1. Field of Invention
The present invention relates to an air conditioning system, and more particularly to an air conditioning system comprising a multiple-effect evaporative condenser which has a substantially improved energy efficiency and water consumption requirement as compared to conventional cooling techniques for an air conditioning system.
2. Description of Related Arts
Referring to
A major disadvantage of this type of conventional air conditioning system is that the distance between the cooling tower 2P and the condenser 1P is typically very long. The condenser 1P is usually placed in the building while the water pipes 3P connecting the cooling tower 2P and the condenser 1P must extend through building structures. This leads to very high manufacturing and maintenance cost of the air conditioning system. Moreover, conventional cooling tower 2P requires high water circulation rate (approximately 0.73 m3/RT·hr), and this results in high power consumption by the relevant water pump 4P.
An objective of the present invention is to provide an air conditioning system comprising a multiple-effect evaporative condenser which is capable of effectively and efficiently rejecting heat from the air conditioning system.
An objective of the present invention is to provide an air conditioning system with a multiple-effect evaporative condenser which is small in size, light in weight, and can be conveniently and easily installed as compared with conventional central air conditioning system.
Another objective of the present invention is to provide a multiple-effect evaporative condenser for an air conditioning system which eliminates the need to have any cooling tower such as that for a typical air conditioning system. In other words, the overall manufacturing and maintenance cost of the air conditioning system can be substantially reduced.
Another objective of the present invention is to provide an air conditioning system comprising a multiple-effect evaporative condenser which utilizes a plurality of highly efficient heat exchanging pipes for providing a relatively large area of heat exchanging surfaces.
Another objective of the present invention is to provide an air conditioning system which does not require installation of any air conditioning components (such as air conditioning main unit, compressors etc.) in a building so as to allow the building to be fully utilized for its intended purpose without needing to designate predetermined space for accommodating air conditioning components or machines.
Another objective of the present invention is to provide an air conditioning system comprising a multiple-effect evaporative condenser which substantially lowers the circulating volume and the rate of cooling water, and the required power for water pumps. Thus, the present invention saves a substantial amount of energy as compared to conventional air conditioning system utilizing water towers.
Another objective of the present invention is to provide a multiple-effect evaporative condenser comprising highly efficient heat exchanging pipes each of which comprises a plurality of inner heat exchanging fins for providing relatively large contact surface area. More specifically, the highly efficient heat exchanging pipe is capable of achieving critical heat flux density for a given material of the highly efficient heat exchanging pipe.
In one aspect of the present invention, it provides an air conditioning system using a predetermined amount of refrigerant, comprising:
an evaporator unit;
a compressor unit connected to the evaporator;
an evaporative cooling system which comprises at least one multiple-effect evaporative condenser connected to the compressor for effectively cooling the refrigerant, the multiple-effect evaporative condenser comprising:
an air inlet side and an air outlet side which is opposite to the air inlet side;
a pumping device adapted for pumping a predetermined amount of cooling water at a predetermined flow rate;
a first cooling unit, comprising:
a first water collection basin for collecting the pumping deviceed from the pumping device;
a plurality of first heat exchanging pipes connected to the condenser and immersed in the first water collection basin; and
a first fill material unit provided underneath the first heat exchanging pipes, wherein the cooling water collected in the first water collection basin is arranged to sequentially flow through exterior surfaces of the first heat exchanging pipes and the first fill material unit;
a second cooling unit, comprising:
a second water collection basin positioned underneath the first cooling unit for collecting the cooling water flowing from the first cooling unit;
a plurality of second heat exchanging pipes immersed in the second water collection basin; and
a second fill material unit provided underneath the second heat exchanging pipes, wherein the cooling water collected in the second water collection basin is arranged to sequentially flow through exterior surfaces of the second heat exchanging pipes and the second fill material unit; and
a bottom water collecting basin positioned underneath the second cooling unit for collecting the cooling water flowing from the second cooling unit,
the cooling water collected in the bottom water collection tank being arranged to be guided to flow back into the first water collection basin of the first cooling unit, the refrigerant from the evaporator being arranged to flow through the first heat exchanging pipes of the first cooling unit and the second heat exchanging pipes of the second cooling unit in such a manner that the refrigerant is arranged to perform highly efficient heat exchanging process with the cooling water for lowering a temperature of the refrigerant, a predetermined amount of air being drawn from the air inlet side for performing heat exchange with the cooling water flowing through the first fill material unit and the second fill material unit for lowering a temperature of the cooling water, the air having absorbed the heat from the cooling water being discharged out of the first fill material unit and the second fill material unit through the air outlet side.
