The instant disclosure relates generally to heating, ventilation, and air conditioning (HVAC) systems, including heat pump systems, as well as methods of operating such systems.
Disclosed are various embodiments of a heating, ventilation, and air conditioning system for conditioning air in a space and optionally for heating water for domestic, commercial, or industrial process uses.
In one embodiment, an HVAC system for conditioning air in a space includes a refrigerant circuit that fluidly interconnects: (a) a compressor to circulate a refrigerant through the refrigerant circuit, the compressor having a discharge outlet port and an suction inlet port; (b) a source heat exchanger operable as either a condenser or an evaporator for exchanging heat with a source fluid; (c) a space heat exchanger operable as either a condenser or an evaporator for heating or cooling air in the space; (d) a desuperheater heat exchanger operable as a condenser for heating water; (e) a first reversing valve positioned downstream of the compressor to alternately direct the refrigerant from the discharge outlet port of the compressor to one of a second reversing valve, a first 3-way valve, and a second 3-way valve and to alternately return the refrigerant from one of the second reversing valve and the second 3-way valve to the suction inlet port of the compressor, wherein the first 3-way valve is configured to selectively direct the refrigerant to the desuperheater heat exchanger from one of the first and second reversing valves, and the second 3-way valve is configured to selectively direct the refrigerant to the first reversing valve and the space heat exchanger; (f) first and second expansion devices positioned between the source and space heat exchangers; (g) first and second expansion device bypass circuits configured to allow the refrigerant to bypass the first and second expansion devices, respectively, the first and second expansion device bypass circuits comprising first and second check valves, respectively, to control a direction of the refrigerant in the first and second expansion device bypass circuits; and (h) a first bi-directional valve positioned downstream of the second reversing valve to selectively convey the refrigerant to at least one of the first 3-way valve, the second 3-way valve, and a second bi-directional valve, wherein the second bi-directional valve modulates exchange of heat in the space heat exchanger when the space heat exchanger is operating as an evaporator and eliminates flashing of the refrigerant entering the source heat exchanger when the source heat exchanger is operating as an evaporator.
The compressor may be a variable capacity compressor. The HVAC system may include a liquid pump associated with the source heat exchanger and the liquid pump may be a variable capacity pump. The source heat exchanger may be a refrigerant-to-liquid heat exchanger configured to exchange heat between the refrigerant in the refrigerant circuit and the source fluid in a source loop. The space heat exchanger may be a refrigerant-to-air heat exchanger. The desuperheater heat exchanger may be a refrigerant-to-liquid heat exchanger configured to exchange heat between the refrigerant in the refrigerant circuit and water in a storage loop.
The HVAC system may include a fan driven by a variable speed motor, and the fan may be configured to flow air over a portion of the space heat exchanger. The first and second expansion devices may be fixed orifice devices, mechanical valves, or electronic valves. The HVAC system may include a storage tank for storing heated water. The HVAC system may include a variable speed water pump for circulating heated water in the storage loop and through the desuperheater heat exchanger and a variable speed source fluid pump for circulating the source fluid in the source loop and through the source heat exchanger.
The HVAC system may include a third bi-directional valve positioned upstream of the second reversing valve to temporarily divert the refrigerant away from the second reversing valve when switching the second reversing valve from one operating configuration to another, and a fourth bi-directional valve positioned downstream of the second reversing valve and upstream of the first bi-directional valve to divert partially condensed refrigerant from the desuperheater heat exchanger to one of the first and second expansion devices. The HVAC system may include a controller comprising a processor and memory on which one or more software programs are stored. The controller may be configured to control operation of the compressor, the first and second reversing valves, the first and second 3-way valves, the first and second expansion devices, the first and second bi-directional valves, a first variable speed pump for circulating water through the desuperheater heat exchanger, and a second variable speed pump for circulating the source fluid through the source heat exchanger.
To operate the HVAC system in a space cooling mode: (a) the first reversing valve diverts the refrigerant from the compressor to the second reversing valve and from the second 3-way valve to the compressor, (b) the second reversing valve diverts the refrigerant from the first reversing valve to the source heat exchanger configured as a condenser, (c) the first and second bi-directional valves are closed, (d) the first expansion device is closed and the refrigerant is diverted through the first check valve via the first expansion device bypass circuit, (e) the second expansion device is open and directs the refrigerant to the space heat exchanger configured as an evaporator, and the second 3-way valve diverts the refrigerant from the space heat exchanger to the first reversing valve.
To operate the HVAC system in a cooling mode with an active desuperheater: (a) the first reversing valve diverts the refrigerant from the compressor to the second reversing valve and from the second 3-way valve to the compressor, (b) the second reversing valve diverts the refrigerant from the first reversing valve to the first bi-directional valve and from the desuperheater heat exchanger to the source heat exchanger configured as a condenser, (c) the first bi-directional valve is open, (d) the second bi-directional valve is closed, (e) the first expansion device is closed and the refrigerant is diverted through the first check valve via the first expansion device bypass circuit, (f) the second expansion device is open and directs the refrigerant to the space heat exchanger configured as an evaporator, and (g) the second 3-way valve diverts the refrigerant from the space heat exchanger to the first reversing valve.
To operate the HVAC system in a cooling mode with an active desuperheater and with space heat exchanger tempering: (a) the first reversing valve diverts the refrigerant from the compressor to the second reversing valve and from the second 3-way valve to the compressor, (b) the second reversing valve diverts the refrigerant from the first reversing valve to the first bi-directional valve and from the desuperheater heat exchanger to the source heat exchanger configured as a condenser, (c) the first bi-directional valve and the second bi-directional valve are open and a first portion of the refrigerant from the first bi-directional valve is conveyed to the first 3-way valve and a second portion of the refrigerant is conveyed to the second bi-directional valve, wherein the first portion of the refrigerant is conveyed to the desuperheater heat exchanger and then to the source heat exchanger via the second reversing valve, (d) the first expansion device is closed and the first portion of the refrigerant is conveyed from the source heat exchanger through the first check valve via the first expansion device bypass circuit and to the second expansion device, (e) the second expansion device is open, and the first portion of the refrigerant from the second expansion device and the second portion of the refrigerant from the second bi-directional valve are mixed and conveyed to the space heat exchanger configured as an evaporator, and (f) the second 3-way valve diverts the refrigerant from the space heat exchanger to the first reversing valve.
To operate the HVAC system in a space heating mode: (a) the first reversing valve diverts the refrigerant from the compressor to the second 3-way valve and from the second reversing valve to the compressor, (b) the second reversing valve diverts the refrigerant from the source heat exchanger configured as an evaporator to the first reversing valve, (c) the second 3-way valve diverts the refrigerant to the space heat exchanger configured as a condenser, (d) the first and second bi-directional valves are closed, (e) the second expansion device is closed and the refrigerant is diverted through the second check valve via the second expansion device bypass circuit, (f) the first expansion device is open and directs the refrigerant to the source heat exchanger configured as an evaporator, and (g) the refrigerant leaving the source heat exchanger is directed to the second reversing valve.
To operate the HVAC system in a heating mode with an active desuperheater: (a) the first reversing valve diverts the refrigerant from the compressor to the first 3-way valve and from the second reversing valve to the compressor, (b) the first 3-way valve diverts the refrigerant from the first reversing valve to the desuperheater heat exchanger, and the refrigerant leaving the desuperheater heat exchanger is conveyed to the second reversing valve, (c) the second reversing valve diverts the refrigerant from the desuperheater heat exchanger to the first bi-directional valve and from the source heat exchanger to the first reversing valve, (d) the first bi-directional valve is open and the refrigerant from the first bi-directional valve is conveyed to the second 3-way valve, (e) the second 3-way valve diverts the refrigerant to the space heat exchanger configured as a condenser, (f) the second bi-directional valve is closed, (g) the second expansion device is closed and the refrigerant is conveyed through the second check valve via the second expansion device bypass circuit, (h) the first expansion device is open and directs the refrigerant to the source heat exchanger configured as an evaporator, and (i) the refrigerant leaving the source heat exchanger is directed to the second reversing valve.
