The present invention relates to an indoor unit of an air conditioning apparatus, the indoor unit including a refrigerant detection sensor.
In order to stop the operation of an air conditioning apparatus when a refrigerant leaks out of the air conditioning apparatus, the air conditioning apparatus may be equipped with a refrigerant detection sensor. An air conditioning apparatus disclosed in Patent Literature 1 (JP H08-178397 A) includes an indoor unit which is installed on a ceiling of a room to be air-conditioned and a refrigerant detection sensor which is installed on a wall. The refrigerant detection sensor notifies the indoor unit of a detection result by wired communication.
In a case where the refrigerant detection sensor and the indoor unit are separated from each other in this manner, an installation burden is large when the air conditioning apparatus is installed in the room. Thus, the refrigerant detection sensor may be integrated with the indoor unit.
A blow-out port for air is present on the indoor unit. Air itself which enters and leaves the indoor unit and a foreign matter carried by the air hit the refrigerant detection sensor depending on the installed place of the refrigerant detection sensor in the indoor unit. Thus, there is a possibility that the lifetime of the refrigerant detection sensor is shortened due to damage.
Patent Literature 1: JP H08-178397 A
One or more embodiments of the present invention maintain the lifetime of a refrigerant detection sensor in an indoor unit of an air conditioning apparatus.
An indoor unit according to one or more embodiments of the present invention includes a blow-out port through which air is blown out into a space to be air-conditioned, a refrigerant flow path member (refrigerant flow path) through which flammable refrigerant gas flows, and a refrigerant detection sensor configured to detect the refrigerant gas leaking out of the refrigerant flow path member. The refrigerant detection sensor is disposed facing the space to be air-conditioned. The refrigerant detection sensor includes a casing. The casing includes a gas intake port for taking in the refrigerant gas. The refrigerant detection sensor includes an outside-air-flow-area part disposed outside an air flow area through which the air blown out through the blow-out port passes. The outside-air-flow-area part includes the gas intake port.
In this configuration, the gas intake port is disposed outside the air flow area. Thus, air itself or a foreign matter which may damage the refrigerant detection sensor is restrained from entering the inside of the refrigerant detection sensor through the gas intake port, which facilitates maintaining the lifetime of the refrigerant detection sensor.
In an indoor unit according to one or more embodiments of the present invention, the refrigerant detection sensor further includes a sensor element (sensor) configured to detect the refrigerant gas and a filter through which the refrigerant gas passes before arriving at the sensor element. The outside-air-flow-area part includes the filter.
In this configuration, the filter is disposed outside the air flow area. Thus, air itself or a foreign matter is restrained from damaging the filter.
In an indoor unit according to one or more embodiments of the present invention, the outside-air-flow-area part includes the sensor element.
In this configuration, the sensor element is disposed outside the air flow area. Thus, air itself or the like is restrained from damaging the sensor element.
An indoor unit according to one or more embodiments of the present invention further includes a flap disposed on the blow-out port and configured to swing to change a blow-out direction of the air. The air flow area is inside a central angle defining a swing range of the flap.
In this configuration, the outside-air-flow-area part of the refrigerant detection sensor is disposed outside the swing range of the flap. Thus, the action of the flap restrains air or the like from hitting the refrigerant detection sensor.
In an indoor unit according to one or more embodiments of the present invention, the outside-air-flow-area part is disposed adjacent to the blow-out port at a position displaced from the blow-out port in a longitudinal direction of the blow-out port.
In this configuration, the outside-air-flow-area part of the refrigerant detection sensor is disposed adjacent to the blow-out port at the position displaced from the blow-out port in the longitudinal direction of the blow-out port. Thus, the refrigerant detection sensor is disposed off wind blown out through the blow-out port. Therefore, the wind is less likely to hit the refrigerant detection sensor.
In an indoor unit according to one or more embodiments of the present invention, the outside-air-flow-area part is disposed between a plurality of the blow-out ports.
In this configuration, the outside-air-flow-area part of the refrigerant detection sensor is disposed between the plurality of blow-out ports. Thus, the refrigerant detection sensor is disposed off a route of wind blown out through each of the blow-out ports. Therefore, the wind is less likely to hit the refrigerant detection sensor.