In another aspect of the present invention, it provides an evaporative cooling system comprising at least one multiple-effect evaporative condenser, which comprises:
an air inlet side and an air outlet side which is opposite to the air inlet side;
a pumping device adapted for pumping a predetermined amount of cooling water at a predetermined flow rate;
a first cooling unit, comprising:
a first water collection basin for collecting the cooling water from the pumping device;
a plurality of first heat exchanging pipes connected to the condenser and immersed in the first water collection basin; and
a first fill material unit provided underneath the first heat exchanging pipes, wherein the cooling water collected in the first water collection basin is arranged to sequentially flow through exterior surfaces of the first heat exchanging pipes and the first fill material unit;
a second cooling unit, comprising:
a second water collection basin positioned underneath the first cooling unit for collecting the cooling water flowing from the first cooling unit;
a plurality of second heat exchanging pipes immersed in the second water collection basin; and
a second fill material unit provided underneath the second heat exchanging pipes, wherein the cooling water collected in the second water collection basin is arranged to sequentially flow through exterior surfaces of the second heat exchanging pipes and the second fill material unit; and
a bottom water collecting basin positioned underneath the second cooling unit for collecting the cooling water flowing from the second cooling unit,
the cooling water collected in the bottom water collection tank being arranged to be guided to flow back into the first water collection basin of the first cooling unit, a predetermined amount of working fluid being arranged to flow through the first heat exchanging pipes of the first cooling unit and the second heat exchanging pipes of the second cooling unit in such a manner that the working fluid is arranged to perform highly efficient heat exchanging process with the cooling water for lowering a temperature of the working fluid, a predetermined amount of air being drawn from the air inlet side for performing heat exchange with the cooling water flowing through the first fill material unit and the second fill material unit for lowering a temperature of the cooling water, the air having absorbed the heat from the cooling water being discharged out of the first fill material unit and the second fill material unit through the air outlet side.
The following detailed description of the preferred embodiment is the preferred mode of carrying out the invention. The description is not to be taken in any limiting sense. It is presented for the purpose of illustrating the general principles of the present invention.
Referring to
The air conditioning system further comprises an outer housing 30 for accommodating the evaporator units 2, the two compressor units 1, and the multiple-effect evaporative condensers 5, and a plurality of cooling fans 27 provided on top of the outer housing 30.
As shown in
In this preferred embodiment, the evaporative cooling system 200 comprises two multiple-effect evaporative units 5. However, the number of the multiple-effect evaporator units 5 may also be varied to suit different circumstances in which the present invention is operated.
The multiple-effect evaporative condensers 5 are provided at two longitudinal sides of the outer housing 30 respectively and are connected to the compressor units 1 for cooling a predetermined amount of refrigerant circulating through the air conditioning system. The air conditioning system further comprises a water heater 3 positioned in the outer housing 30 between the two multiple-effect evaporator condensers 5.
Each of the multiple-effect evaporative condensers 5 comprises a pumping device 4 positioned in the outer housing 30, a first cooling unit 6, a second cooling unit 7, and a bottom water collection basin 100. Each of the multiple-effect evaporative condensers 5 also has an air inlet side 51 and an air outlet side 52 which is opposite to the air inlet side 51.
The pumping device 4 is adapted for pumping a predetermined amount of cooling water at a predetermined flow rate. Each of the multiple-effect evaporative condensers 5 may have its own pumping device 4. Alternatively, several (such as two) multiple-effect evaporative condensers 5 may share one single pumping device 4 for circulating the cooling water in each of the multiple-effect evaporative condensers 5, as shown in
As shown in
On the other hand, as shown in
The bottom water collecting basin 300 is positioned underneath the second cooling unit 7 for collecting the cooling water flowing from the second cooling unit 7. The cooling water collected in the bottom water collection basin 100 is arranged to be guided to flow back into the first water collection basin 61 of the first cooling unit 6. On the other hand, the refrigerant from the evaporator unit 2 is arranged to flow through the first heat exchanging pipes 62 of the first cooling unit 6 and the second heat exchanging pipes 72 of the second cooling unit 7 in such a manner that the refrigerant is arranged to perform highly efficient heat exchanging process with the cooling water for lowering a temperature of the refrigerant. A predetermined amount of air is drawn from the air inlet side 51 for performing heat exchange with the cooling water flowing through the first fill material unit 63 and the second fill material unit 73 for lowering a temperature of the cooling water. The air having absorbed the heat from the cooling water is discharged out of the first fill material unit 63 and the second fill material unit 73 through the air outlet side 52.
