AIR-CONDITIONING SYSTEM WITH A REDUNDANT FEED OF SUPPLY AIR

Information

  • Patent Application
  • 20160257409
  • Publication Number
    20160257409
  • Date Filed
    May 16, 2016
    8 years ago
  • Date Published
    September 08, 2016
    8 years ago
Abstract
The invention relates to an air-conditioning system with a redundant feed of supply air comprising at least one pack which is supplied with air, with at least one valve being arranged in the feed for the air flow control. In accordance with the invention, an electrical flow control valve and a pneumatic flow control valve are arranged in parallel connection in front of the pack for the air flow control.
Description

The invention relates to an air-conditioning system for use in aircraft in accordance with the preamble of claim 1.


A part of such an air-conditioning system in accordance with the prior art is shown in the enclosed FIG. 1. A so-called pack is designated by 10 there in which the air is processed before the introduction into the cockpit of the aircraft or into the passenger cabin of the aircraft. The pack 10 is supplied with so-called bleed air which is bled from the engine. The bleed air is guided through a line 12 in this process. A valve 14 serves for the air flow control of the air fed to the pack. In accordance with the aforesaid prior art, the valve 14 has an electrical controller and additionally a pneumatic controller. In accordance with FIG. 1, the electrical controller receives the signals from two pressure sensors 16 and 18 which serve the reception of a pressure P1 and of a pressure P2 in a Venturi nozzle 20 provided in the air line 12. The activation pressure of a pressure membrane 22 is controlled in accordance with the received pressure signals in a known manner via a torque motor 24 acting on the pressure membrane such that the flap unit of the valve, not shown in any more detail here in FIG. 1, is set in response to the control value. 26 designates a solenoid for switching the valve 14 on or off. If the electrical control should malfunction, for example due to a failure of the electrics, a pneumatic controller is additionally realized in the valve 14. It is shown symbolically in FIG. 1 by the pressure return line 28.


In standard operation, the air flow control takes place exclusively through the electrical part of the valve 14. If this fails, a pneumatic control takes the place of the electrical control through the pressure control part 28 of the valve 14. The failure rate of the valve is considerably increased over simple electrical flow control valves on the basis of this measure. It is nevertheless found in the use of such valves that the valve fails completely at infrequent, but statistically relevant intervals. One reason for this can lie in the fact that both the electrical control and the pressure control each act on an actuator unit and a flap unit. If therefore, for example, the pressure membrane 22 should fail as the actuator unit or if the flap unit should fail, the total pack 10 can no longer be supplied with air to the desired degree and fails completely.


It is now proposed in US 2004/017739 A1 to double the valves, i.e. to provide two electrical flow control valves provided independently of one another. This embodiment is not only expensive, but also large in construction size and increases the total weight of the air-conditioning system, which is of a great disadvantage in aircraft construction.


It is the object of the present invention to ensure the availability of an air-conditioning system in a manner which is as cost effective as possible with a weight of the total system which is as low as possible.


This object is solved in accordance with the invention by the combination of the features of claim 1. Accordingly, an air-conditioning system is provided with a redundant feed of supply air comprising at least one pack which is supplied with air, with at least one valve being arranged in the feed for the air flow control. An electrical flow control valve and a pneumatic flow control valve is arranged there for the air flow control in parallel connection in front of the pack. In accordance with the solution in accordance with the invention, two lines are provided which run in parallel and have separate valves with separate actuator units and flap units. The total availability of the system can hereby be greatly improved since a so-called “common mode” failure is no longer present. In the electrical control mode of the electrical flow control valve usually used for the control, a continuous feedback of the air flow is ensured by the air flow measurement in the Venturi nozzle present in the air line. On a failure of the electrical flow control valve, the correspondingly associated valve is closed and a pneumatic control by the pneumatic flow rate control valve takes place. A corresponding control therefore takes place here which is independent of the electric supply.


Preferred configurations of the invention result from the dependent claims following on from the main claim. Accordingly, two packs can be provided in accordance with a preferred configuration which each have the parallel arrangement in accordance with the invention of the electrical flow control valve and of the pneumatic flow control valve.


In accordance with a further preferred configuration of the invention, an air treatment device can be arranged in front of the pack. This air treatment device can be an ozone converter. A device for the elimination of volatile organic compounds can also be provided as an air treatment device. These volatile organic compounds, for example kerosene, produce air pollution, with this device serving to eliminate them. The device for the elimination of the volatile organic compounds can be provided separately as an air treatment device. Alternatively, it can also be integrated in the ozone converter.


In accordance with an embodiment variant of the invention, the air feed line for the pneumatic flow control valve can be led past the air treatment device.


Another embodiment variant of the invention contains the fact that the air feed line for the pneumatic flow valve branches off after the air treatment device in the flow direction.


The pneumatic flow control valve can advantageously control the air flow to a previously fixed pressure level in response to the flow resistance of the pack.





