Claims
- 1. In an air conditioning system, an air conditioning unit including a compressor and an expander having rotor means driven by a common shaft, the rotor means having vanes defining enclosed compartments which become smaller and larger as the shaft rotates, the compressor and expander each having an inlet port and an outlet port, a first heat exchanger connected between the compressor outlet port and the expander inlet port, a second heat exchanger coupled to the expander outlet port, the heat exchangers being isolated from one another, means for conducting to the compressor inlet port a gas which is non-condensing at the temperatures and pressures encountered in the unit so that upon driving of the rotor means the gas (1) is positively compressed and heated in the compressor, (2) releases heat in the first heat exchanger, (3) is positively expanded and cooled in the expander, and (4) absorbs heat in the second heat exchanger, an additive fluid in the gas in the form of a fluid having a high heat of vaporization capable of evaporation in the compressor and condensation in the expander, and means for injecting droplets of the additive fluid into the gas entering the compressor inlet port at a sufficient rate to super-saturate the gas for evaporation of the fluid by the heat of compression with the change of state partially counteracting the heating of the compressed gas and consequently reducing the work required to compress it, with at least a portion of the evaporated fluid being condensed in the first heat exchanger, the gas flowing into the expander being at least substantially saturated with the additive fluid resulting in condensation in the expander to form particles with the change of state partially counteracting the cooling of the expanding gas resulting in an increase in the work of expansion thereby further reducing the work required to drive the rotor, and means for disposing of the additive fluid condensed in the first heat exchanger.
- 2. The combination as claimed in claim 1 in which means are provided for intercepting the condensed particles in the second heat exchanger to increase the heat exchange.
- 3. The combination as claimed in claim 1 in which the drop in temperature in the expander is sufficiently great that the condensed particles are in the frozen state with means being provided in the second heat exchanger for intercepting and liquifying the particles thereby to increase the heat exchange.
- 4. The combination as claimed in claim 1 in which means are provided in the second heat exchanger for intercepting the condensed particles and for converting them to liquid form, and means for feeding the resulting liquid to the injecting means.
- 5. The combination as claimed in claim 1 including means in the second heat exchanger for trapping particles of additive fluid received from the expander and for collecting the fluid in liquid form, means in the first heat exchanger for collecting additive fluid condensed therein in liquid form, and means including feedback conduits for conducting the fluid in liquid form from the heat exchangers to the injecting means for recirculation thereof.
- 6. The combination as claimed in claim 5 in which means are provided for connecting the outlet of the second heat exchanger to the compressor inlet port to seal the unit so that both the gas and the additive fluid in the gas are conserved for continuous recirculation.
- 7. The combination as claimed in claim 5 in which the injecting means includes a porous distributing element and a nozzle at the compressor inlet port with means for feeding additive fluid from the second heat exchanger to the porous element and for feeding condensate from the first heat exchanger to the nozzle.
- 8. The combination as claimed in claim 7 in which the porous element is positioned slightly upstream of the nozzle.
- 9. In an air conditioning system, an air conditioning unit including a compressor and an expander having rotor means driven by a common shaft, the rotor means having vanes defining enclosed compartments which become smaller and larger as the shaft rotates, the compressor and expander each having an inlet port and an outlet port, a first heat exchanger connecting between the compressor outlet port and the expander inlet port, a second heat exchanger coupled to the expander outlet port, the heat exchangers being isolated from one another, means for conducting to the compressor inlet port a gas which is non-condensing at temperatures and pressures encountered in the unit so that upon driving of the rotor means the gas (1) is positively compressed and heated in the compressor, (2) releases heat in the first heat exchanger, (3) is positively expanded and cooled in the expander, and (4) absorbs heat in the second heat exchanger, an additive fluid in the gas, the additive fluid being one having a high heat of vaporization capable of undergoing change in state from liquid to vapor form in the compressor to reduce work of compression and from vapor to non-vapor form in the expander for increasing the work of expansion, and means for spraying finely divided droplets of additive fluid into the gas entering the compressor inlet port to the point of super-saturation.
