The described subject matter relates generally to gas turbine engines, and more particularly to an improved buffer air cooler system for a gas turbine engine.
Aircraft gas turbofan engines operate at high temperature levels and therefore, turbine components and bearing cavities require efficient cooling, for example by air bled from the compressor of the engine. However, compressor air which is used to cool the turbine components and bearing cavities, has been heated by the compressor during the compression stage. Conventionally, an air-to-air heat exchanger is located in a bypass air duct of a turbofan gas turbine engine to capture a portion of a relatively cool bypass air flow to cool the relatively warmer compressor bleed air before the compressor bleed air is directed to various locations of the engine for cooling purposes. Such an air-to-air exchanger may be referred to as a buffer air cooler. However, a buffer air cooler disposed in a bypass air duct may cause flow resistance to the bypass air stream flowing through the bypass air duct and other issues affecting engine performance.
Accordingly, there is a need to provide an improved buffer air cooler system for turbofan gas turbine engines.
In one aspect, the described subject matter provides an air cooler system for a gas turbine engine, comprising: an air cooler receiving a compressor air flow to pass therethrough, the air cooler disposed in an annular bypass air duct of the engine, the air cooler having an inlet opening to direct a flow of bypass air to the air cooler and an exit to direct exhaust air to the bypass air duct, the air cooler radially extending only part way into the bypass air duct to dispose a radial outer side of the cooler spaced apart from an outer wall of the bypass duct, a front wedge circumferentially aligned with the inlet opening and being disposed between the inlet opening and a radial inner edge of the cooler, and the front wedge being shaped to direct airflow between the radial inner edge of the cooler and the inlet opening to increase inlet pressure.
In another aspect, the described subject matter provides a gas turbine engine having an annular bypass air duct around a core engine for directing a bypass air stream, the engine comprising an air cooler receiving a compressor air flow to pass therethrough, the air cooler being disposed in the bypass air duct and radially spaced apart from a radial outer wall of the bypass air duct to allow the bypass air stream to pass between a radial outer side of the air cooler and the radial outer wall of the bypass air duct, the air cooler including an inlet portion at an upstream end of the air cooler, the inlet portion defining an inlet opening for receiving a portion of the bypass air stream to the air cooler to cool the compressor air flow passing through the air cooler, the inlet portion including a front wedge disposed radially between the inlet opening and a radial inner side of the air cooler for directing the bypass air stream passing around the inlet portion to thereby increase pressure of the portion of the bypass air stream into the inlet opening, the air cooler having a downstream end defining an exit to allow the portion of the bypass air stream having entered the inlet opening of the air cooler to re-enter the bypass air stream in the bypass air duct.
In a further aspect, the described subject matter provides an air cooler system for a gas turbine engine, comprising an air cooler receiving a compressor air flow to pass therethrough, the air cooler disposed in an annular bypass duct of the engine, the air cooler radially extending only part way into the bypass air duct to allow a bypass air flow to pass between a radial outer wall of the bypass air duct and a radial outer side of the air cooler, the air cooler including an upstream end defining an inlet opening for directing a portion of the bypass air flow to the air cooler to cool the compressor air flow passing therethrough, the air cooler including a downstream end defining an exit to direct exhaust air into a main stream of the bypass air flow in the bypass air duct, a rear ramp attached to and extending across the downstream end and located at a radial inner side of the air cooler.
Further details of these and other aspects of the described subject matter will be apparent from the detailed description and drawings included below.
Reference is now made to the accompanying drawings depicting aspects of the described subject matter, in which:
It will be noted that throughout the appended drawings, like features are identified by like reference numerals.
