This application is a U.S. national stage application of PCT/JP2014/058012 filed on Mar. 24, 2014, the contents of which are incorporated herein by reference.
The present invention relates to an air-conditioning system in which an outdoor unit and an indoor unit are connected to each other in a manner capable of transmitting data via a transmission line, and a transmission relaying apparatus thereof.
An air-conditioning system in which an outdoor unit and an indoor unit are connected to each other in a manner capable of transmitting information via a transmission line has been known conventionally. The system is configured such that various types of signals such as control signals are transmitted and received via the transmission line. In such an air-conditioning system, as various types of signals are attenuated according to distance, a transmission relaying apparatus is interposed in the transmission line to perform a relaying process such as shaping of signals being transmitted on the transmission line. The transmission relaying apparatus includes a comparator (H/W) configured to compare a signal flowing on the network with a predetermined reception threshold voltage, and determine whether to perform shaping and relaying of a received waveform.
Here, a controller of a refrigeration cycle apparatus configured to determine a margin with respect to a production standard such as confirmation of a transmission line length, in the air-conditioning system described above, has been proposed (see Patent Literature 1, for example). Patent literature 1 discloses a controller of a refrigeration cycle apparatus configured to transmit a small signal slightly larger than a standard value and compare a received signal, when the small signal is received, with a preset receiving threshold to thereby determine whether the state of the transmission line is normal and check whether there is a margin with respect to the environment such as noise.
Patent Literature 1: Japanese Unexamined Patent Application Publication No. H08-35716
The preset receiving threshold described above is a fixed value corresponding to the allowable maximum wiring length. As such, in the case of installation environment in which the transmission path length is short, the preset receiving threshold is too low relatively, so that when inverter noise, switching noise, or exogenous noise is superimposed on the peak value of a received signal, the peak value exceeds the preset receiving threshold due to the noise component. As such, abnormality in the received signal cannot be detected by the transmission relaying apparatus, and is relayed to another device, whereby communication abnormality may occur. On the other hand, when the preset receiving threshold is set to be higher, the maximum value (peak value) of a received signal may not be able to exceed the preset receiving threshold. As such, the communication may be determined to be abnormal, although it is normal.
The present invention has been made to solve the above-described problem. An object of the present invention is to provide an air-conditioning system and a transmission relaying apparatus thereof, capable of detecting and suppressing communication abnormality with high accuracy according to the installation environment.
An air-conditioning system of one embodiment of the present invention includes an outdoor unit; an indoor unit connected to the outdoor unit via a refrigerant pipe, the indoor unit being connected to the outdoor unit in a manner capable of transmitting data via a transmission path; a transmission relaying apparatus provided on the transmission path connecting the outdoor unit and the indoor unit, the transmission relaying apparatus being configured to relay a signal being transmitted on the transmission path; and a communication diagnostic apparatus connected to the outdoor unit, the indoor unit, and the transmission relaying apparatus in a manner capable of transmitting data via the transmission path, the communication diagnostic apparatus being configured to transmit a test signal onto the transmission path when a communication state is tested. The transmission relaying apparatus includes a signal receiving unit configured to receive a signal transmitted from the transmission path as a received signal; an abnormality detection unit configured to detect whether abnormality occurs in the received signal, based on the voltage value of the received signal received by the signal receiving unit and a preset threshold; and a threshold setting unit configured to set the preset threshold to be used for detection of abnormality by the abnormality detection unit. The threshold setting unit includes a peak value detection unit configured to, when the test signal is output from the communication diagnostic apparatus, detect a peak value of the signal level of the test signal received as the received signal by the signal receiving unit; a threshold obtaining unit configured to obtain the preset threshold based on the peak value detected by the peak value detection unit; and a threshold holding unit configured to store the preset threshold, obtained by the threshold obtaining unit, as the preset threshold to be used by the abnormality detection unit.
According to the air-conditioning system of one embodiment of the present invention, as a preset threshold is automatically set based on the peak value of a reception waveform when a test signal is received, it is possible to determine communication abnormality by using a preset threshold according to the length of a transmission path where a transmission relaying apparatus is provided. Accordingly, communication abnormality due to installation environment can be suppressed.
Hereafter, an embodiment of an air-conditioning system of the present invention will be described with reference to the drawings.