An indoor unit according to one or more embodiments of the present invention further includes an inlet port through which the air is drawn in from the space to be air-conditioned. The air drawn in through the inlet port passes through the air flow area.
In this configuration, the air drawn in through the inlet port passes through the air flow area. Thus, the air drawn in through the inlet port is restrained from damaging the refrigerant detection sensor.
In an indoor unit according to one or more embodiments of the present invention, the gas intake port is disposed at a position lower than a lowest one of the inlet port and the blow-out port.
In this configuration, the gas intake port is disposed lower than the openings of the indoor unit through which the refrigerant gas may leak out. Thus, when the refrigerant gas has a specific gravity higher than air, the detection performance is improved.
In an indoor unit according to one or more embodiments of the present invention, the outside-air-flow-area part is disposed between the blow-out port and the inlet port.
In this configuration, the outside-air-flow-area part of the refrigerant detection sensor is disposed between the blow-out port and the inlet port. Thus, the refrigerant detection sensor is disposed off a route of wind blown out through the blow-out port and a route of wind drawn in through the inlet port. Therefore, the wind is less likely to hit the refrigerant detection sensor.
In an indoor unit according to one or more embodiments of the present invention, the outside-air-flow-area part is disposed on an opposite side of the inlet port with respect to the blow-out port.
In this configuration, the outside-air-flow-area part of the refrigerant detection sensor is disposed on the opposite side of the inlet port with respect to the blow-out port. Thus, the refrigerant detection sensor is disposed off a route of wind blown out through the blow-out port and a route of wind drawn in through the inlet port. Therefore, the wind is less likely to hit the refrigerant detection sensor.
In an indoor unit according to one or more embodiments of the present invention, the outside-air-flow-area part is disposed on an opposite side of the blow-out port with respect to the inlet port.
In this configuration, the outside-air-flow-area part of the refrigerant detection sensor is disposed on the opposite side of the blow-out port with respect to the inlet port. Thus, the refrigerant detection sensor is disposed off a route of wind blown out through the blow-out port and a route of wind drawn in through the inlet port. Therefore, the wind is less likely to hit the refrigerant detection sensor.
In an indoor unit according to one or more embodiments of the present invention, the outside-air-flow-area part is disposed between a plurality of the inlet ports.
In this configuration, the outside-air-flow-area part of the refrigerant detection sensor is disposed between the plurality of inlet ports. Thus, the refrigerant detection sensor is disposed off a route of wind drawn in through each of the inlet ports. Therefore, the wind is less likely to hit the refrigerant detection sensor.
An indoor unit according to one or more embodiments of the present invention further includes a housing configured to house the refrigerant flow path member. The outside-air-flow-area part is disposed on an opening on the housing other than the blow-out port and the inlet port.
In this configuration, the outside-air-flow-area part of the refrigerant detection sensor is disposed on the opening on the housing other than the blow-out port and the inlet port. Thus, the refrigerant detection sensor can be disposed off the blow-out port or the inlet port. Therefore, the wind is less likely to hit the refrigerant detection sensor.
An indoor unit according to one or more embodiments of the present invention further includes a decorative panel disposed facing the space to be air-conditioned. The outside-air-flow-area part is disposed on an opening on the decorative panel other than the blow-out port and the inlet port.
In this configuration, the outside-air-flow-area part of the refrigerant detection sensor is disposed on the opening on the decorative panel other than the blow-out port and the inlet port. Thus, the refrigerant detection sensor can be disposed off the blow-out port or the inlet port. Therefore, the wind is less likely to hit the refrigerant detection sensor.
The indoor units according to one or more embodiments of the present invention facilitate maintaining the lifetime of the refrigerant detection sensor.
The indoor unit according to one or more embodiments of the present invention improves the refrigerant detection performance when the refrigerant gas has a specific gravity higher than air.