A buffer air cooler system 32 is provided for the turbofan gas turbine engine. The buffer air cooler 32 includes a buffer air cooler 34 which is an air-to-air heat exchanger disposed in the annular bypass air duct 28, for example downstream of the fan assembly and upstream of one of top dead center (TDC) fairings 30. The buffer air cooler 34 is in fluid communication with a compressor air source such as P2.8 or P2.9 in order to direct a compressor air flow 36 to pass through the buffer air cooler 34 in which the compressor air flow 36 is cooled by the relatively cooler bypass air stream passing through the annular bypass air duct 28 and thus washes over a core matrix 35 of the buffer air cooler 34. The cooled compressor air flow 36 may be delivered to various locations (not shown) in the engine such as bearing cavities or other hot turbine components for cooling purposes. Buffer air coolers are known and therefore will not be described in detail herein. A buffer air cooler of a type having a relatively low flow resistance may be selected for reducing the back-pressure footprint caused at upstream fan blade trailing edges of the fan assembly 14 by the buffer air cooler 34 installed in the bypass air duct 28 downstream of the fan assembly 14.
Referring to
According to one embodiment, the buffer air cooler 34, as shown in broken lines in
In one embodiment, the top 40, bottom 42 and side walls 44, 46 of the housing 33 are all in a single-skin configuration. Therefore, the space defined between inner surfaces of the top 40 and bottom 42 and between inner surfaces of the side walls 44, 46, is similar to an outer profile of the housing 33 defined by the outer surfaces of the top 40, the bottom 42 and outer surfaces of the side walls 44, 46.
The inlet portion 38 is attached to the upstream end 48 of the housing 33 to define an inlet opening 50, in order to allow a flow of the bypass air stream driven by the fan assembly 14, to enter and pass through the housing 33. The inlet opening 50 may have an elliptical shape, for example with a short central axis 52 and a long central axis 54 substantially perpendicular to each other. The long central axis 54 may be substantially parallel to the side walls 44, 46 and extends vertically when the housing 33 is installed in a top location within the annular bypass duct 28, as shown in
The inlet portion 38 in this embodiment may generally include a curved skin (not numbered) extending from an annular edge 56 of the elliptical inlet opening 50 toward and attached to the upstream end 48 of the housing 33. The upstream end 48 may be substantially rectangular, being defined by the top 40, bottom 42 and side walls 44, 46 of the housing 33. The curved inlet skin may define a curved inlet top 58, inlet bottom 60 and inlet sides 62, 64 to provide a curved outer surface extending from the annular edge 56 of the inlet opening 50 to the upstream end 48 of the housing 33, thereby creating an aerodynamic profile of a front of the housing 33, in order to reduce flow distortion at the inlet portion 38 of the housing 33 due to bypass upstream total pressure and total temperature boundary conditions. The curved outer surface of the inlet portion 38 is designed to minimize or prevent flow separation due to flow spillage which is a contributor to bypass air loss and noise.
In one embodiment, a front wedge 66 may be disposed immediately below the inlet opening 50 and attached to the inlet skin at the inlet bottom 60 in order to further deviate and guide the low-momentum bypass air stream around the relatively high flow resistance of the housing 33, thereby minimizing regions of flow separation occurring upstream of the housing 33 and also on the side walls 44 and 46 of the housing 33. The front wedge 66 may be provided in a hollow configuration defined by two wedge side walls (not numbered) joined at a central front edge 68 (see
In one embodiment, the central front edge 68 of the front wedge 66 may extend downwardly from the annular edge 56 of the inlet opening 50 in a substantially radial direction with respect to the rotational axis 29 (shown in
An exit opening 51 is defined at the downstream end 49 of the housing 33 (see
In one embodiment, the inlet portion 38 may include an inner top skin 70 (more clearly shown in
In one embodiment, the header 37 is disposed downstream of and substantially aligned with the double-skin configuration of the inlet top 58 such that the header 37 is substantially blocked by the double-skin configuration of the inlet top 58 from exposure to both the bypass air streams flowing around the inlet portion 38 and the housing 33 and to the flow of bypass air streams entering the inlet opening 50 to pass through the inlet portion 38 and the housing 33. Such an arrangement advantageously prevents flow resistance and resulting pressure loss of the bypass air stream which might be created if the header 37 of the buffer air cooler 34 was exposed to the bypass air stream outside of the housing 33 or was exposed to the flow of bypass air stream passing through the housing 33.