- 10. In an air conditioning system, an air conditioning unit including a compressor and an expander having rotor means driven by a common shaft, the rotor means having vanes defining enclosed compartments which become smaller and larger as the shaft rotates, the compressor and expander each having an inlet port and an outlet port, a first heat exchanger connecting between the compressor outlet port and the expander inlet port, a second heat exchanger coupled to the expander outlet port, the heat exchangers being isolated from one another, means for conducting to the compressor inlet port a gas which is non-condensing at temperatures and pressures encountered in the unit so that upon driving of the rotor means the gas (1) is positively compressed and heated in the compressor, (2) releases heat in the first heat exchanger, (3) is positively expanded and cooled in the expander, and (4) absorbs heat in the second heat exchanger, an additive fluid in the gas, the additive fluid being one having a high heat of vaporization capable of undergoing (a) vaporization from liquid to vapor form in the compressor to reduce work of compression and (b) condensation from vapor to liquid form in the first heat exchanger, a sump in the first heat exchanger, means for spraying finely divided droplets of additive fluid into the gas entering the compressor inlet port to the point of super-saturation, and means defining a feedback conduit connected from the sump to the spraying means for conducting condensed liquid under pressure to the spraying means.
- 11. In an air conditioning system, an air conditioning unit including a compressor and an expander having rotor means driven by a common shaft, the rotor means having vanes defining enclosed compartments which become smaller and larger as the shaft rotates, the compressor and expander each having an inlet port and an outlet port, a first heat exchanger connected between the compressor outlet port and the expander inlet port, a second heat exchanger coupled to the expander outlet port, the heat exchangers being isolated from one another, means for conducting to the compressor inlet port a gas which is non-condensing at temperatures and pressures encountered in the unit so that upon driving of the rotor means the gas (1) is positively compressed and heated in the compressor, (2) releases heat in the first heat exchanger, (3) is positively expanded and cooled in the expander, and (4) absorbs heat in the second heat exchanger, an additive fluid in the gas, the additive fluid being one having a high heat of vaporization capable of undergoing change in state from liquid to vapor form in the compressor to reduce work of compression and from vapor to non-vapor form in the expander for increasing the work of expansion, means for spraying finely divided droplets of additive fluid into the gas entering the compressor inlet port to super-saturate the same, the droplets being sprayed at a rate which causes at least some of them to be discharged in droplet form into the first heat exchanger, thereby to insure that a maximum amount of fluid undergoes a change of state in the compressor, and means for disposing of additive fluid collected and condensed in the first heat exchanger.
- 12. In an air conditioning system, an air conditioning unit including a compressor and an expander having rotor means driven by a common drive shaft, the rotor means having vanes defining enclosed compartments which become smaller and larger as the shaft rotates, the compressor and expander each having an inlet port and an outlet port, a heat exchanger connected between the compressor outlet port and the expander inlet port, means for conducting air to the compressor inlet port so that upon rotation of the drive shaft the air (1) is positively compressed and elevated in temperature in the compressor, (2) releases heat in the heat exchanger, and (3) is positively expanded and lowered in temperature in the expander for discharge in the cold state, means for injecting finely divided water droplets into the air stream at the compressor inlet port so that liquid moisture is available in the compressor for evaporation by the heat of compression thereby to partially counteract the increase in temperature and pressure of the compressed air and consequently to reduce the work required to compress it, the water droplets being introduced at a sufficient rate to super-saturate the inlet air so that condensation of at least a portion of the evaporated moisture occurs in the heat exchanger and means for at least periodically disposing of water condensed in the heat exchanger.
- 13. In an air conditioning system, an air conditioning unit including a compressor and an expander having rotor means driven by a common drive shaft, the rotor means having vanes defining enclosed compartments which become smaller and larger as the shaft rotates, the compressor and expander each having an inlet port and an outlet port, a heat exchanger connected between the compressor outlet port and the expander inlet port, means for conducting air to the compressor inlet port so that upon rotation of the drive shaft the air (1) is positively compressed and elevated in temperature in the compressor, (2) releases heat in the heat exchanger, and (3) is positively expanded and lowered in temperature in the expander for discharge in the cold state, means for injecting finely divided water droplets into the air stream at the compressor inlet port so that liquid moisture is available in the compressor for evaporation by the heat of compression thereby to partially counteract the increase in temperature and pressure of the compressed air and consequently to reduce the work required to compress it, the water droplets being introduced at a sufficient rate to super-saturate the inlet air so that condensation of at least a portion of the evaporated moisture occurs in the heat exchanger, a sump in the heat exchanger for collecting the condensed moisture plus any unevaporated droplets of water, and means for removing the accumulated water from the sump.