To operate the HVAC system in a space heating mode with an active desuperheater and expansion device boost: (a) the first reversing valve diverts the refrigerant from the compressor to the first 3-way valve and from the second reversing valve to the compressor, (b) the first 3-way valve diverts the refrigerant from the first reversing valve to the desuperheater heat exchanger, and the refrigerant leaving the desuperheater heat exchanger is conveyed to the second reversing valve, (c) the second reversing valve diverts the refrigerant from the desuperheater heat exchanger to the first bi-directional valve and from the source heat exchanger to the first reversing valve, (d) the first bi-directional valve and the second bi-directional valve are open and a first portion of the refrigerant from the first bi-directional valve is conveyed to the second 3-way valve and a second portion of the refrigerant is conveyed to the second bi-directional valve, (e) the second 3-way valve diverts the first portion of the refrigerant to the space heat exchanger configured as a condenser, wherein the second portion of the refrigerant from the second bi-directional valve is mixed with the first portion of the refrigerant from the space heat exchanger configured as a condenser and conveyed through the second check valve via the second expansion device bypass circuit to the first expansion device, (f) the first expansion device is open and directs the refrigerant to the source heat exchanger configured as an evaporator, and (g) the refrigerant leaving the source heat exchanger is directed to the second reversing valve.
In another embodiment, an HVAC system for conditioning air in a space includes: (a) a compressor to circulate a refrigerant through a refrigerant circuit, the compressor having a discharge outlet port and an suction inlet port; (b) a source heat exchanger operable as either a condenser or an evaporator for exchanging heat with a source fluid; (c) a first load heat exchanger operable as either a condenser or an evaporator for heating or cooling air in the space; (d) a second load heat exchanger operable as a condenser for heating water; (e) a first reversing valve positioned downstream of the compressor to alternately direct the refrigerant from the discharge outlet port of the compressor to one of a second reversing valve, a first 3-way valve, and a second 3-way valve and to alternately return the refrigerant from one of the second reversing valve and the second 3-way valve to the suction inlet port of the compressor, wherein the first 3-way valve is configured to selectively direct the refrigerant to the second load heat exchanger from one of the first and second reversing valves, and the second 3-way valve is configured to selectively direct the refrigerant to the first reversing valve and the first load heat exchanger; (e) a bi-directional expansion valve positioned between the source and first load heat exchangers; (f) a first bi-directional valve positioned downstream of the second reversing valve to selectively convey the refrigerant to at least one of the first 3-way valve, the second 3-way valve, and a second bi-directional valve, wherein the second bi-directional valve modulates exchange of heat in the first load heat exchanger when the first load heat exchanger is operating as an evaporator and controls flashing of the refrigerant entering the source heat exchanger when the source heat exchanger is operating as an evaporator; and (g) a controller comprising a processor and memory on which one or more software programs are stored, the controller configured to control operation of the compressor, the first and second reversing valves, the first and second 3-way valves, the bi-directional expansion valve, the first and second bi-directional valves, a first variable speed pump for circulating water through the second load heat exchanger, and a second variable speed pump for circulating the source fluid through the source heat exchanger.
The compressor may be a variable capacity compressor. The HVAC system may include a liquid pump associated with the source heat exchanger and the pump may be a variable capacity pump. The source heat exchanger may be a refrigerant-to-liquid heat exchanger configured to exchange heat between the refrigerant in the refrigerant circuit and the source fluid in a source loop. The space heat exchanger may be a refrigerant-to-air heat exchanger. The desuperheater heat exchanger may be a refrigerant-to-liquid heat exchanger configured to exchange heat between the refrigerant in the refrigerant circuit and water in a storage loop.
The HVAC system may include a fan driven by a variable speed motor, and the fan may be configured to flow air over a portion of the space heat exchanger. The HVAC system may include a storage tank for storing heated water. The HVAC system may include a variable speed water pump for circulating heated water in the storage loop and through the desuperheater heat exchanger and a variable speed source fluid pump for circulating the source fluid in the source loop and through the source heat exchanger. The space heat exchanger may alternatively be a refrigerant-to-liquid heat exchanger for exchanging heat with a liquid for any use, including conditioning air in a space or for industrial purposes.
The HVAC system may include a third bi-directional valve positioned upstream of the second reversing valve to temporarily divert the refrigerant away from the second reversing valve when switching the second reversing valve from one operating configuration to another, and a fourth bi-directional valve positioned downstream of the second reversing valve and upstream of the first bi-directional valve to divert partially condensed refrigerant from the desuperheater heat exchanger to one of the first and second expansion devices.
The HVAC system may be operated in any one of a plurality of operating modes, including: (a) a space cooling mode, (b) a cooling mode with an active desuperheater, (c) a cooling mode with an active desuperheater and with space heat exchanger tempering, (d) a space heating mode, (e) a heating mode with an active desuperheater, (f) a heating mode with an active desuperheater and expansion valve boost.
Although the figures and the instant disclosure describe one or more embodiments of a heat pump system, one of ordinary skill in the art would appreciate that the teachings of the instant disclosure would not be limited to these embodiments. It should be appreciated that any of the features of an embodiment discussed with reference to the figures herein may be combined with or substituted for features discussed in connection with other embodiments in this disclosure.
The instant disclosure provides improved and flexible HVAC operation to condition air in a space and optionally to heat water for domestic, commercial, or industrial process uses. The various embodiments disclosed herein take advantage of properties of the compressor's discharge of hot gas flow through an auxiliary heat exchanger (e.g., desuperheater) coupled to a water flow stream to heat the water when hot water is demanded. The various embodiments disclosed herein offer the advantages of:
The embodiments of an HVAC system disclosed herein may provide operational flexibility via a modulating, pulse width modulating (PWM) or rapid cycle solenoid valve to divert at least a portion of the refrigerant from the refrigerant circuit to one or more bypass circuits to bypass, for example, an inactive heat exchanger or to modulate or temper heat exchange by a particular heat exchanger. Alternatively or additionally, an ON-OFF 3-way valve and a bypass valve may be replaced by the modulating, PWM or rapid cycle solenoid 3-way valve. A controller comprising a processor coupled to memory on which one or more software algorithms are stored may process and issue commands to open, partially open, or close any of the valves disclosed herein. Open or closed feedback loops may be employed to determine current and desired valve positions.
The embodiments of an HVAC system disclosed herein may employ variable speed or multi-speed hot water and/or source fluid pumps, fan and/or blower motor, and compressor to control operation of these components to provide the desired system performance.
Any of the expansion valves disclosed herein may be any type of expansion device, including a thermostatic expansion valve, and can be electronic, mechanical, electromechanical, or fixed orifice type. All of the embodiments described herein provide improved comfort level, system performance, and system reliability.
In one embodiment, a vapor compression circuit of an HVAC system capable of multiple operating modes to heat or cool a space and optionally to heat water includes a compressor, a desuperheater heat exchanger (or simply “desuperheater”) operable as a condenser to heat water for domestic, commercial and/or industrial process purposes, a source heat exchanger operable as either a condenser or an evaporator, a space heat exchanger operable as either a condenser or an evaporator, a 3-way valve positioned between the desuperheater and the source heat exchanger, an expansion valve positioned between the source heat exchanger and the space heat exchanger, a plurality of bi-directional valves positioned along a plurality of bypass circuits, a plurality of temperature and pressure sensors positioned at various locations along the main refrigerant circuit and/or bypass circuits, and a controller configured to operate one or more of these components. This embodiment may include one or more reversing valves to reverse the flow of refrigerant to enable the HVAC system to operate in one or more space cooling and space heating operating modes, as in a heat pump. This embodiment may also include one or more diverters or diverter valves to modulate or temper the heat exchange by the space heat exchanger.