According to the preferred embodiment of the present invention, each of the multiple-effect evaporative condensers 5 comprises first through fifth cooling units 6, 7, 8, 9, 10. The number of cooling units utilized depend on the circumstances in which the air conditioning system is operated.
Referring back to
Each of the multiple-effect evaporative condensers 5 further comprises a pumping pipe assembly 18 connecting the pumping device 4 and the first cooling unit 6. Specifically, the pumping pipe assembly 18 has one end connected to the pumping device 4 and extends upwardly along the corresponding multiple-effect evaporative condenser 5 for guiding the cooling water to flow into the first water collection basin 61 of the first cooling unit 6. The pumping pipe assembly 18 has a main piping section 181 comprising a main pipe 1811, and a plurality of branch piping sections 182 each of which has at least one pumping pipe 1821 extended from the main pipe 1811 or a corresponding pumping pipe 1821 of the lower branch piping section 181.
As illustrated in
It is important to note that the number of branch piping sections 182 depend on the height and length of the multiple-effect evaporative condenser 5 and can be varied according to different circumstances. The purpose of the pumping pipe assembly 18 is to control the flow rate of the cooling water and to allow the cooling water to be evenly and controllably distributed along a longitudinal length of the first water collection basin 61.
As one may appreciate, each of the branch pipes 1821 is extended from a corresponding branch pipe 1821 of a lower branch piping section 182 or the main pipe 1811, so that the flow rate of the cooling water gradually reduces when the cooling water travels up along the pumping pipe assembly 18.
Referring to
The cooling water is pumped by the pumping device 4 to flow into the first water collection basin 61 of the first cooling unit 6 through the pumping pipe assembly 18. The cooling water is arranged to perform heat exchange with the refrigerant flowing through the first heat exchanging pipes 62 and absorb a certain amount of heat. The cooling water is then allowed to flow into the first fill material unit 63 where it forms thin water film under the influence of gravity. The water film performs heat exchange with the air draft so that heat is extracted from the cooling water to the ambient air. The cooling water is then guided to flow into the second water collection basin 71 of the second cooling unit 7 and performs another cycle of heat exchange with the refrigerant flowing through the second heat exchanging pipes 72 and in the second fill material unit 73. The cooling water is guided to sequentially flow through first through fifth cooling unit 6, 7, 8, 9, 10 to absorb heat from the refrigerant flowing through the various heat exchanging pipes. The absorbed heat is subsequently extracted to ambient air in the various fill material units.
As shown in
The guiding member 301 has a blocking portion 3011, an inclined guiding portion 3012, and a horizontal guiding portion 3013 extended between the blocking portion 3011 and the inclined guiding portion 3012. The blocking portion 3011 is upwardly extended from one end of the horizontal guiding portion 3013, while the inclined guiding portion 3012 is downwardly extended from another end of the horizontal guiding portion 3013. The guiding member 301 is positioned underneath the fifth cooling unit 10 and above the bottom water collection basin 100. Optimally, the horizontal guiding portion 3013 should be positioned above the cooling water level by approximately 3 mm to 6 mm. When cooling water falls from the fifth cooling unit 10 and reaches the horizontal guiding portion 3013, the cooling water is blocked from falling into the bottom water collection basin 100 from the end where the blocking portion 3011 is positioned because the cooling water is blocked by the blocking portion 3011. Thus, the cooling water is only allowed to fall into the bottom water collection basin 100 via the inclined guiding portion 3012 which is inclinedly and downwardly extended from another end of the horizontal guiding portion 3013.
