The present invention relates to induction heating equipment and more particularly to a compact air-cooled induction heating device for melting susceptors of relatively low melting points (such as, gold, silver, brass, copper, etc.) wherein, said device is designed to be efficient particularly in terms of the air-cooling thereof.
When it comes to melting metals and alloys, especially on a small scale, induction heating is arguably considered to be the best way to go about due to the induction heating equipment being generally cleaner, compact, and more efficient. A conventional induction heating device comprises a crucible for receiving a susceptor that is to be melted and an induction coil disposed around the susceptor wherein, as the induction coil is powered by a power source, an electromagnetic field is generated by the AC current in the induction coil, which leads to the inducement of eddy currents within the susceptor. This results in the heating up of the susceptor as the direction of the flow of the eddy currents is opposed to that of the AC current in the induction coil.
As it is well known in the art, the induction coil, which is generally made of copper, needs to be either air or water-cooled at regular intervals to ensure the longevity of the induction heating equipment. Although, air-cooled induction heating equipment (over their water-cooled counterparts) has the advantages of being cleaner and more convenient to handle, the primary disadvantage lies with the quality of cooling itself, meaning, water-cooling is more efficient compared to air-cooling.
Therefore, in the light of what is discussed, there is a need in the art for an improved air-cooled induction heating device that is particularly designed have better efficiency in terms of the air-cooling thereof.
The present invention comprises a device for inductively heating a graphite susceptor and subsequently melting a metal of a relatively low melting point such as, gold, silver, brass, copper, etc. The device comprises a crucible, the inner and outer layers of which are inlaid with a graphite layer and a thermal fiber layer respectively. An induction coil is spirally wound around the crucible such that, no contact is observed therebetween. The coil is made of high temperature litz or welding wire and lined with a thermal insulation layer, such as, of thermal epoxy, so as to provide sufficient thermal barrier between the induction coil and the susceptor.
The device further comprises a fan secured at one end of an air duct wherein, the air from the fan, as directed by the air duct, is delivered to the annular gap disposed between the induction coil and the outer surface of the crucible so as to air-cool the induction coil. In one embodiment, the air from the fan is pre-chilled. Powering the induction coil results in the generation of an electromagnetic field that inductively heats up of the susceptor within the crucible that leads to the subsequent melting thereof.
Other objects and advantages of the embodiments herein will become readily apparent from the following detailed description taken in conjunction with the accompanying drawings.
10—Induction Heating and Melting Device
12—Crucible
14—Inner Layer
16—Outer Layer
18—Induction Coil
20—Insulation Layer
22—Fan
24—Air Duct
26—Air
28—Control Panel
30—Power Source
In the following detailed description, a reference is made to the accompanying drawings that form a part hereof, and in which the specific embodiments that may be practiced is shown by way of illustration. These embodiments are described in sufficient detail to enable those skilled in the art to practice the embodiments and it is to be understood that the logical, mechanical and other changes may be made without departing from the scope of the embodiments. The following detailed description is therefore not to be taken in a limiting sense.
Referring to
Referring to
Referring to
Referring to
The foregoing description of the specific embodiments will so fully reveal the general nature of the embodiments herein that others can, by applying current knowledge, readily modify and/or adapt for various applications such specific embodiments without departing from the generic concept, and, therefore, such adaptations and modifications should and are intended to be comprehended within the meaning and range of equivalents of the disclosed embodiments. It is to be understood that the phraseology or terminology employed herein is for the purpose of description and not of limitation. Therefore, while the embodiments herein have been described in terms of preferred embodiments, those skilled in the art will recognize that the embodiments herein can be practiced with modification within the spirit and scope of the appended claims.
Although the embodiments herein are described with various specific embodiments, it will be obvious for a person skilled in the art to practice the invention with modifications. For example, the protective case assembly can be adapted to accommodate a tablet PC by simply altering the dimensions thereof. However, all such modifications are deemed to be within the scope of the claims.
This application is a Continuation in Part of U.S. patent application 62/068,103 filed Oct. 24, 2014, entitled “Method and device for melting metals and alloys using air-cooled induction heating coil”, owned by the assignee of the present application and herein incorporated by reference in its entirety.