In one or more operating modes when the desuperheater is active (i.e., functioning as a heat exchanger), the desuperheater is positioned downstream of the compressor and upstream of the 3-way valve with respect to flow of refrigerant in the refrigerant circuit. In one or more operating modes when the source heat exchanger is active, the source heat exchanger is positioned downstream of the 3-way valve and upstream of the expansion valve with respect to flow of refrigerant in the refrigerant circuit. In one or more space cooling operating modes, the space heat exchanger is active and is positioned downstream of the expansion valve and upstream of the compressor. In one or more operating modes when the desuperheater is inactive, refrigerant flow bypasses the desuperheater and is routed from the compressor to the 3-way valve. In some embodiments, at least a portion of the refrigerant leaving the compressor may be diverted from the refrigerant being directed to the 3-way valve when the desuperheater is inactive or to the desuperheater when the desuperheater is active and direct that diverted portion of the refrigerant to the space heat exchanger to modulate or temper the heat exchange by the space heat exchanger. The relative positions of at least some of these components are swapped if a reversing valve is employed to reverse the direction of refrigerant to switch from a cooling mode to a heating mode and vice versa.
In another embodiment, a vapor compression circuit of an HVAC system capable of multiple operating modes to heat or cool a space and optionally to heat water includes a compressor, a pair of reversing valves, a pair of 3-way valves, a pair of expansion valves (one active and one inactive in any given operating mode), a desuperheater heat exchanger operable to heat water for domestic, commercial and/or industrial process purposes, a source heat exchanger operable as either a condenser or an evaporator, a space heat exchanger operable as either a condenser or an evaporator, a pair of check valves, a plurality of bi-directional valves, a plurality of temperature and pressure sensors positioned at various locations along the refrigerant circuit and/or bypass circuits, and a controller configured to operate one or more of these components.
Turning now to the drawings and to
In the embodiment of
Referring to
Referring to
Referring to
Referring to
Referring to
With respect to any of the foregoing operating modes shown in
Turning now to
In the embodiment of
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Turning now to
In the embodiment of
Referring to
Referring to
Referring to
Referring to
Referring to
With respect to any of the foregoing operating modes shown in
To switch from a cooling or heating mode with an active desuperheater shown in
In any of the operating modes shown in
Refrigerant circuits 105,205 include one or more conduits through which refrigerant flows and which fluidly connects the components of HVAC systems 100,200,300 to one another. The one or more conduits are arranged in a manner that provides highest temperature compressor discharge gas to a desuperheater when active to maximize heating efficiency by desuperheater heat exchangers 120,220 of water circulated through hot water loops 113,213. Compressors 110,210 may each be a variable capacity compressor, such as a variable speed compressor, a compressor with an integral pulse-width modulation option, or a compressor incorporating various unloading options. These types of compressors allow for better control of the operating conditions and management of the thermal load on the refrigerant circuits 105,205.
Controller 185,285 may include a processor 186,286 coupled to memory 187,287 on which one or more software algorithms are stored to process and issue commands to open, partially open, or close any of the valves disclosed herein. Open or closed feedback loops may be employed to determine current and desired valve positions.
Any of the check valves 252,256, bi-directional valves 134,124,174,224,234,244,274, 3-way valves 140,240,246, expansion valves 150,250,254,350 may be automatically cycled open and closed and/or controlled on and off with a PWM signal to modulate the amount of refrigerant flowing therethrough.
Expansion valves 150,250,254,350 may each be an electronic expansion valve, a mechanical expansion valve, a fixed-orifice/capillary tube/accurator, or any combination of the these. These valves may have bi-directional functionality or may be replaced by a pair of uni-directional expansion devices coupled with the associated bypass check valves as described above to provide refrigerant rerouting when the flow changes direction throughout the refrigerant cycle between cooling and heating modes of operation.
While specific embodiments have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the disclosure herein is meant to be illustrative only and not limiting as to its scope and should be given the full breadth of the appended claims and any equivalents thereof.
This application is a divisional of U.S. patent application Ser. No. 16/897,252, filed on Jun. 9, 2020, which claims the benefit of U.S. Provisional Application No. 62/874,310, filed on Jul. 15, 2019. All of these applications are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1723649 | Earl | Aug 1929 | A |
3354774 | Smitzer et al. | Nov 1967 | A |
3460353 | Ogata et al. | Aug 1969 | A |
3916638 | Schmidt | Nov 1975 | A |
3938352 | Schmidt | Feb 1976 | A |
4072187 | Lodge | Feb 1978 | A |
4091636 | Margen | May 1978 | A |
4173865 | Sawyer | Nov 1979 | A |
4179894 | Hughes | Dec 1979 | A |
4257239 | Partin et al. | Mar 1981 | A |
4299098 | Derosier | Nov 1981 | A |