In the preferred embodiment, the inclined guiding portion 3012 is provided at the air inlet side 51 of the multiple-effective evaporative condenser 5 while the blocking portion 3011 is provided at the air outlet side 52 thereof. Thus, the cooling water is guided to fall into the bottom water collection basin 100 at an outer side (i.e. the same side as the air inlet side 51) thereof. As a result, the temperature of the cooling water contained in the bottom water collection basin 100 is uneven. Since the bottom heat exchanging pipes 302 are immersed in the cooling water which falls into the bottom water collection basin 100 at one side only (i.e. outer side), the relatively cool cooling water (from the fifth cooling unit 10) is guided or forced to pass through the bottom heat exchanging pipes 302 and absorb heat from the refrigerant passing therethrough. The temperature of the cooling water increases as it absorbs heat from the refrigerant. From simple physics, one may appreciate that water having a higher temperature tends to move upward in a contained space. Thus, when the cooling water absorbs heat from the bottom heat exchanging pipes 302, it tends to move upward in the bottom water collection basin 100.
Each of the multiple-effect evaporative condensers 5 further comprises a pumping tank 19 communicated with the bottom water collection basin 100. The pumping tank 19 is positioned adjacent to an inner side (i.e. the same side as the air outlet side 52 of the multiple-effect evaporative condenser 5) of the bottom water collection basin 100 such that the relatively warmer cooling water may flow into the pumping tank 19 which also accommodate the pumping device 4. As shown in
It is estimated that the circulation rate of the cooling water in the air conditioning system of the present invention is approximately one-fifth of that of conventional air conditioning system having a cooling tower.
As shown in
It is worth mentioning that the first water channel 613 should be elongated in shape and extend along a longitudinal direction of the first water collection basin 61 so as to allow the cooling water to evenly flow into the first heat exchanging compartment 612 along a longitudinal direction of the first heat exchanging pipes 62. As a result, the cooling water enters the first heat exchanging compartment 612 at an even flow rate along the entire length of the first heat exchanging pipes 62. This structural arrangement also ensures that the first heat exchanging pipes 62 are immersed in the cooling water in its entirety.
The first water collection basin 61 has a first inner sidewall 614, a first outer sidewall 615, a first partitioning wall 616, and a first bottom plate 617, and a first passage plate 618. The first partitioning wall 616 is provided between the first inner sidewall 614 and the first outer sidewall 615, and divides the first water collection basin 61 into the first stabilizing compartment 611 and the first heat exchanging compartment 612, wherein the first water channel 613 is formed on the first partitioning wall 616 along a longitudinal direction thereof. The first stabilizing compartment 611 is formed between the first inner sidewall 614, the first partitioning wall 616, and the first bottom plate 617. The first heat exchanging compartment 612 is formed by the first partitioning wall 616, the first outer sidewall 615, and the first passage plate 618.
The first passage plate 618 has a plurality of first passage holes 6181 for allowing the cooling water contained in the first heat exchanging compartment 612 to fall into the first fill material unit 63. Referring to
Referring to
In this preferred embodiment, the driving member 172 comprises an adjustment screw adjustably connected between the first water collection basin 61 and the control plate 171 for driving the control plate 171 to move in a horizontal and reciprocal manner.
As shown in
The purpose of the flow control mechanism 17 is to control the flow rate of the cooling water flowing from the first cooling unit 6 to the second cooling unit 7, or from an upper cooling unit to a lower cooling unit. The controlled flow rate ensures that the heat exchanging pipes, such as the second heat exchanging pipes 72, can be fully immersed in the cooling water so as to perform the heat exchange process in the most effective and efficient manner.
Referring to
It is worth mentioning that the first water collection basin 61 (or other water collection basins used in the present invention) can be manufactured as an integral body for ensuring maximum structural integrity and minimum manufacturing cost. The material used may be plastic material or stainless steel.
Referring to
The sensor 1743 detects the water level in the first water collection basin 61 and sends a signal to the central control unit 1741, which is pre-programmed to respond to the sensor signal. The central control unit 1741 is then arranged to drive the connecting member 1742 to move horizontally so as to drive the driving member 172 to move in the same direction for controlling the flow rate of the cooling water flowing through the first passage plate 618.