Further details and advantages of the invention will be explained in more detail with reference to an embodiment shown in the drawing. There are shown:



FIG. 1: a schematic system scheme in accordance with the prior art;



FIG. 2: a schematic system scheme in accordance with a first embodiment of the present invention; and



FIG. 3: a schematic representation of a total system in which an embodiment of the invention has been integrated.





In FIG. 2, a system of a part of the air-conditioning system is shown schematically in which two parallel bleed air lines 12 each have control valves 14 and 14′ respectively. The control valve 14 is an electrical flow control valve EFCV of standard construction. Here, a Venturi nozzle 20 is in the bleed air line with a first pressure sensor 16 for the pick-up of the pressure P1 and a second pressure sensor 18 for the pick-up of the pressure P2 to make a continuous flow measurement possible here. The pressure controlling the pressure membrane 22 is set via the torque motor 24 in response to this continuous flow measurement. The flap unit of the valve (not shown here) is set via the pressure membrane 22. If the electrical flow control valve EFCV fails, the flap unit is closed. The pneumatic flow control valve is simultaneously opened. Just like the electrical flow control valve, it has an actuator unit and a flap unit. A pressure membrane also serves as an actuator here, which is, however, pneumatically controlled. This pneumatic control also takes place in a known manner by the control to a defined pressure level, with the air flow here resulting in response to the resistance of the pack 10.


An on/off solenoid is connected to both actuator units 22 and the respective control valve 14 or 14′ can be activated or switched off respectively via it.


A total concept of a part of an aircraft air-conditioning system is shown in FIG. 3. Two bleed air systems 30 and 32 are provided here. The bleed air of the respective pack 10 is supplied via corresponding lines 12. 34 designates a so-called APU which serves ground air supply. The two air lines 12 are connected to one another via a connection line 11, with this connection line being able to be opened or closed via an X bleed air valve 13.


The air flow correspondingly treated in the pack is introduced into a common mixing chamber 40.


A respective electrical flow control valve and a respective pneumatic flow control valve are connected before the respective packs 10. As can further be seen from the system scheme in accordance with FIG. 3, a respective ozone conversion 36 is connected before the electrical flow control valve. In the normal case, the first pack 10 is supplied by means of the bleed air system 30, whereas the second pack 10 is supplied using the bleed air system 32. The X bleed air valve 13 remains closed. In contrast, the X bleed air system 13 is opened in the event that one of the bleed air systems 30 or 32 fails or that a switch is made by the APU unit 34 to so-called APU operation. In accordance with the system, two different operating modes are realized for the control of the air flow: an electrical operating mode and a pneumatic operating mode. These operating modes are realized in two different valves so that this control unit has a redundant structure.

Claims
  • 1-11. (canceled)
  • 12. An air-conditioning system, comprising: at least one pack which is supplied with air;a redundant valve system including an electrical flow control valve (EFCV), which only provides electrical air flow control, and a pneumatic flow control valve (PBV), which only provides pneumatic air flow control, the EFCV and PBV arranged in a parallel connection upstream of the pack, the EFCV comprising an electrically-controlled actuator unit and a first flap unit which is set via a first pressure membrane, and the PBV comprising a pneumatically-controlled actuator unit and a second flap unit which is set via a second pressure membrane;wherein if the EFCV fails, the flap unit of the EFCV is closed and the PBV is opened.
  • 13. The air-conditioning system in accordance with claim 12, wherein air flow through the EFCV can be measured continuously via pressure measurements in a Venturi nozzle provided in a line of the air-conditioning system upstream of the EFCV.
  • 14. The air-conditioning system in accordance with claim 12, wherein an air treatment device is connected upstream of the EFCV.
  • 15. The air-conditioning system in accordance with claim 14, wherein the air treatment device is an ozone converter.
  • 16. The air-conditioning system in accordance with claim 14, wherein the air treatment device is a device for the elimination of volatile organic compounds.
  • 17. The air-conditioning system in accordance with claim 14, wherein an air feed line for the PBV is led past the air treatment device.
  • 18. The air-conditioning system in accordance with claim 12, wherein the PBV controls air flow to a previously fixed pressure level in response to flow resistance of the pack.
  • 19. The air-conditioning system of claim 12, further comprising an auxiliary power unit which provides ground air supply.
  • 20. The air-conditioning system in accordance with claim 12, further comprising a first on/off solenoid connected to the electrically-controlled actuator unit of the EFCV and a second on/off solenoid connected to the pneumatically-controlled actuator unit of the PBV.
  • 21. The air-conditioning system in accordance with claim 12, further comprising a torque motor acting on the first pressure membrane, the torque motor configured to control an activation pressure of the first pressure membrane.
Priority Claims (1)
Number Date Country Kind
10 2006 023 444.8 May 2006 DE national
Continuations (1)
Number Date Country
Parent 11804604 May 2007 US
Child 15156143 US