It should be noted that while
The central management apparatus 5 has a function of monitoring the states of the refrigeration cycle apparatuses 2 and performing various types of operation control. The central management apparatus 5 is connected to each of the refrigeration cycle apparatuses 2 in a manner capable of transmitting data via a transmission path 1A. Specifically, the central management apparatus 5 is connected to each of the outdoor units 3 via the transmission path 1A, and with respect to each of the outdoor units 3, the indoor units 4 are connected in series, for example, via the transmission path 1A (daisy chain connection). The outdoor units 3, the indoor units 4, and the transmission relaying apparatuses 10 are assigned with different addresses (for example, 1 to 50), respectively. Based on the addresses, the central management apparatus 5 transmits control signals to the outdoor units 3 and the indoor units 4, or receives various types of signals transmitted from the units, respectively.
The air-conditioning system 1 of
In
The abnormality detection unit 12, configured to detect whether abnormality occurs in the received signal RS received by the signal receiving unit 11, includes a signal determination unit 12a and a signal blocking unit 12b. The signal determination unit 12a compares a signal level (signal voltage value) with a preset threshold Vref, and determines that the received signal RS is abnormal when the signal level is lower than the preset threshold Vref. On the other hand, when the signal level of the received signals RS is higher than the preset threshold Vref, the signal determination unit 12a determines that it is normal. It should be noted that the signal determination unit 12a performs abnormality determination using the preset threshold Vref stored in a threshold holding unit 23.
The signal blocking unit 12b is configured such that when abnormality is detected in the received signal RS by the signal determination unit 12a, the signal blocking unit 12b blocks transmission of the signal to the downstream side, and analyses the received signal RS or stops the relaying process. It should be noted that when blocking the received signal RS, the signal blocking unit 12b may transmit information of occurrence of abnormality to the central management apparatus 5.
Regarding the received signal RS determined to be normal by the abnormality detection unit 12, the signal processing unit 13 performs various types of signal processing such as shaping of the received signal RS and removal of noise components. Then, the received signal RS, on which signal processing is performed by the signal processing unit 13, is transmitted from the signal transmission unit 14 to the downstream side of the transmission path 1A, or transmitted to, for example, a controller of the outdoor unit 3.
In this example, the preset threshold Vref, used by the signal determination unit 12a described above, is automatically set by the transmission relaying apparatus 10 at the time of performing trial operation or at the time of test mode for performing maintenance. This means that as the transmission path length from the central management apparatus 5 to the transmission relaying apparatus 10 differs depending on the installation location of the transmission relaying apparatus 10, the attenuation level of the received signal RS received by each transmission relaying apparatus 10 differs depending on each transmission relaying apparatus 10. Further, noise components included in the received signal RS, received by each transmission relaying apparatus 10, differs depending on the installation location of the transmission relaying apparatus 10, installation position of the transmission path, or the like. Accordingly, if a common preset threshold Vref is used in all transmission relaying apparatuses 10 installed in the air-conditioning system 1, the accuracy of abnormality determination will be degraded. As such, the transmission relaying apparatus 10 has a function of automatically optimizing the preset threshold Vref (automatic setting mode) to secure transmission quality, when an installation contractor or a maintenance agency performs trial operation, maintenance, or the like of the air-conditioning system 1.
Specifically, the air-conditioning system 1 includes a communication diagnostic apparatus 6 for diagnosing a communication state at the time of trial operation or the like. The communication diagnostic apparatus 6 is connected to the outdoor unit 3, the indoor unit 4 and the transmission relaying apparatus 10 in a manner capable of transmitting data via the transmission path 1A, and is configured to transmit a test signal TS onto the transmission path 1A at the time of testing the communication state. In
Then, when an operator operates the communication diagnostic apparatus 6 to start the test mode, the communication diagnostic apparatus 6 outputs a test signal TS for diagnosing a communication state at the test mode. The test signal TS includes a signal level (voltage value) slightly larger than, for example, the standard value of the product.
Meanwhile, the transmission relaying apparatus 10 of
Specifically, the transmission relaying apparatus 10 includes a threshold setting unit 20 for setting a preset threshold to be used for abnormality detection by the abnormality detection unit 12. The threshold setting unit 20 includes a peak value detection unit 21, a threshold obtaining unit 22, and the threshold holding unit 23. The peak value detection unit 21 is configured such that when the test signal TS is output from the communication diagnostic apparatus 6, the peak value detection unit 21 detects a peak value (maximum value) TSmax of the signal level of the test signal TS received as a received signal RS by the signal receiving unit 11. For example, the peak value detection unit 21 acquires a value obtained by converting the analog value to the digital value with respect to a voltage value of the transmission waveform of the test signal TS. Then, the peak value detection unit 21 detects the largest value in the transmission waveform of the test signal TS as a peak value TSmax.