Referring back to
Furthermore, each of the evaporative condensers 5 further comprises at least one filter member 15 supported between the first cooling unit 6 and the second cooling unit 7 for filtering unwanted substances from the cooling water flowing from the first cooling unit 6 to the second cooling unit 7, as shown in
As shown in
The second water collection basin 71 has a second inner sidewall 714, a second outer sidewall 715, and a second passage plate 718. The second heat exchanging compartment 712 is defined within the second inner sidewall 714, the second outer sidewall 715, and the second passage plate 718. The second passage plate 718 has a plurality of second passage holes 7181 for allowing the cooling water contained in the second heat exchanging compartment 712 to fall into the bottom water collection basin 100 or an additional cooling unit, such as the third cooling unit 8, when the multiple-effective evaporative condenser 5 has more than two cooling units. Referring to
In this preferred embodiment, the flow control mechanism 17 comprises a plurality of control plates 171 provided underneath the first passage plate 618 and the second passage plate 718, and a plurality of driving members 172 connected to the control plates 171 respectively for driving the control plates 171 to move in a horizontal and reciprocal manner respectively, as shown in
Referring to
As mentioned above and as shown in
Referring back to
Furthermore, each of the evaporative condensers 5 further comprises a plurality of filter members 15 supported between each two cooling units for filtering unwanted substances from the cooling water flowing from an upper cooling unit to an immediately lower cooling unit.
Referring to
Furthermore, the retention members 622 are spacedly distributed in the flat mid portion 6212 along a transverse direction of the corresponding pipe body 621 so as to form a plurality of first pipe cavities 624. Each of the retention members 622 has a predetermined elasticity for reinforcing the structural integrity of the corresponding first heat exchanging pipe 62. On the other hand, each of the first heat exchanging fins 623 are extended from an inner surface of the first pipe body 621. The first heat exchanging fins 623 are spacedly and evenly distributed along the inner surface 6213 of first pipe body 621 for enhancing heat exchange performance between the refrigerant flowing through the corresponding first heat exchanging pipe 62 and the cooling water.
When the first heat exchanging pipes 62 operate under vacuum condition, or when the first heat exchanging pipes 62 are subject to higher external pressure (meaning negative pressure inside the pipes 62), the first heat exchanging fins 623 may be used to withstand a certain amount of external pressure so as to reinforcing the structural integrity of the first heat exchanging pipes 62. The length of the first heat exchanging fins 623 depend on the actual circumstances in which the first heat exchanging pipes 62 are used.
On the other hand, when the first heat exchanging pipes 62 are subject to positive pressure inside the pipes 62 (such as for a typical air conditioning system), the first retention members 622, having a predetermined elasticity, will exert a pulling force to the first pipe body 621 and therefore may assist in withstanding such positive pressure developed inside the first pipe body 621.
On the other hand, the second heat exchanging pipes 72 are structurally identical to the first heat exchanging pipes 62. So, also referring to
Furthermore, the retention members 722 are spacedly distributed in the flat mid portion 7212 along a transverse direction of the corresponding pipe body 721 so as to form a plurality of second pipe cavities 724. Each of the retention members 722 has a predetermined elasticity for reinforcing the structural integrity of the corresponding second heat exchanging pipe 72. On the other hand, each of the second heat exchanging fins 723 are extended from an inner surface of the second pipe body 721. The second heat exchanging fins 723 are spacedly and evenly distributed along the inner surface 7213 of second pipe body 721 for enhancing heat exchange performance between the refrigerant flowing through the corresponding second heat exchanging pipe 72 and the cooling water.
It is worth mentioning that when the multiple-effect evaporative condenser 5 comprises many cooling units, such as the above-mentioned first through fifth cooling units 6, 7, 8, 9, 10, the third through fifth heat exchanging pipes 82, 92, 102 are structurally identical to the first heat exchanging pipes 62 and the second heat exchanging pipes 72 described above.
According to the preferred embodiment of the present invention, each of the first through fifth heat exchanging pipes 62, 72, 82, 92, 102 are configured from aluminum which can be recycled and reused very conveniently and economically. In order to make the heat exchanging pipes to resist corrosion and unwanted oxidation, each of the heat exchanging pipes 62, 72, 82, 92, 102 has a thin oxidation layer formed on an exterior surface and an interior surface thereof for preventing further corrosion of the relevant heat exchanging pipe. The formation of this thin oxidation layer can be by anode oxidation method.
Moreover, each of the heat exchanging pipes 62, 72, 82, 92, 102 may also have a thin layer of polytetrafluoroethylene formed on an exterior surface thereof to prevent unwanted substances from attaching on the exterior surfaces of the heat exchanging pipes 62, 72, 82, 92, 102.
