, and then returns to the enhanced vapor injection compressor 1 through the first air suction port c. Such whole process is repeated for refrigeration. The gaseous refrigerant separated by the flash evaporator 6 returns into the enhanced vapor injection compressor 1 from the air outlet r through the air supplement port b, so as to be compressed.
As shown in
As shown in
As shown in
The flow direction of refrigerant is shown as follows. The refrigerant discharged from the enhanced vapor injection compressor 1 enters the indoor heat exchanger 5 after passing through the first valve port h and the third valve port j of the four-way valve, and exchanges heat with the indoor environment in the indoor heat exchanger 5 to heat the indoor environment. The refrigerant discharged from the indoor heat exchanger 5 enters the flash evaporator 6 to be separated into the gaseous refrigerant and the liquid refrigerant, after going through throttling and pressure reduction by the second throttling element 8.
The liquid refrigerant separated by the flash evaporator 6 is discharged into the outdoor heat exchanger 4 after going through throttling and pressure reduction by the first throttling element 7, and exchanges heat with the outdoor environment in the outdoor heat exchanger 4. The refrigerant discharged from the outdoor heat exchanger 4 enters the liquid accumulator 11 through the air return port n, after passing through the second valve port i and the fourth valve port k of the four-way valve, and then returns into the enhanced vapor injection compressor 1 through the first air suction port c. Such whole process is repeated to complete heating. The gaseous refrigerant separated by the flash evaporator 6 returns into the enhanced vapor injection compressor 1 from the air outlet r through the air supplement port b, so as to be compressed.
As shown in
As shown in
A method for controlling the air conditioning system 100 according to the above embodiment is described below and includes following steps.
A first set temperature T2 is set as 32° C., a second set temperature T3 is set as 3° C., a third set temperature T5 is set as 5° C., and a fourth set temperature T6 is set as 3° C.
An operation mode of the air conditioning system 100, an indoor temperature T1, an outdoor temperature T4, and a user-set temperature TS are detected, as shown in
It is detected whether the outdoor temperature T4 is larger than 32° C. when the air conditioning system 100 operates in a refrigerating mode, as shown in
It is detected whether the outdoor temperature T4 is larger than 5° C. when the air conditioning system 100 operates in a heating mode, as shown in
The enhanced vapor injection compressor 1 is adopted by the air conditioning system 100 according to the embodiments of the present disclosure, a double-rotor operation mode is adopted for achieving large power output in a case of a high compression ratio to raise refrigerating and heating speeds, when the large power output is needed for refrigeration at a high temperature and heating at a low temperature; and a single-rotor operation mode can be chosen by bypassing one rotor, when low energy output is needed for refrigeration at a low temperature and heating at a high temperature, thus achieving low vibration, low power and high energy efficiency, so that the air conditioning system 100 can operate without stop when bearing a low load, to keep the stability of temperature with low temperature fluctuation, which is energy efficient and comfortable.
In the description, unless specified or limited otherwise, it is to be understood that phraseology and terminology used herein with reference to device or element orientation (for example, terms like “central”, “upper”, “lower”, “internal”, “external” and the like) should be construed to refer to the orientation as then described or as shown in the drawings under discussion for simplifying the description of the present disclosure, but do not alone indicate or imply that the device or element referred to must have a particular orientation. Moreover, it is not required that the present disclosure is constructed or operated in a particular orientation.
In addition, terms such as “first” and “second” are used herein for purposes of description and are not intended to indicate or imply relative importance or significance or to imply the number of indicated technical features. Thus, the feature defined with “first” and “second” may comprise one or more of this feature. In the description of the present disclosure, “a plurality of” means two or more than two, unless specified otherwise.
In the present disclosure, unless specified or limited otherwise, the terms “mounted,” “connected,” “coupled,” “fixed” and the like are used broadly, and may be, for example, fixed connections, detachable connections, or integral connections; may also be mechanical or electrical connections, communication; may also be direct connections or indirect connections via intervening structures; may also be inner communications of two elements, which can be understood by those skilled in the art according to specific situations.
Reference throughout this specification to “an embodiment,” “some embodiments,” “one embodiment”, “another example,” “an example,” “a specific example,” or “some examples,” means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the present disclosure. Thus, the appearances of the phrases such as “in some embodiments,” “in one embodiment”, “in an embodiment”, “in another example,” “in an example,” “in a specific example,” or “in some examples,” in various places throughout this specification are not necessarily referring to the same embodiment or example of the present disclosure. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments or examples.
Although explanatory embodiments have been shown and described, it would be appreciated by those skilled in the art that the above embodiments cannot be construed to limit the present disclosure, and changes, alternatives, and modifications can be made in the embodiments without departing from spirit, principles and scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
2016 1 0122428 | Mar 2016 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
3190011 | Abdalian | Jun 1965 | A |
20060277690 | Pyo et al. | Dec 2006 | A1 |
20110138825 | Chen | Jun 2011 | A1 |
20120227426 | Deaconu | Sep 2012 | A1 |
Number | Date | Country |
---|---|---|
102686792 | Apr 2015 | CN |
104762797 | Jul 2015 | CN |
205775361 | Dec 2016 | CN |
Entry |
---|
China Patent Office, Office action for CN application No. 201610377485.5, which is a China counterpart application of the present U.S. patent application. |
Number | Date | Country | |
---|---|---|---|
20170254572 A1 | Sep 2017 | US |