4399664 | Derosier | Aug 1983 | A |
4441901 | Endoh | Apr 1984 | A |
4476920 | Drucker et al. | Oct 1984 | A |
4493193 | Fisher | Jan 1985 | A |
4528822 | Glamm | Jul 1985 | A |
4538418 | Lawrence et al. | Sep 1985 | A |
4575001 | Oskarsson et al. | Mar 1986 | A |
4584844 | Lemal | Apr 1986 | A |
4592206 | Yamazaki et al. | Jun 1986 | A |
4598557 | Robinson et al. | Jul 1986 | A |
4645908 | Jones | Feb 1987 | A |
4646537 | Crawford | Mar 1987 | A |
4646538 | Blackshaw et al. | Mar 1987 | A |
4685307 | Jones | Aug 1987 | A |
4693089 | Bourne et al. | Sep 1987 | A |
4698978 | Jones | Oct 1987 | A |
4727727 | Reedy | Mar 1988 | A |
4766734 | Dudley | Aug 1988 | A |
4776180 | Patton et al. | Oct 1988 | A |
4796437 | James | Jan 1989 | A |
4798059 | Morita | Jan 1989 | A |
4798240 | Gerstmann et al. | Jan 1989 | A |
4799363 | Nakamura | Jan 1989 | A |
4835976 | Torrence | Jun 1989 | A |
4856578 | Mccahill | Aug 1989 | A |
4893476 | Bos et al. | Jan 1990 | A |
4909041 | Jones | Mar 1990 | A |
4909312 | Biedenbach et al. | Mar 1990 | A |
4920757 | Gazes et al. | May 1990 | A |
4924681 | De Vit et al. | May 1990 | A |
4938032 | Mudford | Jul 1990 | A |
5038580 | Hart | Aug 1991 | A |
5044425 | Tatsumi et al. | Sep 1991 | A |
5081848 | Rawlings et al. | Jan 1992 | A |
5088296 | Hamaoka | Feb 1992 | A |
5099651 | Fischer | Mar 1992 | A |
5105629 | Parris et al. | Apr 1992 | A |
5136855 | Lenarduzzi | Aug 1992 | A |
5172564 | Reedy | Dec 1992 | A |
5187944 | Jarosch | Feb 1993 | A |
5224357 | Galiyano et al. | Jul 1993 | A |
5239838 | Tressler | Aug 1993 | A |
5269153 | Cawley | Dec 1993 | A |
5305822 | Kogetsu et al. | Apr 1994 | A |
5309732 | Sami | May 1994 | A |
5323844 | Sumitani et al. | Jun 1994 | A |
5339890 | Rawlings | Aug 1994 | A |
5355688 | Rafalovich et al. | Oct 1994 | A |
5372016 | Rawlings | Dec 1994 | A |
5438846 | Datta | Aug 1995 | A |
5461876 | Dressler | Oct 1995 | A |
5463619 | Van et al. | Oct 1995 | A |
5465588 | Mccahill et al. | Nov 1995 | A |
5477914 | Rawlings | Dec 1995 | A |
5497629 | Rafalovich et al. | Mar 1996 | A |
5507337 | Rafalovich et al. | Apr 1996 | A |
5533355 | Rawlings | Jul 1996 | A |
5564282 | Kaye | Oct 1996 | A |
5613372 | Beal et al. | Mar 1997 | A |
5619864 | Reedy | Apr 1997 | A |
5622057 | Bussjager et al. | Apr 1997 | A |
5628200 | Pendergrass | May 1997 | A |
5651265 | Grenier | Jul 1997 | A |
5669224 | Lenarduzzi | Sep 1997 | A |
5689966 | Zess et al. | Nov 1997 | A |
5706888 | Ambs et al. | Jan 1998 | A |
5729985 | Yoshihara et al. | Mar 1998 | A |
5758514 | Genung et al. | Jun 1998 | A |
5802864 | Yarbrough et al. | Sep 1998 | A |
5927088 | Shaw | Jul 1999 | A |
5937665 | Kiessel et al. | Aug 1999 | A |
5953926 | Dressler et al. | Sep 1999 | A |
5983660 | Kiessel et al. | Nov 1999 | A |
6000154 | Berard et al. | Dec 1999 | A |
6016629 | Sylvester et al. | Jan 2000 | A |
6032472 | Heinrichs et al. | Mar 2000 | A |
6070423 | Hebert | Jun 2000 | A |
6082125 | Savtchenko | Jul 2000 | A |
6123147 | Pittman | Sep 2000 | A |
6149066 | Perry et al. | Nov 2000 | A |
6167715 | Hebert | Jan 2001 | B1 |
6212892 | Rafalovich | Apr 2001 | B1 |
6227003 | Smoiinsky | May 2001 | B1 |
6253564 | Yarbrough et al. | Jul 2001 | B1 |
6347527 | Bailey et al. | Feb 2002 | B1 |
6385983 | Sakki et al. | May 2002 | B1 |
6418745 | Ratliff | Jul 2002 | B1 |
6434960 | Rousseau | Aug 2002 | B1 |
6474087 | Lifson | Nov 2002 | B1 |
6536221 | James | Mar 2003 | B2 |
6615602 | Wilkinson | Sep 2003 | B2 |
6644047 | Taira et al. | Nov 2003 | B2 |
6655164 | Rogstam | Dec 2003 | B2 |
6662864 | Burk et al. | Dec 2003 | B2 |
6668572 | Seo et al. | Dec 2003 | B1 |
6694750 | Lifson et al. | Feb 2004 | B1 |
6729151 | Thompson | May 2004 | B1 |
6751972 | Jungwirth | Jun 2004 | B1 |
6804975 | Park | Oct 2004 | B2 |
6817205 | Lifson et al. | Nov 2004 | B1 |
6826921 | Uselton | Dec 2004 | B1 |
6857285 | Hebert | Feb 2005 | B2 |
6892553 | Lifson et al. | May 2005 | B1 |
6915656 | Ratliff | Jul 2005 | B2 |
6931879 | Wiggs | Aug 2005 | B1 |
6938438 | Lifson et al. | Sep 2005 | B2 |
6941770 | Taras et al. | Sep 2005 | B1 |
7000423 | Lifson et al. | Feb 2006 | B2 |
7028492 | Taras et al. | Apr 2006 | B2 |
7059151 | Taras et al. | Jun 2006 | B2 |
7114349 | Lifson et al. | Oct 2006 | B2 |
7150160 | Herbert | Dec 2006 | B2 |
7155922 | Harmon et al. | Jan 2007 | B2 |
7185505 | Kamimura | Mar 2007 | B2 |
RE39597 | Rousseau | May 2007 | E |
7210303 | Zhang et al. | May 2007 | B2 |
7228696 | Ambs et al. | Jun 2007 | B2 |
7228707 | Lifson et al. | Jun 2007 | B2 |
7234311 | Lifson et al. | Jun 2007 | B2 |
7254955 | Otake et al. | Aug 2007 | B2 |
7263848 | Bhatti | Sep 2007 | B2 |
7272948 | Taras et al. | Sep 2007 | B2 |
7275384 | Taras et al. | Oct 2007 | B2 |
7275385 | Abel et al. | Oct 2007 | B2 |
7290399 | Taras et al. | Nov 2007 | B2 |
7325414 | Taras et al. | Feb 2008 | B2 |
7454919 | Ookoshi et al. | Nov 2008 | B2 |
7484374 | Pham et al. | Feb 2009 | B2 |
7617697 | McCaughan | Nov 2009 | B2 |
7654104 | Groll et al. | Feb 2010 | B2 |
7716943 | Seefeldt | May 2010 | B2 |
7752855 | Matsuoka et al. | Jul 2010 | B2 |
7770405 | Dillon | Aug 2010 | B1 |
7823404 | Hanson | Nov 2010 | B2 |
7845190 | Pearson | Dec 2010 | B2 |
7854137 | Lifson et al. | Dec 2010 | B2 |
7856834 | Haley | Dec 2010 | B2 |
7878010 | Nishimura et al. | Feb 2011 | B2 |
7913501 | Ellis et al. | Mar 2011 | B2 |
7937960 | Matsui | May 2011 | B2 |
7946121 | Yamaguchi et al. | May 2011 | B2 |
7954333 | Yoshimi | Jun 2011 | B2 |
7958737 | Lifson et al. | Jun 2011 | B2 |
7975495 | Voorhis et al. | Jul 2011 | B2 |
7975506 | James et al. | Jul 2011 | B2 |
7980086 | Kotani et al. | Jul 2011 | B2 |
7980087 | Anderson et al. | Jul 2011 | B2 |
7997092 | Lifson et al. | Aug 2011 | B2 |