The use of aluminum for the heat exchanging pipes 62, 72, 82, 92, 102 allows reduction of manufacturing cost by approximately 50% as compared with traditional heat exchanging pipes, which are configured from copper. Possible corrosion problem is effectively resolved by the introduction of the thin oxidation layer on an exterior surface and an interior surface of each of the heat exchanging pipes 62 (72) (82) (92) (102) and the addition of the thin layer of thin layer of polytetrafluoroethylene on the exterior surfaces of the heat exchanging pipes 62 (72) (82) (92) (102).
It can be appreciated that when the use of the multiple-effect evaporative condensers 5, the entire air conditioning system will become extremely compact. The outer housing 30 and all other components can be put on top of a building. Unlike traditional air conditioning systems which utilize some sorts of cooling towers, the present invention does not require users to install any other components or designate any areas in the building for accommodating other components.
Referring to
Referring to
In the arrangement illustrated in
Referring to
According to the preferred embodiment of the present invention, there are altogether four first heat exchanging pipes 62 which are divided into two piping groups. The refrigerant enters the first inlet collection pipe 641 through the first fluid inlet 6411. The first piping group has two first heat exchanging pipes 62 which are connected to the first inlet portion 6414 while the second piping group has another two of the first heat exchanging pipes 62 which are connected to the first outlet portion 6415. Thus, the refrigerant entering the first inlet collection pipe 641 is guided to flow through the two heat exchanging pipes 62 of the first piping group. The refrigerant then leaves the two corresponding first heat exchanging pipes 62 and enters the first guiding pipe 642. The refrigerant flowing in the first guiding pipe 642 is allowed to enter the other two first heat exchanging pipes 62 of the second piping group. The refrigerant is then guided to flow through the two first heat exchanging pipes 62 of the second piping group. The refrigerant then exits the first inlet collection pipe 641 through the first fluid outlet 6412. The refrigerant flowing through the first heat exchanging pipes 62 are arranged to perform heat exchange with the cooling water passing through the first cooling unit 6.
In addition, the first guiding system 64 further comprises a plurality of first heat exchanging fins 623 extended between each two adjacent first heat exchanging pipes 62 for substantially increasing a surface area of heat exchange between the first heat exchanging pipes 62 and the cooling water, and for reinforcing a structural integrity of the first guiding system 64. These first heat exchanging fins 623 may be integrally extended from an outer surface of the first heat exchanging pipes 62, or externally attached or welded on the outer surfaces of the first heat exchanging pipes 62.
The second cooling unit 7 further comprises a second guiding system 74 connected to the second heat exchanging pipes 72 to divide the second heat exchanging pipes 72 into a predetermined number of piping groups, and for guiding the refrigerant to flow through the second heat exchanging pipes 72 in a predetermined order. The structure of the second guiding system 74 is identical to that of the first guiding system 64. Thus, the second guiding system 74 comprises a second inlet collection pipe 741 and a second guiding pipe 742, wherein each of the second heat exchanging pipes 72 has one end connected to second inlet collection pipe 741, and another end connected to the second guiding pipe 742. As shown in
Again, there are altogether four second heat exchanging pipes 72 which are divided into two piping groups. The refrigerant enters the second inlet collection pipe 741 through the second fluid inlet 7411. The first piping group has two of the second heat exchanging pipes 72 which are connected to the second inlet portion 7414 while another piping group has the remaining two of the second heat exchanging pipes 72 which are connected to the second outlet portion 7415. Thus, the refrigerant entering the second inlet collection pipe 741 is guided to flow through the two heat exchanging pipes 72 which are connected to the second inlet portion 7414 (i.e. the first piping group). The refrigerant then leaves the two second heat exchanging pipes 72 and enters the second guiding pipe 742. The refrigerant flowing in the second guiding pipe 742 is allowed to enter the other two second heat exchanging pipes 72 which are connected to the second outlet portion 7415 (i.e. the second piping group). The refrigerant is then guided to flow through the two second heat exchanging pipes 72 which are connected to the second outlet portion 7415 and enters it. The refrigerant then exits the second inlet collection pipe 741 through the second fluid outlet 7412. The refrigerant flowing through the second heat exchanging pipes 72 are arranged to perform heat exchange with the cooling water passing through the second cooling unit 7.