<Basic Configuration>
(1) Entire Configuration
(2) Detailed Configuration
(2-1) Refrigerant Flow Path Member 20
The refrigerant flow path member 20 of the indoor unit 10 constitutes a refrigerant circuit together with an outdoor unit (not illustrated). A flammable refrigerant may circulate through the refrigerant circuit. For example, the flammable refrigerant may be a mildly flammable refrigerant. The refrigerant flow path member 20 includes a heat exchanger 21 and a refrigerant pipe 22. The heat exchanger 21 exchanges heat between the refrigerant flowing through the refrigerant pipe 22 and air. When the refrigerant flows through the refrigerant flow path member 20, the refrigerant can be in various states such as a gas state, a gas-liquid two-phase state, and a liquid state.
(2-2) Fan 23
The fan 23 draws in air through the inlet port 17, facilitates heat transfer between the air and the refrigerant in the heat exchanger 21, and blows out the air through the blow-out port 18. The fan 23 is controlled by a control circuit 51.
(2-3) Refrigerant Detection Sensor 30
The refrigerant detection sensor 30 is used for detecting refrigerant gas leaking from the refrigerant flow path member 20 into the space 90 to be air-conditioned. In other words, the refrigerant detection sensor 30 does not only detect leaked refrigerant gas accumulated inside the housing 11. In order to detect the leakage of refrigerant gas into the space 90 to be air-conditioned, the housing 11 or the decorative panel 15 may be provided with an opening 16 facing the space 90 to be air-conditioned so that the refrigerant detection sensor 30 can be mounted. The opening 16 for leaked refrigerant detection by the refrigerant detection sensor 30 may be separately provided rather than using the inlet port 17 or the blow-out port 18 as the opening 16.
An output signal of the refrigerant detection sensor 30 is transmitted to a reception circuit 52 by wired communication or wireless communication and then processed by the control circuit 51 which is connected to the reception circuit 52. When wireless communication is performed, a battery 53 for power supply may be connected to the refrigerant detection sensor 30.
(3) Details of Refrigerant Detection Sensor 30
As illustrated in
The sensor unit 40 includes a sensor cover 41, a sensor element 42, and a filter 45. The sensor element 42 is configured to detect refrigerant gas. For example, a resistance value of the sensor element 42 changes according to the concentration of refrigerant gas. The sensor element 42 is mounted on the circuit board 37. The sensor cover 41 guides refrigerant gas so that the refrigerant gas passes through the filter 45 before arriving at the sensor element 42. At least a part of the sensor cover 41 may be constituted of the housing 11 or the decorative panel 15. Alternatively, at least a part of the sensor cover 41 may be constituted of the casing 31.
The outside-air-flow-area part 36 of the refrigerant detection sensor 30 is set to include the gas intake port 32. The outside-air-flow-area part 36 may further include the filter 45 or the sensor element 42. In other words, the gas intake port 32, the filter 45 and/or the sensor element 42 may be disposed on the outside-air-flow-area part 36.
In a case where the filter 45 is disposed on substantially the same plane as the housing 11 or the decorative panel 15, the filter 45 itself serves as the gas intake port 32.
(4) Characteristics
(4-1)
The gas intake port 32 is disposed outside the air flow area 70. Thus, air itself or a foreign matter which may damage the refrigerant detection sensor 30 is restrained from entering the inside of the refrigerant detection sensor 30 through the gas intake port 32, which facilitates maintaining the lifetime of the refrigerant detection sensor 30.
(4-2)
The filter 45 or the sensor element 42 may also be disposed outside the air flow area 70. In this case, air itself or a foreign matter is prevented from damaging the filter 45 or the sensor element 42.
(1) Configuration
For example, a refrigerant detection sensor 30 is disposed at a place S1, a place S2, a place S3, or a place S4. The place S1, the place S2, the place S3, and the place S4 are all located outside the central angle θ. The place S1 is located between two adjacent blow-out ports 18. The place S2 is located between the blow-out port 18 and an inlet port 17. The place S3 is located adjacent to the blow-out port 18 at a position displaced from the blow-out port 18 in the longitudinal direction of the blow-out port 18. The place S4 is located at an opening 16 on the decorative panel 15 other than the blow-out port 18 and the inlet port 17 in a manner similar to the places 51 to S3.
(2) Characteristics
(2-1)
Regarding each of the places S1 to S4, an outside-air-flow-area part 36 of the refrigerant detection sensor 30 is disposed outside the swing range of the flap 19. Thus, the wind or the like is restrained from hitting the refrigerant detection sensor 30 due to the action of the flap 19.