The threshold obtaining unit 22 obtains a preset threshold Vref based on the peak value TSmax detected by the peak value detection unit 21. The threshold holding unit 23 stores the preset threshold Vref obtained by the threshold obtaining unit 22 as a preset threshold Vref to be used by the abnormality detection unit. Specifically, the threshold obtaining unit 22 first stores, in the threshold holding unit 23, a value obtained by subtracting a predetermined voltage subtraction value α from the peak value TSmax, as a preset threshold Vref (Vref=TSmax−α). Then, the abnormality detection unit 12 detects abnormality of the test signal TS with use of the preset threshold Vref stored in the threshold holding unit 23.
When the abnormality detection unit 12 determines that the test signal TS is normal, the threshold obtaining unit 22 obtains a preset threshold Vref obtained by further subtracting the voltage subtraction value α (Vref=Vref−α), and the signal determination unit 12a determines whether the test signal TS is abnormal by using the newly obtained preset threshold Vref. The threshold obtaining unit 22 repeatedly performs processing to subtract the voltage subtraction value α from the preset threshold Vref until abnormality occurs.
On the other hand, when the abnormality detection unit 12 detects abnormality of the test signal TS, the threshold obtaining unit 22 stores, in the threshold holding unit 23, a preset threshold Vref obtained by adding a margin increase amount βto the preset threshold Vref stored in the threshold holding unit 23 (Vref=Vref+β), whereby automatic setting of the preset threshold Vref is completed. It should be noted that the margin increase amount β is obtained by adding a certain value of error caused by dispersion, which may be the same value as the voltage subtraction value α, or a value larger than it. As such, when subtraction of the voltage subtraction value α from the peak value TSmax is repeated N times, for example, a value obtained by subtracting N×α from the peak value TSmax of the test signal TS and adding the margin increase amount β is used as the preset threshold Vref (Vref=TSmax−(N×α)+β). Then, when the margin increase amount β is the voltage subtraction value α, it means that the value is returned to the preset threshold Vref immediately before the occurrence of the abnormality. The preset threshold Vref finally stored in the threshold holding unit 23 is transmitted to the communication diagnostic apparatus 6 via the signal transmission unit 14.
In this way, by automatically setting the preset threshold Vref based on the peak value TSmax in which dispersion is caused depending on the installation environment when the test signal TS is received, it is possible to determine communication abnormality in the received signal RS by using the optimum preset threshold Vref according to the installation environment of the air-conditioning system 1. As such, occurrence of communication abnormality due to installation environment can be suppressed. In particular, by adding a certain value of error caused by dispersion as a margin increase amount β and by setting a voltage value TSmax−(N−1)×α, immediately before abnormality is determined, as a preset threshold Vref, it is possible to set a preset threshold Vref resistant to noise.
Further, the air-conditioning system 1 also includes a margin obtaining unit 30 configured to obtain a difference between the peak value TSmax, detected by the peak value detection unit 21, and the standard value TSref as a margin EV (=TSref−TSmax). It should be noted that while
Meanwhile, the communication diagnostic apparatus 6 includes a margin evaluation unit 6a configured to compare the margin EV, obtained with respect to the transmission relaying apparatus 10, with an evaluation threshold EVref, and when the margin EV is smaller than the evaluation threshold EVref, the margin evaluation unit 6a gives a warning. By giving a warning as described above, it is possible to specify a part in which the transmission quality has a margin or a problem in the air-conditioning system 1. It should be noted that while the case in which the margin evaluation unit 6a performs evaluation using one evaluation threshold EVref is exemplary illustrated, it is possible to classify the margin EV into a plurality of stages by using a plurality of evaluation thresholds EVref. Further, the communication diagnostic apparatus 6 may have a function of displaying an abnormal state of each of the transmission relaying apparatuses 10, an address of the source where abnormality occurs, a current preset threshold Vref, a margin EV, and the like, on a monitor not shown.
Then, by the threshold obtaining unit 22, a preset threshold Vref is obtained by subtracting the voltage subtraction value α from the peak value TSmax, and is stored in the threshold holding unit 23 (step ST2). Then, by the abnormality detection unit 12, detection of abnormality, using the obtained preset threshold Vref, is performed for a predetermined period (step ST3). Then, when no abnormality occurred in the test signal TS received during the predetermined period in the abnormality detection unit 12, by the threshold obtaining unit 22 of the threshold setting unit 20, the voltage subtraction value α is further subtracted from the preset threshold Vref stored in the threshold holding unit 23, and the value obtained through the subtraction is reset as the preset threshold Vref (step ST2). The subtraction processing of the preset threshold Vref described above is performed until abnormality is detected by the abnormality detection unit 12 (steps ST2 and ST3).