In addition, the second guiding system 74 further comprises a plurality of second heat exchanging fins 723 extended between each two adjacent second heat exchanging pipes 72 for substantially increasing a surface area of heat exchange between the second heat exchanging pipes 72 and the cooling water, and for reinforcing a structural integrity of the second guiding system 74. These second heat exchanging fins 723 may be integrally extended from an outer surface of the second heat exchanging pipes 72, or externally attached or welded on the outer surfaces of the second heat exchanging pipes 72.
It is important to mention at this stage that the above-mentioned configuration of the first guiding system 64, the second guiding system 74, the first heat exchanging pipes 62, the second heat exchanging pipes 72, and the number of piping groups are for illustrative purpose only and can actually be varied according to the circumstances in which the present invention is operated.
Referring to
As shown in
In other words, apart from the two side heat exchanging chambers 613′ (i.e. the leftmost heat exchanging chamber 613′ and the rightmost heat exchanging chamber 613′), each of the remaining heat exchanging chambers 613′ is defined by one top separating panel 6150′ and an adjacent bottom separating panel 6150′, wherein each of the piping groups is received in one of the heat exchanging chambers 613′.
As a result, the cooling water entering the first heat exchanging compartment 612′ via the first water channel 613 is forced or guided to flow through each of the heat exchanging chambers 613′ and the corresponding heat exchanging pipes 62 of the corresponding piping group. It is worth mentioning that a length of the supporting member 614′ is less than that of the heat exchanging compartment 612′ so that the rightmost heat exchanging chamber 613′ is formed between the rightmost bottom separating panel 6150′ and the first outer sidewall 615′. After passing through the last heat exchanging chamber 613′, the cooling water is then guided to flow through the first bottom plate 617′ and the first water distributing panel 610′. The temperature of the cooling water leaving the heat exchanging compartment 612′ is increased to a predetermined amount so as to maximize the heat exchanging efficiency between the cooling water and the ambient air in the first fill material unit 63′.
Note that a space between each two top separating panels 611′ and each two bottom separating panels 6150′ may be varied so that the number of the first heat exchanging pipes 62 that can be accommodated in each heat exchanging chamber 613′ can also be varied.
Referring to
As shown in
In other words, apart from the two side heat exchanging chambers 713′ (i.e. the leftmost heat exchanging chamber 713′ and the rightmost heat exchanging chamber 713′), each of the remaining heat exchanging chambers 713′ is defined by one top separating panel 715′ and an adjacent bottom separating panel 715′, wherein each of the piping groups of the second heat exchanging pipes 72 is received in one of the heat exchanging chambers 713′.
As a result, the cooling water entering the second heat exchanging compartment 712′ via the second water channel 713 is forced or guided to flow through each of the heat exchanging chambers 713′ and the corresponding second heat exchanging pipes 72. It is worth mentioning that a length of the supporting member 7140′ is less than that of the heat exchanging compartment 712′ so that the rightmost heat exchanging chamber 713′ is formed between the rightmost bottom separating panel 7150′ and the second outer sidewall 715′. After passing through the last heat exchanging chamber 713′, the cooling water is then guided to flow through the second bottom plate 717′ and the second water distributing panel 710′. The temperature of the cooling water leaving the heat exchanging compartment 712′ is increased to a predetermined amount so as to maximize the heat exchanging efficiency between the cooling water and the ambient air in the second fill material unit 73′.
Referring to
As shown in
In this alternative mode, there are altogether ten first heat exchanging pipes 62′ which are divided into four piping groups. The first piping group us constituted by three first heat exchanging pipes 62′. The second piping group is constituted by the next three first heat exchanging pipes 62′. The third piping group is constituted by the next two first heat exchanging pipes 62′. The last piping group is constituted by the final two first heat exchanging pipes 62′. The refrigerant enters the first inlet collection pipe 641′ through the first fluid inlet 6411′. Three of the first heat exchanging pipes 62′ (the first piping group) are connected to the first inlet portion 6414′, while five of the first heat exchanging pipes 62 are connected to the intermediate portion 6416′ (the second and the third piping group). The remaining two first heat exchanging pipes 62′ (the fourth piping group) are connected to the first outlet portions 6415′. The refrigerant entering the first inlet collection pipe 641′ is guided to flow through the three heat exchanging pipes 62′ (the first piping group) which are connected to the first inlet portion 6414′. The refrigerant then leaves the three first heat exchanging pipes 62′ and enters the first guiding pipe 642′. The refrigerant flowing in the first guiding pipe 642′ is guided by the divider 6413′ in the first guiding pipe 642′ to enter three subsequent first heat exchanging pipes 62′ (the second piping group) which are connected to the intermediate outlet portion 6415′. The refrigerant re-enters the first inlet collection pipe 641′ and is then guided to flow through the next two first heat exchanging pipes 62′ which are connected to the intermediate portion 6416′ (the third piping group). The refrigerant re-enters the first guiding pipe 642′ and is then guided to flow through the final two of the first heat exchanging pipes 62′ which are connected to the first outlet portion 6415′ (the fourth piping group). The refrigerant then exits the first inlet collection pipe 641′ through the first fluid outlet 6412′. As in the preferred embodiment described above, the refrigerant flowing through the first heat exchanging pipes 62′ are arranged to perform heat exchange with the cooling water passing through the first cooling unit 6.