It should be noted that the broken lines in
Referring to
It should be noted that the front wedge 66 of the inlet portion 38 in
The housing 33 may or may not include a rear ramp. In one embodiment shown in
Referring to
Referring to
The double-skin configuration according to one embodiment such as in the inlet portion 38, can advantageously have different curvature distributions and extensions of the respective inner and outer surfaces in order to provide different aerodynamic profiles for the bypass air streams flowing around the housing 33 and for the flow of the bypass air stream flowing through the housing 33 and through the buffer air cooler 34 contained in the housing 33. Therefore, it is possible to fine-tune the overall housing inlet configuration to bypass duct upstream flow field conditions and to the buffer air cooler resistance, i.e. inlet opening area, curvature, tangency, angle of attack, length, etc. Therefore, the back-pressure footprint of the installed buffer air cooler 34 which may occur at the upstream fan blade trailing edges, can be reduced.
The above description is meant to be exemplary only, and one skilled in the art will recognize that changes may be made to the embodiments described without departure from the scope of the described subject matter. For example, the curved profiles of the inlet portion and the housing illustrated in the drawings are examples to illustrate the described embodiments. Various geometrical profiles other than those illustrated may be defined with the inlet portion and the housing to meet different aerodynamic requirements of various engines. The described embodiments and the illustrations of the drawings are substantially focused on the general concept of the described subject matter rather than structural features, which may vary from those illustrated. Still other modifications which fall within the scope of the described subject matter will be apparent to those skilled in the art, in light of a review of this disclosure, and such modifications are intended to fall within the appended claims.
This application is a continuation of U.S. application Ser. No. 13/462,194 filed May 2, 2012, the entire contents of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3528250 | Johnson | Sep 1970 | A |
4187675 | Wakeman | Feb 1980 | A |
4254618 | Elovic | Mar 1981 | A |
4561257 | Kwan et al. | Dec 1985 | A |
4645415 | Hovan et al. | Feb 1987 | A |
5119624 | McKenna | Jun 1992 | A |
5123242 | Miller | Jun 1992 | A |
5203163 | Parsons | Apr 1993 | A |
5269135 | Vermejan et al. | Dec 1993 | A |
5553449 | Rodgers et al. | Sep 1996 | A |
5729969 | Porte | Mar 1998 | A |
6058696 | Nikkanen et al. | May 2000 | A |
6106229 | Nikkanen et al. | Aug 2000 | A |
6182435 | Niggemann et al. | Feb 2001 | B1 |
6269628 | Gates | Aug 2001 | B1 |
6701715 | Anderson et al. | Mar 2004 | B2 |
7377100 | Bruno et al. | May 2008 | B2 |
7810311 | Schwarz et al. | Oct 2010 | B2 |
7810312 | Stretton et al. | Oct 2010 | B2 |
7861512 | Olver et al. | Jan 2011 | B2 |
7861513 | Stretton | Jan 2011 | B2 |
7862293 | Diver | Jan 2011 | B2 |
7886520 | Stretton et al. | Feb 2011 | B2 |
7946806 | Murphy | May 2011 | B2 |
7966831 | Kraft et al. | Jun 2011 | B2 |
8157503 | Junod | Apr 2012 | B2 |
8181443 | Rago | May 2012 | B2 |
9045998 | Lo | Jun 2015 | B2 |
20080271433 | Olver | Nov 2008 | A1 |
20090188232 | Suciu et al. | Jul 2009 | A1 |
20100092116 | Franconi | Apr 2010 | A1 |
20110251743 | Hu et al. | Oct 2011 | A1 |
20160108814 | Schmitz | Apr 2016 | A1 |
20160231068 | Schmitz et al. | Aug 2016 | A1 |
20170009657 | Schwarz et al. | Jan 2017 | A1 |
Number | Date | Country |
---|---|---|
2098719 | Nov 1982 | GB |
2232720 | Dec 1990 | GB |
Number | Date | Country | |
---|---|---|---|
20160290237 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13462194 | May 2012 | US |
Child | 15183074 | US |