7997093 | Kasahara | Aug 2011 | B2 |
8033123 | Kasahara et al. | Oct 2011 | B2 |
8037713 | Haley et al. | Oct 2011 | B2 |
8069682 | Yoshimi et al. | Dec 2011 | B2 |
8074459 | Murakami et al. | Dec 2011 | B2 |
8079228 | Lifson et al. | Dec 2011 | B2 |
8079229 | Lifson et al. | Dec 2011 | B2 |
8082751 | Wiggs | Dec 2011 | B2 |
8136364 | Lifson et al. | Mar 2012 | B2 |
8156757 | Doty et al. | Apr 2012 | B2 |
8191376 | Fox et al. | Jun 2012 | B2 |
8215121 | Yoshimi et al. | Jul 2012 | B2 |
8220531 | Murakami et al. | Jul 2012 | B2 |
8286438 | McCahill | Oct 2012 | B2 |
8381538 | Lifson et al. | Feb 2013 | B2 |
8397522 | Springer et al. | Mar 2013 | B2 |
8402779 | Nishimura et al. | Mar 2013 | B2 |
8418482 | Bush et al. | Apr 2013 | B2 |
8418486 | Taras et al. | Apr 2013 | B2 |
8424326 | Mitra et al. | Apr 2013 | B2 |
8459052 | Bush et al. | Jun 2013 | B2 |
8528359 | Lifson et al. | Sep 2013 | B2 |
8555703 | Yonemori et al. | Oct 2013 | B2 |
8561425 | Mitra et al. | Oct 2013 | B2 |
8650893 | Hanson | Feb 2014 | B2 |
8695404 | Kadle et al. | Apr 2014 | B2 |
8701432 | Olson | Apr 2014 | B1 |
8726682 | Olson | May 2014 | B1 |
8733429 | Harrison et al. | May 2014 | B2 |
8756943 | Chen et al. | Jun 2014 | B2 |
8769982 | Ignatiev et al. | Jul 2014 | B2 |
8910419 | Oberst | Dec 2014 | B1 |
8919139 | Yamada et al. | Dec 2014 | B2 |
8959950 | Doty et al. | Feb 2015 | B2 |
8984903 | Itoh et al. | Mar 2015 | B2 |
9052125 | Dostal | Jun 2015 | B1 |
9297565 | Hung | Mar 2016 | B2 |
9303908 | Kasahara | Apr 2016 | B2 |
9383026 | Eggleston | Jul 2016 | B2 |
9459032 | Nishimura et al. | Oct 2016 | B2 |
9551514 | Tartakovsky | Jan 2017 | B2 |
9562700 | Watanabe | Feb 2017 | B2 |
9599377 | Kato | Mar 2017 | B2 |
9625195 | Hiraki et al. | Apr 2017 | B2 |
9791195 | Okada et al. | Oct 2017 | B2 |
9797611 | Gault | Oct 2017 | B2 |
9909785 | Kato | Mar 2018 | B2 |
9909792 | Oya | Mar 2018 | B2 |
9920960 | Gerber et al. | Mar 2018 | B2 |
10072856 | Akin et al. | Sep 2018 | B1 |
10118462 | Kohigashi et al. | Nov 2018 | B2 |
10119738 | Hammond et al. | Nov 2018 | B2 |
10126012 | Ikawa et al. | Nov 2018 | B2 |
10132511 | Tartakovsky | Nov 2018 | B2 |
10151663 | Scancarello | Dec 2018 | B2 |
10234164 | Takeuchi et al. | Mar 2019 | B2 |
10345004 | Hern et al. | Jul 2019 | B1 |
10408484 | Honda et al. | Sep 2019 | B2 |
10465961 | Kujak | Nov 2019 | B2 |
10480807 | Goel et al. | Nov 2019 | B2 |
10488065 | Chen et al. | Nov 2019 | B2 |
10488072 | Yajima et al. | Nov 2019 | B2 |
10508847 | Yajima et al. | Dec 2019 | B2 |
10514176 | Weinert | Dec 2019 | B2 |
10527310 | Nagaoka et al. | Jan 2020 | B2 |
10670282 | Yamada et al. | Jun 2020 | B2 |
10677679 | Gupte et al. | Jun 2020 | B2 |
10684052 | Walser et al. | Jun 2020 | B2 |
10731884 | Blanton | Aug 2020 | B2 |
10753631 | Ikawa et al. | Aug 2020 | B2 |
10753661 | Hammond et al. | Aug 2020 | B2 |
10767882 | Kowald et al. | Sep 2020 | B2 |
10816232 | Crawford et al. | Oct 2020 | B2 |
10866002 | Taras et al. | Dec 2020 | B2 |
10866004 | Shiohama et al. | Dec 2020 | B2 |
10871314 | Taras et al. | Dec 2020 | B2 |
10914482 | Yamamoto et al. | Feb 2021 | B2 |
10928092 | Yajima et al. | Feb 2021 | B2 |
10935260 | Taras et al. | Mar 2021 | B2 |
10935454 | Kester | Mar 2021 | B2 |
10941953 | Goel et al. | Mar 2021 | B2 |
10996131 | Mcquade et al. | May 2021 | B2 |
11015828 | Sakae et al. | May 2021 | B2 |
11015852 | Sakae et al. | May 2021 | B2 |
11022354 | Yamada et al. | Jun 2021 | B2 |
11041647 | Weinert | Jun 2021 | B2 |
11041666 | Sakae et al. | Jun 2021 | B2 |
11060746 | Maddox et al. | Jul 2021 | B2 |
11060775 | Delgoshaei | Jul 2021 | B2 |
11079149 | Papas et al. | Aug 2021 | B2 |
11092566 | Chen et al. | Aug 2021 | B2 |
11098915 | Crawford | Aug 2021 | B2 |
11098937 | Uehara et al. | Aug 2021 | B2 |
11125457 | Alfano et al. | Sep 2021 | B1 |
11131470 | Minamida et al. | Sep 2021 | B2 |
11231197 | Mcquade et al. | Jan 2022 | B2 |
11248816 | Ikawa et al. | Feb 2022 | B2 |
11268718 | Minamida et al. | Mar 2022 | B2 |
11274866 | Yamada et al. | Mar 2022 | B2 |
11274871 | Sakae et al. | Mar 2022 | B2 |
11280523 | Sakae et al. | Mar 2022 | B2 |
11287153 | Delgoshaei | Mar 2022 | B2 |
11293674 | Yamada et al. | Apr 2022 | B2 |
11326798 | Green et al. | May 2022 | B2 |
11365897 | Blanton | Jun 2022 | B2 |
11408624 | Hovardas et al. | Aug 2022 | B2 |
11415345 | Yajima | Aug 2022 | B2 |
11428435 | Eskew et al. | Aug 2022 | B2 |
11441803 | Goel et al. | Sep 2022 | B2 |
11629866 | Blanton et al. | Apr 2023 | B2 |
11761666 | Atchison et al. | Sep 2023 | B2 |
11933523 | Snider et al. | Mar 2024 | B2 |
11965672 | Locke et al. | Apr 2024 | B2 |
20020078705 | Schlosser et al. | Jun 2002 | A1 |
20030061822 | Rafalovich | Apr 2003 | A1 |
20030221436 | Xu | Dec 2003 | A1 |
20030221445 | Smolinsky | Dec 2003 | A1 |
20040140082 | Hua | Jul 2004 | A1 |
20050125083 | Kiko | Jun 2005 | A1 |
20060010908 | Taras et al. | Jan 2006 | A1 |
20060218949 | Ellis et al. | Oct 2006 | A1 |
20060225445 | Lifson et al. | Oct 2006 | A1 |
20070017243 | Kidwell et al. | Jan 2007 | A1 |
20070074536 | Bai | Apr 2007 | A1 |
20070146229 | Lin | Jun 2007 | A1 |
20070251256 | Pham et al. | Nov 2007 | A1 |
20070289319 | Kim et al. | Dec 2007 | A1 |
20070295477 | Mueller et al. | Dec 2007 | A1 |
20080016895 | Kim et al. | Jan 2008 | A1 |
20080041072 | Seefeldt | Feb 2008 | A1 |
20080173034 | Shaw | Jul 2008 | A1 |
20080196418 | Lifson et al. | Aug 2008 | A1 |
20080197206 | Murakami et al. | Aug 2008 | A1 |
20080209930 | Taras et al. | Sep 2008 | A1 |
20080256975 | Lifson et al. | Oct 2008 | A1 |
20080282718 | Beagle | Nov 2008 | A1 |
20080286118 | Gu et al. | Nov 2008 | A1 |
20080289795 | Hardin et al. | Nov 2008 | A1 |
20080296396 | Corroy et al. | Dec 2008 | A1 |