(2-2)
Regarding the place S1, the outside-air-flow-area part 36 of the refrigerant detection sensor 30 is disposed between the plurality of blow-out ports 18. Thus, the refrigerant detection sensor 30 is disposed off a route of wind blown out through each of the blow-out ports 18. Therefore, the wind is less likely to hit the refrigerant detection sensor 30.
(2-3)
Regarding the place S2, the outside-air-flow-area part 36 of the refrigerant detection sensor 30 is disposed between the blow-out port 18 and the inlet port 17. Thus, the refrigerant detection sensor 30 is disposed off a route of wind blown out through the blow-out port 18 and a route of wind drawn in through the inlet port 17. Therefore, the wind is less likely to hit the refrigerant detection sensor 30.
(2-4)
Regarding the place S3, the outside-air-flow-area part 36 of the refrigerant detection sensor 30 is disposed adjacent to the blow-out port 18 at the position displaced from the blow-out port 18 in the longitudinal direction of the blow-out port 18. Thus, the refrigerant detection sensor 30 is disposed off wind blown out through the blow-out port 18. Therefore, the wind is less likely to hit the refrigerant detection sensor 30.
(2-5)
Regarding each of the places S1 to S4, the outside-air-flow-area part 36 of the refrigerant detection sensor 30 is disposed at the opening 16 on the decorative panel 15 other than the blow-out port 18 and the inlet port 17. Thus, the refrigerant detection sensor 30 can be disposed off the blow-out port 18 or the inlet port 17. Therefore, the wind is less likely to hit the refrigerant detection sensor 30.
(2-6)
For example, regarding the place S2, a gas intake port 32 may be disposed lower than both the inlet port 17 and the blow-out port 18 through which the refrigerant gas may leak out. Thus, when the refrigerant gas has a specific gravity higher than air, the detection performance is improved.
(1) Configuration
For example, a refrigerant detection sensor 30 is disposed at a place S5 or a place S6. The place S5 is disposed adjacent to the blow-out port 18 at a position displaced from the blow-out port 18 in the longitudinal direction of the blow-out port 18. The place S6 is located between the blow-out port 18 and the inlet port 17. Each of the places S5 and S6 is located at an opening 16 on the housing 11 other than the blow-out port 18 and the inlet port 17.
(2) Characteristics
(2-1)
Regarding the place S5, an outside-air-flow-area part 36 of the refrigerant detection sensor 30 is located adjacent to the blow-out port 18 at the position displaced from the blow-out port 18 in the longitudinal direction of the blow-out port 18. Thus, the refrigerant detection sensor 30 is disposed off wind blown out through the blow-out port 18. Therefore, the wind is less likely to hit the refrigerant detection sensor 30.
(2-2)
Regarding the place S6, the outside-air-flow-area part 36 of the refrigerant detection sensor 30 is disposed between the blow-out port 18 and the inlet port 17. Thus, the refrigerant detection sensor 30 is disposed off a route of wind blown out through the blow-out port 18 and a route of wind drawn in through the inlet port 17. Therefore, the wind is less likely to hit the refrigerant detection sensor 30.
(2-3)
Regarding each of the places S5 and S6, the outside-air-flow-area part 36 of the refrigerant detection sensor 30 is disposed at the opening 16 on the housing 11 other than the blow-out port 18 and the inlet port 17. Thus, the refrigerant detection sensor 30 can be disposed off the blow-out port 18 or the inlet port 17. Therefore, the wind is less likely to hit the refrigerant detection sensor 30.
(1) Configuration
For example, a refrigerant detection sensor 30 is disposed at a place S7, a place S8, or a place S9. The place S7 is located between the blow-out port 18 and the inlet port 17. The place S8 is located between the two adjacent inlet ports 17. The place S9 is located adjacent to the blow-out port 18 at a position displaced from the blow-out port 18 in the longitudinal direction of the blow-out port 18. Each of the places S7 to S9 is located at an opening 16 on the housing 11 other than the blow-out port 18 and the inlet port 17.