As shown in
Referring to
As shown in
In this alternative mode, there are altogether ten second heat exchanging pipes 72′ which are divided into four piping groups. The second piping group is constituted by three second heat exchanging pipes 72′. The second piping group is constituted by the next three second heat exchanging pipes 72′. The third piping group is constituted by the next two second heat exchanging pipes 72′. The last piping group is constituted by the final two second heat exchanging pipes 72′. The refrigerant enters the second inlet collection pipe 741′ through the second fluid inlet 7411′. Three of the second heat exchanging pipes 72′ (the first piping group) are connected to the second inlet portion 7414′, while five of the second heat exchanging pipes 72′ are connected to the intermediate portion 7416′ (the second and the third piping group). The remaining two second heat exchanging pipes 72′ (the fourth piping group) are connected to the second outlet portions 7415′. The refrigerant entering the second inlet collection pipe 741′ is guided to flow through the three heat exchanging pipes 72′ (the first piping group) which are connected to the second inlet portion 7414′. The refrigerant then leaves the three second heat exchanging pipes 72′ and enters the second guiding pipe 742′. The refrigerant flowing in the second guiding pipe 742′ is guided by the corresponding divider 7413′ in the second guiding pipe 742′ to enter three subsequent second heat exchanging pipes 72′ (the second piping group) which are connected to the intermediate outlet portion 7415′. The refrigerant re-enters the second inlet collection pipe 741′ and is then guided to flow through the next two second heat exchanging pipes 72′ which are connected to the intermediate portion 7416′ (the third piping group). The refrigerant re-enters the second guiding pipe 742′ and is then guided to flow through the final two of the second heat exchanging pipes 72′ which are connected to the second outlet portion 7415′ (the fourth piping group). The refrigerant then exits the second inlet collection pipe 741′ through the second fluid outlet 7412′. As in the preferred embodiment described above, the refrigerant flowing through the second heat exchanging pipes 72′ are arranged to perform heat exchange with the cooling water passing through the second cooling unit 7.
As shown in
In the alternative mode, for both the first cooling unit 6 and the second cooling unit 7, the number of dividers 6413′, 7413′ may be varied so as to direct the flow of the refrigerant through the first heat exchanging pipes 62′ and the second heat exchanging pipes 72′ in any predetermined manner.
Referring to
Referring to
Specifically, steam or vaporous refrigerant leaves the compressor unit 1 through a compressor outlet 105. The compressor unit 1 is connected to the water heater 3. The refrigerant is guided to flow into the water heater 3 for extracting a predetermined amount of heat to incoming water so that the water in the water heater 3 is heated for being delivered to users of the present invention. The refrigerant then leaves the water heater 3 and enters the evaporative cooling system 200 which is connected to the water heater 3. The refrigerant is cooled by the evaporative cooling system 200 in the manner described above. The refrigerant then leaves the evaporative cooling system 200 and is arranged to flow through the filter devices 400, the expansion valves 500, and enter the evaporator unit 2 through an evaporator inlet 201. The refrigerant in the evaporator unit 2 is arranged to absorb heat from a space in which it is located and then leaves the evaporator unit 2 through an evaporator outlet 202. The refrigerant is then guided to flow back to the compressor unit 1 through a compressor inlet 106.
It is important to mention that in the specific system shown in
The present invention, while illustrated and described in terms of a preferred embodiment and several alternatives, is not limited to the particular description contained in this specification. Additional alternative or equivalent components could also be used to practice the present invention.