20080302113 | Yin et al. | Dec 2008 | A1 |
20080302118 | Chen et al. | Dec 2008 | A1 |
20080302129 | Mosemann et al. | Dec 2008 | A1 |
20080307813 | Lifson et al. | Dec 2008 | A1 |
20080309210 | Luisi et al. | Dec 2008 | A1 |
20090000611 | Kaiser | Jan 2009 | A1 |
20090031739 | Kasahara et al. | Feb 2009 | A1 |
20090044550 | Nishimura et al. | Feb 2009 | A1 |
20090095000 | Yoshimi et al. | Apr 2009 | A1 |
20090100849 | Nishimura et al. | Apr 2009 | A1 |
20090107656 | Marois | Apr 2009 | A1 |
20090208331 | Haley et al. | Aug 2009 | A1 |
20090294097 | Rini et al. | Dec 2009 | A1 |
20090314014 | Ericsson | Dec 2009 | A1 |
20090314017 | Nishimura et al. | Dec 2009 | A1 |
20100005821 | McCahill | Jan 2010 | A1 |
20100005831 | Vaisman et al. | Jan 2010 | A1 |
20100024470 | Lifson et al. | Feb 2010 | A1 |
20100038052 | Johnson et al. | Feb 2010 | A1 |
20100058781 | Lifson et al. | Mar 2010 | A1 |
20100064710 | Slaughter | Mar 2010 | A1 |
20100064722 | Taras | Mar 2010 | A1 |
20100077788 | Lewis | Apr 2010 | A1 |
20100114384 | Maxwell | May 2010 | A1 |
20100132399 | Mitra et al. | Jun 2010 | A1 |
20100199715 | Lifson et al. | Aug 2010 | A1 |
20100251750 | Lifson et al. | Oct 2010 | A1 |
20100281894 | Huff | Nov 2010 | A1 |
20100287969 | Ueda et al. | Nov 2010 | A1 |
20100326100 | Taras et al. | Dec 2010 | A1 |
20110023515 | Kopko et al. | Feb 2011 | A1 |
20110036119 | Fujimoto et al. | Feb 2011 | A1 |
20110041523 | Taras et al. | Feb 2011 | A1 |
20110061413 | Setoguchi | Mar 2011 | A1 |
20110079032 | Taras et al. | Apr 2011 | A1 |
20110088426 | Lochtefeid | Apr 2011 | A1 |
20110094248 | Taras et al. | Apr 2011 | A1 |
20110094259 | Lifson et al. | Apr 2011 | A1 |
20110107780 | Yamaguchi et al. | May 2011 | A1 |
20110132007 | Weyna et al. | Jun 2011 | A1 |
20110174014 | Scarcelia et al. | Jul 2011 | A1 |
20110192176 | Kim et al. | Aug 2011 | A1 |
20110203299 | Jing et al. | Aug 2011 | A1 |
20110209490 | Mijanovic et al. | Sep 2011 | A1 |
20110259025 | Noh | Oct 2011 | A1 |
20110289950 | Kim et al. | Dec 2011 | A1 |
20110289952 | Kim et al. | Dec 2011 | A1 |
20120011866 | Scarcelia et al. | Jan 2012 | A1 |
20120067965 | Rajasekaran et al. | Mar 2012 | A1 |
20120103005 | Kopko et al. | May 2012 | A1 |
20120139491 | Eberhard et al. | Jun 2012 | A1 |
20120198867 | Ng et al. | Aug 2012 | A1 |
20120205077 | Zinger et al. | Aug 2012 | A1 |
20120247134 | Gurin | Oct 2012 | A1 |
20120291460 | Aoyagi | Nov 2012 | A1 |
20130014451 | Russell et al. | Jan 2013 | A1 |
20130031934 | Huff et al. | Feb 2013 | A1 |
20130092329 | Eastland | Apr 2013 | A1 |
20130098085 | Judge et al. | Apr 2013 | A1 |
20130104574 | Dempsey et al. | May 2013 | A1 |
20130160985 | Chen | Jun 2013 | A1 |
20130180266 | Bois | Jul 2013 | A1 |
20130186116 | Sami | Jul 2013 | A1 |
20130269378 | Wong | Oct 2013 | A1 |
20130305756 | Gomes et al. | Nov 2013 | A1 |
20140013782 | Kopko et al. | Jan 2014 | A1 |
20140013788 | Kopko et al. | Jan 2014 | A1 |
20140033753 | Lu et al. | Feb 2014 | A1 |
20140033755 | Wong | Feb 2014 | A1 |
20140053585 | Huff | Feb 2014 | A1 |
20140060101 | Styles et al. | Mar 2014 | A1 |
20140123689 | Ellis et al. | May 2014 | A1 |
20140245770 | Chen et al. | Sep 2014 | A1 |
20140260392 | Hawkins et al. | Sep 2014 | A1 |
20150052937 | Hung | Feb 2015 | A1 |
20150059373 | Maielio et al. | Mar 2015 | A1 |
20150068740 | Broder | Mar 2015 | A1 |
20150204586 | Burg et al. | Jul 2015 | A1 |
20150252653 | Shelton | Sep 2015 | A1 |
20150285539 | Kopko | Oct 2015 | A1 |
20150330689 | Kato et al. | Nov 2015 | A1 |
20150338139 | Xu et al. | Nov 2015 | A1 |
20160076950 | Jacquet | Mar 2016 | A1 |
20160238276 | Andrew et al. | Aug 2016 | A1 |
20160265819 | Durrani et al. | Sep 2016 | A1 |
20170010029 | Reytblat et al. | Jan 2017 | A9 |
20170227250 | Karamanos | Aug 2017 | A1 |
20170336092 | Ikawa et al. | Nov 2017 | A1 |
20170370622 | Shin et al. | Dec 2017 | A1 |
20180010829 | Taras et al. | Jan 2018 | A1 |
20180128506 | Taras et al. | May 2018 | A1 |
20180313555 | Henderson | Nov 2018 | A1 |
20180328600 | Swanson | Nov 2018 | A1 |
20180334794 | Janabi | Nov 2018 | A1 |
20190032981 | Hammond et al. | Jan 2019 | A1 |
20190170600 | Tice et al. | Jun 2019 | A1 |
20190170603 | Gupte et al. | Jun 2019 | A1 |
20190178509 | Taras et al. | Jun 2019 | A1 |
20190346158 | Kamada | Nov 2019 | A1 |
20190351731 | Jeong | Nov 2019 | A1 |
20190353361 | Attari | Nov 2019 | A1 |
20200041187 | Huckaby et al. | Feb 2020 | A1 |
20200072510 | Brown | Mar 2020 | A1 |
20200263891 | Noor et al. | Aug 2020 | A1 |
20200355411 | Inoue et al. | Nov 2020 | A1 |
20200378667 | Hammond et al. | Dec 2020 | A1 |
20210018234 | Lingrey et al. | Jan 2021 | A1 |
20210041115 | Yoshioka et al. | Feb 2021 | A1 |
20210071920 | Yamada et al. | Mar 2021 | A1 |
20210095872 | Taras et al. | Apr 2021 | A1 |
20210131696 | She et al. | May 2021 | A1 |
20210131706 | Yamada et al. | May 2021 | A1 |
20210131709 | Taras et al. | May 2021 | A1 |
20210180807 | Taras et al. | Jun 2021 | A1 |
20210207831 | Lord et al. | Jul 2021 | A1 |
20210231330 | Stephens et al. | Jul 2021 | A1 |
20210270501 | Brown et al. | Sep 2021 | A1 |
20210293418 | Fuse et al. | Sep 2021 | A1 |
20210293430 | Yamada | Sep 2021 | A1 |
20210293446 | Fard | Sep 2021 | A1 |
20210302051 | Yamada et al. | Sep 2021 | A1 |
20210318012 | Yamada et al. | Oct 2021 | A1 |
20210325081 | Kagawa et al. | Oct 2021 | A1 |
20210341170 | Hikawa et al. | Nov 2021 | A1 |
20210348820 | Kobayashi et al. | Nov 2021 | A1 |
20210356154 | Kobayashi et al. | Nov 2021 | A1 |
20220090833 | Yajima | Mar 2022 | A1 |
20220099346 | Alfano et al. | Mar 2022 | A1 |
20220128277 | Fukuyama et al. | Apr 2022 | A1 |
20220186989 | Yamaguchi et al. | Jun 2022 | A1 |
20220243939 | Notaro et al. | Aug 2022 | A1 |