(2) Characteristics
(2-1)
Regarding the place S8, an outside-air-flow-area part 36 of the refrigerant detection sensor 30 is disposed between the plurality of inlet ports 17. Thus, the refrigerant detection sensor 30 is disposed off a route of wind drawn in through each of the inlet ports 17. Therefore, the wind is less likely to hit the refrigerant detection sensor 30.
(2-2)
Regarding the place S7 and the place S9, effects similar to the effects described in the above-described embodiments are achieved.
(1) Configuration
For example, a refrigerant detection sensor 30 is disposed at a place S10, a place S11, or a place S12. Each of the places S10 and S11 is located between a blow-out port 18 and an inlet port 17. The place S12 is located on the opposite side of the inlet port 17 with respect to the blow-out port 18. Each of the places S10 to S12 is located at an opening 16 on a housing 11 other than the blow-out port 18 and the inlet port 17.
(2) Characteristics
(2-1)
Regarding the place S12, an outside-air-flow-area part 36 of the refrigerant detection sensor 30 is disposed on the opposite side of the inlet port 17 with respect to the blow-out port 18. Thus, the refrigerant detection sensor 30 is disposed off a route of wind blown out through the blow-out port 18 and a route of wind drawn in through the inlet port 17. Therefore, the wind is less likely to hit the refrigerant detection sensor 30.
(2-2)
Regarding the place S10 and the place S11, effects similar to the effects described in the above-described embodiments are achieved.
(1) Configuration
For example, a refrigerant detection sensor 30 is disposed at a place S13 or a place S14. The place S13 is located between the blow-out port 18 and the inlet port 17. The place S14 is located on the opposite side of the inlet port 17 with respect to the blow-out port 18. Each of the places S13 and S14 is located at an opening 16 on the housing 11 other than the blow-out port 18 and the inlet port 17.
(2) Characteristics
Regarding the place S13 and the place S14, effects similar to the effects described in the above-described embodiments are achieved.
(1) Configuration
For example, a refrigerant detection sensor 30 is disposed at a place S15, a place S16, or a place S17. The place S15, the place S16, and the place S17 are all located outside the central angle θ. The place S15 is located on the opposite side of the blow-out port 18 with respect to an inlet port 17. The place S18 is located between the blow-out port 18 and the inlet port 17. The place S17 is located on the opposite side of the inlet port 17 with respect to the blow-out port 18. Each of the places S15 to S17 is located at an opening 16 on the housing 11 other than the blow-out port 18 and the inlet port 17.
(2) Characteristics
(2-1)
Regarding the place S15, an outside-air-flow-area part 36 of the refrigerant detection sensor 30 is disposed on the opposite side of the blow-out port 18 with respect to the inlet port 17. Thus, the refrigerant detection sensor 30 is disposed off a route of wind blown out through the blow-out port 18 and a route of wind drawn in through the inlet port 17. Therefore, the wind is less likely to hit the refrigerant detection sensor 30.
(2-2)
Regarding the place S16 and the place S17, effects similar to the effects described in the above-described embodiments are achieved.
(1) Configuration
For example, a refrigerant detection sensor 30 is disposed at a place S18 or a place S19. The place S18 is located on the side face of the duct including the blow-out port 18. The place S19 is located on the duct which is disposed on a ceiling.
(2) Characteristics
(2-1)
Regarding the place S18, an outside-air-flow-area part 36 of the refrigerant detection sensor 30 is disposed on the side face of the duct including the blow-out port 18. Thus, the refrigerant detection sensor 30 can be disposed off the blow-out port 18 or an inlet port 17. Therefore, the wind is less likely to hit the refrigerant detection sensor 30.
(2-2)
Regarding the place S19, the outside-air-flow-area part 36 of the refrigerant detection sensor 30 is disposed on the duct which is disposed on the ceiling. Thus, the refrigerant detection sensor 30 can be disposed off the blow-out port 18 or the inlet port 17. Therefore, the wind is less likely to hit the refrigerant detection sensor 30.
Although the disclosure has been described with respect to only a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that various other embodiments may be devised without departing from the scope of the present invention. Accordingly, the scope of the invention should be limited only by the attached claims.
Number | Date | Country | Kind |
---|---|---|---|
2017-135015 | Jul 2017 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2018/025234 | 7/3/2018 | WO | 00 |