- 14. The combination as claimed in claim 13 in which means are provided in the injecting means for controlling the rate of injection to a level which will insure change of state of a maximum amount of water to vapor form in the compressor while limiting the discharge of water in droplet form from the compressor to the heat exchanger.
- 15. In an air conditioning system, an air conditioning unit including a compressor and an expander having rotor means driven by a common drive shaft, the rotor means having vanes defining enclosed compartments which become smaller and larger as the shaft rotates, the compressor and expander each having an inlet port and an outlet port, a heat exchanger connected between the compressor outlet port and the expander inlet port, means for conducting air to the compressor inlet port so that upon rotation of the drive shaft the air (1) is positively compressed and elevated in temperature in the compressor, (2) releases heat in the heat exchanger, and (3) is positively expanded and lowered in temperature in the expander for discharge in the cold state, means for injecting finely divided water droplets into the air stream at the compressor inlet port so that liquid moisture is available in the compressor for evaporation by the heat of compression thereby to partially counteract the increase in temperature and pressure of the compressed air and consequently to reduce the work required to compress it, the water droplets being introduced at a sufficient rate to super-saturate the inlet air so that condensation of at least a portion of the evaporated moisture occurs in the heat exchanger, and means for aspirating the condensed water from the heat exchanger into the air stream flowing from the heat exchanger to the expander for disposing of the same.
- 16. The combination as claimed in claim 12 in which a substantial number of the finely divided droplets have a dimension at least as small as 1 to 1000 microns.
- 17. In an air conditioning system, an air conditioning unit including a compressor and an expander having rotor means driven by a common drive shaft, the rotor means having vanes defining enclosed compartments which become smaller and larger as the shaft rotates, the compressor and expander each having an inlet port and an outlet port, a heat exchanger connected between the compressor outlet port and the expander inlet port, means for cnducting air to the compressor inlet port so that upon rotation of the drive shaft the air (1) is positively compressed and elevated in temperature in the compressor, (2) releases heat in the heat exchanger, and (3) is positively expanded and lowered in temperature in the expander for discharge in the cold state, means including a nozzle for injecting finely divided water droplets into the air stream at the compressor inlet port so that liquid moisture is available in the compressor for evaporation by the heat of compression thereby to partially counteract the increase in temperature and pressure of the compressed air and consequently to reduce the work required to compress it, the water droplets being introduced at a sufficient rate to super-saturate the inlet air so that condensation of at least a portion of the evaporated moisture occurs in the heat exchanger, and means for at least periodically disposing of water condensed in the heat exchanger, the heat exchanger having a sump for collecting the condensed moisture plus any unevaporated droplets of water, and a feedback line for interconnecting the sump with the nozzle for recirculation of the water, the water being transported from the sump and through the nozzle by reason of the pressure differential between the heat exchanger and the compressor inlet port.
- 18. The combination as claimed in claim 17 for insuring that only water flows through the feedback line free of flow of air between the heat exchanger and the compressor inlet port.
- 19. The combination as claimed in claim 17 in which an auxiliary source of water is provided at the compressor inlet port including means for automatic feeding for replenishment of the water in the sump to insure presence of liquid water in the feedback line and for avoidance of blow-by of air between the heat exchanger and the compressor inlet port.
- 20. The combination as claimed in claim 13 in which the means for removing water includes a drain line in the sump and level-responsive means for discharging excess liquid through the drain line.
- 21. The combination as claimed in claim 13 in which the heat exchanger includes means for trapping water droplets remaining in the air stream after compression of the air in the compressor so that the air which flows into thee expander side includes dissolved moisture substantially free of droplets of liquid moisture.
- 22. The combination as claimed in claim 21 in which the means for trapping the water droplets includes surfaces in the heat exchanger causing abrupt change in direction of the air stream.
- 23. In an air conditioning system, the combination comprising a compressor-expander including a compressor and an expander having rotor means driven by a common drive shaft, the rotor means having vanes defining enclosed compartments which become smaller and larger as the shaft rotates, the compressor and expander each having an inlet port and an outlet port, a heat exchanger connected between the compressor outlet port and the expander inlet port, means for conducting air to the compressor inlet port so that upon rotation of the drive shaft the air (1) is positively compressed and elevated in temperature in the compressor, (2) releases heat in the heat exchanger, and (3) is positively expanded and lowered in temperature in the expander for discharge in the cold state, means for injecting finely divided water droplets into the air stream at the compressor inlet port so that moisture is available in the compressor for evaporation by the heat of compression thereby to partially counteract the increase in the temperature of the compressed air and consequently the work required to compress it, the water droplets being introduced at a sufficient rate to super-saturate the inlet air so that condensation of at least a portion of the evaporated moisture occurs in the heat exchanger and so that the air fed to the expander is substantially saturated with moisture for condensation in the expander, a sump in the heat exchanger for collecting the condensed moisture plus any unevaporated droplets, means including a feedback line connecting the sump to the injecting means for recirculation of the water, means including a filter for recovering the condensed moisture from the air leaving the expander and means including a second feedback line connecting the filter to the injecting means for supplementing the recirculated water thereby to insure continuity of a supply of water in the sump.