20220243940 | Notaro et al. | Aug 2022 | A1 |
20220243952 | Kojima | Aug 2022 | A1 |
20220247846 | Lim | Aug 2022 | A1 |
20220268492 | Yajima | Aug 2022 | A1 |
20220348052 | Fox et al. | Nov 2022 | A1 |
20220380648 | Kumakura et al. | Dec 2022 | A1 |
20230020557 | Kaji et al. | Jan 2023 | A1 |
20230052745 | Kitagawa et al. | Feb 2023 | A1 |
20230072254 | Lamont et al. | Mar 2023 | A1 |
20230094980 | Birnkrant et al. | Mar 2023 | A1 |
20230097829 | Ohkubo et al. | Mar 2023 | A1 |
20230097844 | Birnkrant | Mar 2023 | A1 |
20230106462 | Hovardas et al. | Apr 2023 | A1 |
20230160587 | Delgoshaei et al. | May 2023 | A1 |
20230184618 | Gupte et al. | Jun 2023 | A1 |
20230194137 | Fan et al. | Jun 2023 | A1 |
20230205237 | Karamanos et al. | Jun 2023 | A1 |
20230213252 | Mcquade | Jul 2023 | A1 |
20230213254 | Ma | Jul 2023 | A1 |
20230221025 | Nakano et al. | Jul 2023 | A1 |
20230221026 | Blanton | Jul 2023 | A1 |
20230235907 | Dewald et al. | Jul 2023 | A1 |
20230243534 | Song et al. | Aug 2023 | A1 |
20230243539 | Buda | Aug 2023 | A1 |
20230250981 | Notaro et al. | Aug 2023 | A1 |
20230266026 | Notaro et al. | Aug 2023 | A1 |
20240003584 | Willhite et al. | Jan 2024 | A1 |
Number | Date | Country |
---|---|---|
2013200092 | Apr 2013 | AU |
1178268 | Nov 1984 | CA |
1987397 | Jun 2007 | CN |
201944952 | Aug 2011 | CN |
102353126 | Feb 2012 | CN |
203231582 | Oct 2013 | CN |
103471275 | Dec 2013 | CN |
203396155 | Jan 2014 | CN |
203432025 | Feb 2014 | CN |
115435444 | Dec 2022 | CN |
115468229 | Dec 2022 | CN |
115493250 | Dec 2022 | CN |
115523604 | Dec 2022 | CN |
115638523 | Jan 2023 | CN |
115711454 | Feb 2023 | CN |
218511135 | Feb 2023 | CN |
115751508 | Mar 2023 | CN |
115751603 | Mar 2023 | CN |
115854484 | Mar 2023 | CN |
115854488 | Mar 2023 | CN |
218672483 | Mar 2023 | CN |
115930357 | Apr 2023 | CN |
115978709 | Apr 2023 | CN |
115978710 | Apr 2023 | CN |
116007066 | Apr 2023 | CN |
116025999 | Apr 2023 | CN |
218915295 | Apr 2023 | CN |
116085938 | May 2023 | CN |
116085939 | May 2023 | CN |
116123663 | May 2023 | CN |
116221902 | Jun 2023 | CN |
116241979 | Jun 2023 | CN |
116242010 | Jun 2023 | CN |
116294062 | Jun 2023 | CN |
116294111 | Jun 2023 | CN |
116336607 | Jun 2023 | CN |
219415010 | Jul 2023 | CN |
116538638 | Aug 2023 | CN |
116558042 | Aug 2023 | CN |
116608539 | Aug 2023 | CN |
219693510 | Sep 2023 | CN |
102007050446 | Apr 2009 | DE |
202022106612 | Mar 2023 | DE |
134015 | Mar 1985 | EP |
1736720 | Dec 2006 | EP |
1983275 | Oct 2008 | EP |
2108897 | Jun 2017 | EP |
3358279 | Jun 2020 | EP |
3447403 | Jun 2021 | EP |
4036486 | Aug 2022 | EP |
4180727 | May 2023 | EP |
4194769 | Jun 2023 | EP |
2946857 | Jul 2023 | ES |
201917005053 | Apr 2019 | IN |
201917012216 | Jul 2019 | IN |
201917018373 | Jul 2019 | IN |
202117017393 | Jan 2022 | IN |
202117017768 | Jan 2022 | IN |
202117018393 | Jan 2022 | IN |
202118001637 | Jan 2022 | IN |
2000046417 | Feb 2000 | JP |
2000274786 | Oct 2000 | JP |
2000314563 | Nov 2000 | JP |
2001248931 | Sep 2001 | JP |
3610812 | Jan 2005 | JP |
3744330 | Feb 2006 | JP |
2010101515 | May 2010 | JP |
2010101606 | May 2010 | JP |
2010133601 | Jun 2010 | JP |
2010230181 | Oct 2010 | JP |
2015094574 | May 2015 | JP |
2015175531 | Oct 2015 | JP |
2017075760 | Apr 2017 | JP |
2020051737 | Apr 2020 | JP |
2021103053 | Jul 2021 | JP |
2022039608 | Mar 2022 | JP |
2022176373 | Nov 2022 | JP |
2023025165 | Feb 2023 | JP |
2023060225 | Apr 2023 | JP |
2023076482 | Jun 2023 | JP |
2023116473 | Aug 2023 | JP |
100963221 | Jun 2010 | KR |
20190090972 | Aug 2019 | KR |
102551281 | Jul 2023 | KR |
102551284 | Jul 2023 | KR |
102551286 | Jul 2023 | KR |
102569930 | Aug 2023 | KR |
9600370 | Jan 1996 | WO |
200190663 | Nov 2001 | WO |
2006033782 | Mar 2006 | WO |
2007007576 | Jan 2007 | WO |
2008045086 | Apr 2008 | WO |
2008048252 | Apr 2008 | WO |
2010005918 | Jan 2010 | WO |
2010004716 | Jan 2010 | WO |
2010054498 | May 2010 | WO |
2010104709 | Sep 2010 | WO |
2013142760 | Sep 2013 | WO |
2014031559 | Feb 2014 | WO |
2014031708 | Feb 2014 | WO |
2016158092 | Oct 2016 | WO |
2016159152 | Oct 2016 | WO |
2017138820 | Aug 2017 | WO |
2018135850 | Jul 2018 | WO |
2020067039 | Apr 2020 | WO |
2020158653 | Aug 2020 | WO |
2020179826 | Sep 2020 | WO |
2021050617 | Mar 2021 | WO |
2021050618 | Mar 2021 | WO |
2021050886 | Mar 2021 | WO |
2021054199 | Mar 2021 | WO |
2021106957 | Jun 2021 | WO |
2021125354 | Jun 2021 | WO |
2021172516 | Sep 2021 | WO |
2021215528 | Oct 2021 | WO |
2021234857 | Nov 2021 | WO |
2022064784 | Mar 2022 | WO |
2022168305 | Aug 2022 | WO |
2023059724 | Apr 2023 | WO |
2023069273 | Apr 2023 | WO |
2023084127 | May 2023 | WO |
2023127329 | Jul 2023 | WO |
2023127345 | Jul 2023 | WO |
2023140145 | Jul 2023 | WO |
2023157565 | Aug 2023 | WO |
2023157568 | Aug 2023 | WO |
2023161248 | Aug 2023 | WO |
2023161249 | Aug 2023 | WO |
Entry |
---|
“134-XS and 134-S Series Compressors ECOnomizer (EA-12-03-E),” 134-XS and 134-S series—Application and Maintenance Manual, Technical report EA1203E, RefComp Refrigerant Compressors, undated but believed to be publicly available at least as early as Mar. 2014 (4 pages). |
“Economized Vapor Injection (EVI) Compressors,” Emerson Climate Technologies Application Engineering Bulletin AE4-1327 R2, Revised Sep. 2006 (9 pages). |
“Enhanced Vapour injection (EVI) for ZH*KVE Scroll Compressors,” Emerson Climate Technologies—Technical Information, C7.4.3/1107-0512/E, May 2012 (10 pages). |
“Heat Pump Mechanics” http://www.geo4va.vt.edu/A3/A3.htm#A3sec3c (Accessed Apr. 20, 2011) (19 pages). |
“Heat pumps in residential and commercial buildings” http://www.heatpumpcentre.org/en/aboutheatpumps/heatpumpsinresidential/Sidor/default.aspx (Accessed Apr. 20, 2011) (2 pages). |
