The invention relates to an air-conditioning system for use in aircraft in accordance with the preamble of claim 1.
A part of such an air-conditioning system in accordance with the prior art is shown in the enclosed
In standard operation, the air flow control takes place exclusively through the electrical part of the valve 14. If this fails, a pneumatic control takes the place of the electrical control through the pressure control part 28 of the valve 14. The failure rate of the valve is considerably increased over simple electrical flow control valves on the basis of this measure. It is nevertheless found in the use of such valves that the valve fails completely at infrequent, but statistically relevant intervals. One reason for this can lie in the fact that both the electrical control and the pressure control each act on an actuator unit and a flap unit. If therefore, for example, the pressure membrane 22 should fail as the actuator unit or if the flap unit should fail, the total pack 10 can no longer be supplied with air to the desired degree and fails completely.
It is now proposed in US 2004/0177639 A1 to double the valves, i.e. to provide two electrical flow control valves provided independently of one another. This embodiment is not only expensive, but also large in construction size and increases the total weight of the air-conditioning system, which is of a great disadvantage in aircraft construction.
It is the object of the present invention to ensure the availability of an air-conditioning system in a manner which is as cost effective as possible with a weight of the total system which is as low as possible.
This object is solved in accordance with the invention by the combination of the features of claim 1. Accordingly, an air-conditioning system is provided with a redundant feed of supply air comprising at least one pack which is supplied with air, with at least one valve being arranged in the feed for the air flow control. An electrical flow control valve and a pneumatic flow control valve is arranged there for the air flow control in parallel connection in front of the pack. In accordance with the solution in accordance with the invention, two lines are provided which run in parallel and have separate valves with separate actuator units and flap units. The total availability of the system can hereby be greatly improved since a so-called “common mode” failure is no longer present. In the electrical control mode of the electrical flow control valve usually used for the control, a continuous feedback of the air flow is ensured by the air flow measurement in the Venturi nozzle present in the air line. On a failure of the electrical flow control valve, the correspondingly associated valve is closed and a pneumatic control by the pneumatic flow rate control valve takes place. A corresponding control therefore takes place here which is independent of the electric supply.
Preferred configurations of the invention result from the dependent claims following on from the main claim. Accordingly, two packs can be provided in accordance with a preferred configuration which each have the parallel arrangement in accordance with the invention of the electrical flow control valve and of the pneumatic flow control valve.
In accordance with a further preferred configuration of the invention, an air treatment device can be arranged in front of the pack. This air treatment device can be an ozone converter. A device for the elimination of volatile organic compounds can also be provided as an air treatment device. These volatile organic compounds, for example kerosene, produce air pollution, with this device serving to eliminate them. The device for the elimination of the volatile organic compounds can be provided separately as an air treatment device. Alternatively, it can also be integrated in the ozone converter.
In accordance with an embodiment variant of the invention, the air feed line for the pneumatic flow control valve can be led past the air treatment device.
Another embodiment variant of the invention contains the fact that the air feed line for the pneumatic flow valve branches off after the air treatment device in the flow direction.
The pneumatic flow control valve can advantageously control the air flow to a previously fixed pressure level in response to the flow resistance of the pack.
Further details and advantages of the invention will be explained in more detail with reference to an embodiment shown in the drawing. There are shown:
In
An on/off solenoid is connected to both actuator units 22 and the respective control valve 14 or 14′ can be activated or switched off respectively via it.
A total concept of a part of an aircraft air-conditioning system is shown in
The air flow correspondingly treated in the pack is introduced into a common mixing chamber 40.
A respective electrical flow control valve and a respective pneumatic flow control valve are connected before the respective packs 10. As can further be seen from the system scheme in accordance with
Number | Date | Country | Kind |
---|---|---|---|
10 2006 023 444 | May 2006 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
3403852 | Gorchev | Oct 1968 | A |
4779644 | Benson | Oct 1988 | A |
4887214 | Takats et al. | Dec 1989 | A |
5511385 | Drew et al. | Apr 1996 | A |
6389826 | Buchholz et al. | May 2002 | B2 |
6981388 | Brutscher et al. | Jan 2006 | B2 |
7264017 | Denike et al. | Sep 2007 | B2 |
7305842 | Schiff | Dec 2007 | B1 |
8087255 | Klimpel | Jan 2012 | B2 |
20040177639 | Army, Jr. et al. | Sep 2004 | A1 |
20050011217 | Brutscher et al. | Jan 2005 | A1 |
20050188716 | Brutscher et al. | Sep 2005 | A1 |
20050227605 | Whitney | Oct 2005 | A1 |
20070113579 | Claeys et al. | May 2007 | A1 |
20070256558 | Schwalm | Nov 2007 | A1 |
Number | Date | Country |
---|---|---|
3240274 | May 1984 | DE |
3900987 | Jul 1990 | DE |
10301465 | Aug 2004 | DE |
10350541 | Jun 2005 | DE |
102006016541 | Oct 2007 | DE |
9620109 | Jul 1996 | WO |
0037313 | Jun 2000 | WO |
WO 2006015858 | Feb 2006 | WO |
Entry |
---|
DE3900987A Translation. |
Number | Date | Country | |
---|---|---|---|
20080242209 A1 | Oct 2008 | US |