- 24. The combination as claimed in claim 9 in which the spraying means includes a nozzle and in which power operated atomizing means are provided for acting upon the droplets produced by the nozzle for dividing each of them into smaller size.
- 25. The combination as claimed in claim 24 in which a substantial number of the atomized droplets have a dimension at least as small as 1 to 1000 microns.
- 26. In an air conditioning system for an automobile or the like, an air conditioning unit including a compressor and expander intended for normal operation in the dry state and having rotor means driven by a common shaft, the rotor means having vanes defining enclosed compartments which become smaller and larger as the shaft rotates, the compressor and expander each having an inlet port and an outlet port, a heat exchanger connected between the compressor outlet port and the expander inlet port, an inlet conduit for conducting ambient air to the compressor inlet port so that upon driving of the rotor means the gas (1) is positively compressed and elevated in temperature in the compressor, (2) releases heat in the heat exchanger, (3) is positively expanded and lowered in temperature in the expander for discharge in the cold state, a reservoir of water, means for dispensing a measured shot of water from the source into the conduit over a brief interval of time in such form that the water is entrained by the air in the conduit and carried into the compressor for grossly super-saturating the inlet air, with the moisture being subsequently cooled and condensed in the heat exchanger, the heat exchanger being so arranged that the moisture in liquid form therein along with the moisture in the vapor state flows into the expander for discharge from the latter at low temperature thereby to bring about a temporary increase in the cooling capacity of the unit, and manually operated means for triggering the dispensing means.
- 27. The combination as claimed in claim 26 in which the dispensing means includes a chamber for holding a measured quantity of water on the order of a few ounces and having a restricted discharge nozzle in the conduit together with means for applying pressure to empty the chamber, the pressure being so related to the restriction in the nozzle as to discharge the water in a period substantially less than a minute.
- 28. The combination as claimed in claim 26 in which the dispensing means is in the form of a cylinder having a manually pulled piston and in which the pressure-applying means is in the form of a return spring for the piston, the return spring being sufficiently strong so that the nozzle discharges the shot of water in the form of droplets.
- 29. The combination as claimed in claim 26 in which a dumping valve is provided at the expander outlet port for dumping of expanded air and the lower temperature particles of moisture into the cooled space, and means operated automatically incident to cycling of the dispensing means for temporarily opening the valve.
- 30. In an air conditioning system, an air conditioning unit including a compressor and an expander having rotor means driven by a common drive shaft, the rotor means having vanes defining enclosed compartments which become smaller and larger as the shaft rotates, the compressor and expander each having an inlet port and an outlet port, a heat exchanger connected between the compressor outlet port and the expander inlet port, means for conducting air to the compressor inlet port so that upon rotation of the drive shaft the air (1) is positively compressed and elevated in temperature in the compressor, (2) releases heat while under pressure in the heat exchanger, and (3) is positively expanded and lowered in temperature in the expander for discharge in the cold state, means including a first nozzle for injecting finely divided water droplets into the air stream at the compressor inlet port so that liquid moisture is available in the compressor for evaporation by the heat of compression thereby to partially counteract the increase in temperature and pressure of the compressed air and consequently to reduce the work required to compress it, the water droplets being introduced at a sufficient rate to super-saturate the inlet air so that condensation of at least a portion of the evaporated moisture occurs in the heat exchanger, means including a second nozzle for injecting finely divided water droplets into the air stream at the expander outlet port, and means for conducting water condensed in the heat exchanger under pressure from the heat exchanger to at least one of the nozzles.
Parent Case Info
This application is a continuation-in-part of prior application Ser. No. 465,841 which was filed May 1, 1974 now U.S. Pat. No. 3,913,351.
US Referenced Citations (7)
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
465841 |
May 1974 |
|