B.P. Rasmussen et al., “Model-Driven System Identification of Transcritical Vapor Compression Systems,” IEEE Transactions on Control Systems Technology, May 2005, pp. 444-451, vol. 13 (8 pages). |
Ekaterina Vi Nogradova, “Economizers in Chiller Systems,” Bachelor's Thesis, Mikkelin Ammattikorkeakoulu, Nov. 2012 (50 pages). |
Haraldsson et al., “Measurement of Performance and Evaluation of a Heat Pump—with Scroll Compressor EVI and Economizer,” Lunds Institute of Technology, 2006 (4 pages). |
Honeywell, VFF1, VFF2, VFF3, VFF6 Resilient Seat Butterfly Valves with Flanged Connections Jan. 2013, p. 1, 1st column, last paragraph. (Year: 2013) (20 pages). |
International Preliminary Report on Patentability issued in International Application No. PCT/US2013/033433 dated Sep. 23, 2014 (7 Pages). |
International Search Report and Written Opinion issued in International Application No. PCT/US2013/033433 dated Aug. 9, 2013 (11 Pages). |
John P. Elson et al., “Scroll Technology: An Overview of Past, Present, and Future Developments,” International Compressor Engineering Conference, 2008, Paper 1871 (9 pages). |
Korean Intellectual Property Office, International Search Report, in International Application No. PCT/US2009/049734 (dated Jan. 20, 2010) (2 pages). |
Korean Intellectual Property Office, International Search Report in International Application No. PCT/US2010/026010 (dated Sep. 28, 2010) (2 pages). |
Lund et al., “Geothermal (Ground-Source Heat Pumps—A World Overview,” GHC Bulletin, Sep. 2004 (edited and updated version of the article from Renewal Energy World, (Jul.-Aug. 2003), vol. 6 No. 4) (10 pages). |
Michael F. Taras, “Reheat Which Concept is Best,” ASHRAE Journal: 35-40 (Dec. 2004) (7 pages). |
Murphy et al., “Air-Source Integrated Heat Pump for Net-Zero-Energy Houses Technology Status Report,” Oak Ridge National Laboratory, ORNL-TM-2007-112 (Jul. 2007) (93 pages). |
Murphy et al., “Ground-Source Integrated Heat Pump for Net-Zero-Energy Houses Technology Status Report,” Oak Ridge National Laboratory, ORNL-TM-2007-177 (Dec. 2007) (78 pages). |
Third Pasty Submission dated Nov. 10, 2014 filed in U.S. Appl. No. 13/848,342 (13 Pages). |
Tolga N. Aynur, “Variable Refrigerant Flow Systems: A Review, Energy and Buildings,” Jan. 2010, pp. 1106-1112, vol. 42 (7 pages). |
Wei Yang et al., “The Design Method of U-Bend Geothermal Heat Exchanger of DX-GCHP in Cooling Model,” IEEE, 2011, pp. 3635-3637 (English Abstract) (3 pages). |
Amir Rafati et al., “Fault Detection and Efficiency Assessment for HVAC Systems Using Non-Intrusive Load Monitoring: A Review,” Energies 15.1 (2022): 341. (16 pages). |
Milan Jain et al., “Beyond control: Enabling smart thermostats for leakage detection,” Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 3.1 (2019): 1-21. (21 pages). |
Shen Tian, et al., “A study on a real-time leak detection method for pressurized liquid refrigerant pipeline based on pressure and flow rate,” Applied Thermal Engineering 95 (2016): 462-470. (17 pages). |
J. Navarro-Esbri et al., “A vapour compression chiller fault detection technique based on adaptative algorithms. Application to on-line refrigerant leakage detection,” International Journal of Refrigeration 29.5 (2006): 716-723. (8 pages). |
Animesh Pal et al., “Environmental Assessment and Characteristics of Next Generation Refrigerants,” Kyushu University Institutional Repository, (2018): 58-66. (10 pages). |
Matthew Wiggins, Ph.D et al., “HVAC Fault Detection,” ASHRAE Journal 54.2 (2012): 78-80. (3 pages). |
Shunsuke Kimura, “Development of a Remote Refrigerant Leakage Detection System for VRFs and Chillers,” Purdue University—International Refrigeration and Air Conditioning Conference Paper 2304, 2022. (10 pages). |
Rohit Chintala et al., “Automated fault detection of residential air-conditioning systems using thermostat drive cycles,” Energy and Buildings 236 (2021): 110691. (28 pages). |
Xudong Wang et al., “A2L Refrigerants Leaks and Ignitions Testing under Whole Room Scale,” Purdue University—International Refrigeration and Air Conditioning Conference Paper 1849, 2018. (11 pages). |
International Preliminary Report on Patentability mailed Sep. 9, 2022 for PCT Application No. PCT/US2021/020017 (7 pages). |
International Search Report and Written Opinion mailed May 19, 2021 for PCT Application No. PCT/US2021/020017 (7 pages). |
Taras, Michael F., “Comparison of Reheat Strategies for Constant Volume Rooftop Units”, Carrier Corporation, Mar. 2008, 10p. |
Baldini, Luca et al. , “Decentralized cooling and dehumidification with a 3 stage LowEx heat exchanger for free reheating”, Elsevier, Energy and Buildings, v76, Jun. 2014, pp. 270-277. |
Bobelin, Damien et al., “Experimental Results of a Newly Developed Very High Temperature Industrial Heat Pump (140 C) Equipped With Scroll Compressors and Working With a New Blend Refrigerant”, Purdue University, Purdue e-Pubs, International Refrigeration and Air Conditioning Conference, School of Mechanical Engineering, 2012, 11p. |
Han, Xing et al., “A novel system of the isothermal dehumidification in a room air-conditioner”, Elsevier, Energy and Buildings v 57, 2013, pp. 14-19. |
Mayhew, Balwin, “Dehumidification using CHW Return Based Reheat”, Decarb Healthcare, A Guidebook for Decarbonizing Healthcare, Sep. 30, 2023, 6p. |
Johnson Controls, “Premier 25 Ton to 80 Ton Rooftop Units R-410A Start-Up and Operation Guide”, Form No. 5881421-JSG-A-02222, issued Feb. 2, 2022, 170p. |
Number | Date | Country | |
---|---|---|---|
20230092215 A1 | Mar 2023 | US |
Number | Date | Country | |
---|---|---|---|
62874310 | Jul 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16897252 | Jun 2020 | US |
Child | 18057076 | US |