On the other hand, in Embodiment 1, when abnormality is detected by the abnormality detection unit 12 when the test signal TS is received during the predetermined period (step ST3), by the threshold obtaining unit 22, the preset threshold Vref (=TSmax−N−60 +β) is obtained by adding the margin increase amount β to the preset threshold Vref stored in the threshold holding unit 23 and stored in the threshold holding unit 23 (step ST4). Then, at the time of normal operation of the air-conditioning system 1, detection of abnormality of the received signal RS is performed by the abnormality detection unit 12 with use of the preset threshold Vref.
Further, by the margin obtaining unit 30, the margin EV is obtained based on the peak value TSmax, and is transmitted to the communication diagnostic apparatus 6. By the margin evaluation unit 6a of the communication diagnostic apparatus 6, it is determined whether the margin EV is equal to or greater than the evaluation threshold EVref (step ST5), and when the margin EV is smaller than the evaluation threshold EVref, a warning is given (step ST6).
According to Embodiment 1, by automatically setting the preset threshold Vref based on the peak value TSmax when the test signal TS is received, it is possible to determine communication abnormality of the received signal RS by using an optimum preset threshold Vref according to the installation environment of the air-conditioning system 1. As such, occurrence of communication abnormality due to installation environment can be suppressed.
This means that as shown in the schematic diagram of
On the other hand, in the transmission relaying apparatus 10 illustrated in
Further, as the margin obtaining unit 30 of the transmission relaying apparatus 10 obtains the margin EV, and the communication diagnostic apparatus 6 stores the margin and the address of the transmission relaying apparatus 10 in association with each other, it is possible to accurately recognize the communication quality of each transmission relaying apparatus 10. Particularly, when the margin EV is smaller than the predetermined evaluation threshold EVref, by outputting a warning to the display unit or the like, a maintenance operator or the like may immediately recognize the location where a problem of transmission quality is caused in the air-conditioning system 1.
In
In this way, by calculating a transmission delay time for each apparatus, it is possible to specify an apparatus of the address in which transmission delays. This enables maintenance operation to be performed efficiently.
It should be noted that even in
Embodiments of the present invention are not limited to the embodiments described above. For example, in Embodiments 1 and 2, the case of calculating a preset threshold by using one voltage subtraction value α in the test mode has been exemplary illustrated. However, to set a preset threshold Vref having higher accuracy, after setting a preset threshold Vref by using the voltage subtraction value α, it is possible to use a voltage subtraction value smaller than the voltage subtraction value α to perform subtraction processing repeatedly until abnormality occurs, by the same method.
Further, when detecting a peak value TSmax of the test signal TS, the peak value detection unit may detect a peak value from one test signal TS, or detect a peak value TSmax from a plurality of test signals TS. In the case of detecting a peak value from a plurality of test signals TS, the peak value detection unit 21 may, for example, use an average value of a plurality of peak values TSmax, or detect a maximum value of a plurality of peak values TSmax as a peak value TSmax.
1, 100 air-conditioning system 1A transmission path 2 refrigeration cycle apparatus 3 outdoor unit 4 indoor unit 5 central management apparatus
6, 106 communication diagnostic apparatus 6a margin evaluation unit
10 transmission relaying apparatus 11 signal receiving unit 12 abnormality detection unit 12a signal determination unit 12b signal blocking unit 13 signal processing unit 14 signal transmission unit 15 mode switching unit 20 threshold setting unit 21 peak value detection unit 22 threshold obtaining unit
23 threshold holding unit 30 margin obtaining unit 106 communication diagnostic apparatus 106a delay time measuring unit EV margin EVref evaluation threshold RS received signal Tref preset threshold TS test signal TSmax voltage value TSmax peak value
TSref standard value Vref preset threshold α voltage subtraction value
β margin increase amount
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2014/058012 | 3/24/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/145528 | 10/1/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5029330 | Kajigaya | Jul 1991 | A |
6279332 | Yeo | Aug 2001 | B1 |
20120101778 | Gyota | Apr 2012 | A1 |
Number | Date | Country |
---|---|---|
S60-074839 | Apr 1985 | JP |
H03-042934 | Feb 1991 | JP |
H05-268228 | Oct 1993 | JP |
H07-071806 | Mar 1995 | JP |
H08-035716 | Feb 1996 | JP |
2006-064307 | Mar 2006 | JP |
2006-207946 | Aug 2006 | JP |
2010-121865 | Jun 2010 | JP |
2011-145014 | Jul 2011 | JP |
Entry |
---|
Office Action dated Dec. 6, 2016 issued in corresponding JP patent application No. 2016-509629 (and English translation). |
International Search Report of the International Searching Authority dated Jul. 1, 2014 for the corresponding international application No. PCT/JP2014/058012 (and English translation). |
Number | Date | Country | |
---|---|---|---|
20160327304 A1 | Nov 2016 | US |